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Abstract

This paper focuses on the challenging crowd counting
task. As large-scale variations often exist within crowd
images, neither fixed-size convolution kernel of CNN nor
fixed-size attention of recent vision transformers can well
handle this kind of variations. To address this problem,
we propose a Multifaceted Attention Network (MAN) to
improve transformer models in local spatial relation en-
coding. MAN incorporates global attention from vanilla
transformer, learnable local attention, and instance atten-
tion into a counting model. Firstly, the local Learn-
able Region Attention (LRA) is proposed to assign atten-
tion exclusive for each feature location dynamically. Sec-
ondly, we design the Local Attention Regularization to
supervise the training of LRA by minimizing the devia-
tion among the attention for different feature locations.
Finally, we provide an Instance Attention mechanism to
focus on the most important instances dynamically dur-
ing training. Extensive experiments on four challeng-
ing crowd counting datasets namely ShanghaiTech, UCF-
QNRF, JHU++, and NWPU have validated the proposed
method. Code: https://github.com/LoraLinH/Boosting-
Crowd-Counting-via-Multifaceted-Attention.

1. Introduction
Crowd counting plays an essential role in congestion es-

timation, video surveillance, and crowd management. Es-
pecially after the outbreak of coronavirus disease (COVID-
19), real-time crowd detection and counting attract more
and more attention.

In recent years, typical counting methods [20,21,41,50]
utilize the Convolution Neural Network (CNN) as backbone
and regress density map to predict the total crowd count.
However, due to the wide viewing angle of cameras and
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the 2D perspective projection, large-scale variations often
exist in crowd images. Traditional CNNs with fixed-size
convolution kernel are difficult to deal with these variations
and the counting performance is severely limited. To alle-
viate this issue, multi-scale mechanism is designed, such as
multi-scale blobs [48], pyramid networks [22], and multi-
column networks. These methods introduce an intuitive
local-structure inductive bias [43], suggesting that the re-
spective field should be adaptive to the size of objects.

Lately, the blossom of Transformer models, which adopt
the global self-attention mechanism, has significantly im-
proved the performances of various natural language pro-
cessing tasks. Nonetheless, it is not until ViT [10] in-
troduces patch-dividing as a local-structure inductive bias
that transformer models can compete with and even surpass
CNN models in vision tasks. The development of vision
transformer suggests that both global self-attention mecha-
nism and local inductive bias are important for vision tasks.

The study about transformer based crowd counting is just
in its preliminary stage [19, 49] and undergoes major chal-
lenges in introducing the local inductive bias to transformer
models in crowded scenes. These models usually use fixed-
size attention as ViT, which is limited in encoding the 2D
local structure as pointed out by [10] and clearly inadequate
to handle large-scale variations of crowd images. To solve
this problem, in this paper, we improve both the structure
and training scheme of vision transformers for crowd count-
ing from the following three perspectives.

Firstly, in response to such limitations in local region en-
coding, we propose the learnable region attention (LRA) to
emphasize the local context. Different from previous vision
transformers that adopt fixed patch division schemes, LRA
can flexibly determine which local region it should pay at-
tention to for each feature location. As a result, the local
attention module provides an efficient way of extracting the
most relevant local information against the scale changes.
Moreover, it further disengages from the dependence on the
position embedding module of ViT, which has been proven
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Figure 1. The framework of Multifaceted Attention Network. A crowd image is first fed into CNN. Then the flatten output feature map
is transmitted into the transformer encoder with the Learnable Region Attention. Finally, a regression decoder predicts the density map.
Local Attention Regularization and Instance Attention Loss (in lilac boxes) are optimized during the training process.

inefficient in encoding local space relations [10].
Secondly, we propose an efficient Local Attention Reg-

ularization (LAR) method to regularize the training of the
LRA module. Inspired by the recent finding of human be-
haviors [5] that people often allocate similar attention re-
sources to objects with similar real sizes regardless of their
sizes in 2D images, we require the allocated attention w.r.t.
each feature location to be similar. Based on this under-
standing, we design LAR to optimize the distribution of lo-
cal attention by penalizing the deviation among them. LAR
enforces the span of visual attention to be small on crowd
area, and vice versa, for balanced and efficient allocations
of attention.

Finally, we make an attempt to apply the attention mech-
anism to the instance (i.e., the point annotations) level in
images and propose the Instance Attention module. As the
point annotations as provided in popular crowd benchmarks
are spare and can only occupy a very small portion of the en-
tire human heads, there are unavoidable annotation errors.
To alleviate this issue, we use Instance Attention to focus on
the most important instances dynamically during training.

In summary, we propose a counting model with mul-
tifaceted attention, termed as Multifaceted Attention Net-
work (MAN), to address large-scale variations in crowd im-
ages. The contributions are further summarized as follows:

• We propose the local Learnable Region Attention to
allocate an attention region exclusive for each feature
location dynamically.

• We design a local region attention regularization
method to supervise the training of LRA.

• We introduce an effective instance attention mecha-
nism to select the most important instances dynami-
cally during training.

• We perform extensive experiments on popular datasets
including ShanghaiTech, UCF-QNRF, JHU++, and
NWPU, and show that the proposed method makes a
solid advance in counting performance.

2. Related Works

2.1. Crowd Counting

Existing crowd counting methods can be categorized into
three types: detection, regression and point supervision.
Detection based methods [15, 18] construct detection mod-
els to predict bounding boxes for every person in the image.
The final predicted count is represented by the number of
boxes. However, its performance is limited by the occlusion
in congested areas and the need of additional annotations.

Regression based methods [13, 50] predict count by re-
gressing to a pseudo density map generated based on point
annotations. More improvements such as multi-scale mech-
anisms [2, 22, 30, 48], perspective estimation [44, 46] and
auxiliary task [17, 51] further promote the development of
crowd counting.

Recently, many works propose to avoid the inaccurate
generation of pseudo maps and directly use point supervi-
sions. BL [21] designs the loss function based on Bayesian
theory, calculating the deviation of expectation for each
crowd. And further works [14, 23, 38] focus on optimal
transport and measure the divergence without depending on
the assumption of Gaussian distribution.

2.2. Transformer

The transformer [36] has rapidly been used in wide range
of machine learning area. [9] proposes Bidirectional En-
coder Representations from Transformers (BERT) to enable
deep bidirectional pre-training for language representations.
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[26] makes use of transformer to achieve strong natural lan-
guage understanding through generative pre-training. [8]
introduces a generalization of the Transformer model which
extends theoretical capabilities.

The Vision Transformer (ViT) [10] firstly applies a trans-
former architecture for vision tasks and demonstrates out-
standing performances. DETR [3] further boosts the effi-
ciency of vision transformer focusing on object detection.
More recently, these advancements have boosted the effec-
tive applications of transformer in various tasks. [32,42,53]
adopt transformers on instance or semantic segmentation.
[34, 52, 54] improve accuracy and efficiency for object de-
tection. For tracking task, great properties of transformer
are also leveraged in [4, 33, 39].

2.3. Variable Attention

The self-attention module is a key component in many
deep learning models and especially in different kinds of
transformers. In order to better leverage on the ability of
relative information extraction, some previous works endow
the attention module with the variable property. [47] pro-
poses flexible self-attention module which computes atten-
tion weights over words with the dynamic weight vector.
Disan [27] introduces multi-dimensional attention and di-
rectional self-attention to perform a feature-wise selection
and the context-aware representations. Longformer [1] uti-
lizes dilated sliding window attention to combine local and
global information. And [25] enables more focused atten-
tions by dynamic differentiable windows.

In vision tasks, Swin Transformer [19] designs shifted
attention windows with overlap to achieve cross-window
connections. The study [35] develops blocked local atten-
tion and attention downsampling to improve speed, memory
usage, and accuracy. [45] proposes focal self-attention to
capture both local and global interactions in vision trans-
formers. A 2-D version of sliding window attention as
Longformer [1] is introduced to achieve a linear complexity
w.r.t. the number of tokens [49].

We extend the previous variable attentions to learnable
one, under the premise of large scale variations in crowd im-
ages. Our proposed 2D Learnable Region Attention (LRA)
breaks the constraint of traditional fixed-size local attention
windows in vision tasks and is robust to scale variations.

3. The Proposed Method
In this section, we will elaborate the Multifaceted Atten-

tion Network, which consists of three major components:
the Learnable Region Attention (LRA), the Local Attention
Regularization (LAR), and the Instance Attention Loss.

3.1. Framework Overview

Figure 1 presents an overview of the framework. For
each image I , we first use VGG-19 [28] as our backbone

to extract the features F ∈ RC×W×H , where C, W , and
H are the channel, width and height, respectively. Then
the feature map is flattened and transmitted into transformer
encoder with the proposed LRA to learn features F ′ against
various scales. Afterwards, a regression decoder is utilized
to predict the final density map D ∈ RW ′×H′

from F ′.
Finally, We use an Local Attention Regularization dedicated
to supervise the training of the LRA module and an Instance
Attention Loss to constrain the training of the total network.

3.2. Global Attention

Traditional transformer network [36] adopts self-
attention layer in the encoder. It is able to connect all pairs
of input and output positions to consider the global relations
of current features. It is computed by:

Att(Q,K, V ) = S( (QWQ)(KWK)T√
d

)(VWV ), (1)

where S is the softmax function and 1√
d

is a scaling factor
based on the vector dimension d. WQ,WK ,WV ∈ Rd×d

are weight matrices for projections. Q,K, V , which are de-
rived from source features, stand for the query, key, and
value vectors, respectively.

However, since it regards the input as a disordered
sequence and indiscriminately considers all correlations
among features, the global attention model is position-
agnostic [7]. Therefore, we propose a local learnable region
attention to consider spatial information and enable more
focus attentions.

3.3. Region Attention

As fixed-size convolution kernel and predesigned atten-
tions [19, 49] are insufficient to learn cross-scale spatial in-
formation, we seek to design a mechanism by which each
feature will be learnable to attend to a most suitable local
region. In specific, as a rectangular region can be identified
by two vertices, we begin with a region filter mechanism to
obtain the exclusive region for each position.

We first define two filter functions of position p =
(xp, yp) where 0 ≤ xp < W, 0 ≤ yp < H as:

filbl(p | b) =

{
1, if xb ≤ xp < W, yb ≤ yp < H

0, otherwise
,

filur(p | u) =

{
1, if 0 ≤ xp ≤ xu, 0 ≤ yp ≤ yu

0, otherwise
.

(2)

Given two predicted vertices bottom left (bl) and upper
right (ur): b = (xb, yb), u = (xu, yu) for a specific feature,
the filter regions for it can be calculated by:

Rbl = [filbl(p | b)]W×H
p , Rur = [filur(p | u)]W×H

p .
(3)
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After that, calculated by Hadamard product between two
filter regions R = Rbl ◦ Rur, the region map R ∈ RW×H

can finally be expressed as:

R(p) =

{
1, if xb ≤ xp ≤ xu, yb ≤ yp ≤ yu

0, otherwise
. (4)

Especially, when adopting global attention, R can be repre-
sented as an all-ones matrix.

It is worth noticing that following the above-mentioned
filter mechanism, the accuracy of each exclusive region en-
tirely depends on only two discrete points, which is not
learnable and lacks flexibility.

Therefore, to explore more on local relations and im-
prove the effectiveness of learning ability, we redesign the
region filter mechanism based on coverage probability pro-
jections.

3.4. Learnable Region Attention

First, given the query vector and key vector Q,K ∈
RWH×d, we replace the two binary filter regions by first
introducing two predicted coverage probability maps as fol-
lows:

C1 = S((QWQ
1 )(KWK

1 )T ),

C2 = S((QWQ
2 )(KWK

2 )T ),
(5)

where WQ
1 ,WK

1 ,WQ
2 ,WK

2 ∈ Rd×d are trainable parame-
ter matrices and C1, C2 ∈ RWH×WH .

To obtain a 2D learnable attention map, C1 and C2 are
reshaped to an order-3 tensor with a size of RWH×W×H .
For each i ∈ WH along the first axis of C1 and C2, there
are two corresponding probability maps C1

i ,C2
i ∈ RW×H .

That is, C1
i = C1(i, :, :) and C2

i = C2(i, :, :). We then re-
design the filter region maps by following the Cumulative
Distribution Function (CDF) w.r.t. two different directions,
namely from bottom left (bl) to upper right (ur) and oppo-
site. More specifically, given a 2D probability function Ci,
for any position p = (xp, yp) where 0 ≤ xp < W, 0 ≤
yp < H , we have

F bl
CDF(p | Ci) =

∑
xj≤xp

∑
yj≤yp

Ci(xj , yj),

Fur
CDF(p | Ci) =

∑
xj≥xp

∑
yj≥yp

Ci(xj , yj).
(6)

Let R̂bl
i (Ci) =

[
F bl

CDF(p | Ci)
]W×H

p
and R̂ur

i (Ci) =

[Fur
CDF(p | Ci)]

W×H
p , the learnable region map R̂i ∈ RW×H

is given by:

R̂i = R̂bl
i

(
C1

i

)
◦ R̂ur

i

(
C2

i

)
, (7)

where ◦ is the Hadamard product.
Nonetheless, since we compute those two probability

maps by softmax function, the two cumulative distributions

Figure 2. An example of the learnable region filter mechanism.
See texts for details.

R̂bl
i , R̂

ur
i may have a large number of zero values. Then

the final region map, which is the product of above two re-
gions, will be trivial, as illustrated by the first row of Fig-
ure 2. Therefore, we perform a reverse to guarantee no mat-
ter which the cumulative direction is chosen, R̂i

(
C1

i

)
and

R̂i

(
C2

i

)
will have nontrivial overlap, as shown by Figure 2.

The complete region map becomes:

R̃i = R̂bl
i

(
C1

i

)
◦ R̂ur

i

(
C2

i

)
+ R̂ur

i

(
C1

i

)
◦ R̂bl

i

(
C2

i

)
. (8)

After obtaining the learnable region map R̃, we combine
it into attention module for learnable local attention. With
WQ

loc,W
K
loc ∈ Rd×d being specific parameter matrices of

local attention, the output can be computed by:

Attlra = S(
(QWQ

loc)(KWK
loc)

T ◦ R̃√
d

)(VWV ). (9)

Compared to R in Eq. 4 which relies on discrete vertex
points, R̃ is in a form of parameter arrays which are dif-
ferentiable. The proposed learnable region attention mech-
anism is thus trainable and more flexible at determining the
attentional regions.

Then the global attention is defined by sharing same re-
fined value vectors with LRA:

Attglb = S(
(QWQ

glb)(KWK
glb)

T

√
d

)(VWV ). (10)

Finally, the output of the complete attention module is a
combination of global attention and our proposed learnable
region attention (LRA):

Att = Attglb +Attlra. (11)

3.5. Local Attention Regularization

We take inspiration from the recent finding from the
study of human behaviors that the human visual system usu-
ally pays similar attention to the objects with similar real
sizes [5]. To mimic such a phenomenon, we design the lo-
cal region attention regularization module for supervising
the training of the local learnable region attention module.
The goal is to balance the distributions of local attention and
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Figure 3. Overview of the Local Attention Regularization. It re-
fines the LRA by keeping the consistency of allocated attention
resources in each proposed region.

penalize the deviation among the attention allocated to local
regions.

More specifically, given a predicted learnable region
map R̃i ∈ RW×H and a feature map F ∈ RC×W×H , we
compute the attention-weighted features, which can be for-
mulated as a double tensor contraction of the second and the
third mode of F with the first and second mode of R̃i [6]:

Ei = [F ](1,[2,3])⋆[R̃i]([1,2]). (12)

[·](·) indicates the mode for the tensor contrac-
tion operator ⋆ [24] and we finally have Ei (c) =∑W

w=1

∑H
h=1 F (c, w, h) · R̃i (w, h) .

To keep the consistency of allocations of attention re-
sources in each region, we regularize the local attention by
minimizing the variance among weighted features:

Rlra =

WH∑
i=0

G(Ei, E), (13)

where E is the mean allocation of attention resources in all
local attention regions. The deviation penalty G between
two weighted features is given by:

G(Ei, Ej) = 1− ET
i Ej

||Ei|| · ||Ej ||
. (14)

The scheme of Local Attention Regularization is shown
in Figure 3.

3.6. Instance Attention Loss

For optimizing the entire network, we provide the In-
stance Attention Loss. As the ground truth as provided in
popular crowd benchmarks is in a form of spare point anno-
tations and only occupies a very small portion of human
heads, this kind of human-labeled annotations inevitably
exist spatial error.

To alleviate negative influences by annotation noises, we
impose a dynamic selection mechanism named Instance At-
tention, considering that the trained model sometimes pre-
dicts more correct signals than annotations. The mechanism

is designed based on an attention mask m = [mj ]Nj to se-
lect supervisions. The Instance Attention Loss is defined as:

LIA =

N∑
j

mj · ϵj , (15)

where e = [ϵj ]Nj are deviations between predictions and la-
bels. For example, in MSE Loss, N equals to the size of
density map, while in Bayesian Loss [21] (BL), N equals
to the number of annotated points. Considering the perfor-
mance and robustness, we finally choose BL as the devia-
tion function:

ϵj = |1−
∑

p

Probj(p) ·Dp|, (16)

where j is jth annotated point. D is the final predicted den-
sity map. Probj(p) represents for the posterior of the oc-
currence of the jth annotation given the position p.

The instance attention mask in Eq. 15 provides a mech-
anism to select or weigh the instances. We regard the devi-
ation ϵj between predictions and labels as a kind of uncer-
tainty of labels. If ϵj is too large, there is a contradiction
under the label of the instance. In this case, we shall reduce
its importance or exclude this instance in back-propagation
dynamically. For efficient computation, we adopt m as bi-
nary vectors. We first get the indices that sort the deviations
in ascending order k⃗ = sortID (e). Then m is given by:

mj =

1, if j ∈
{
k⃗(1), k⃗(2), ..., k⃗([δN ])

}
0, otherwise

, (17)

where δ is the threshold. Clearly, in normal cases, m =
[1]N and δ = 1.0. In the experiments, we set δ = 0.9,
which means only 90% annotated points with the lowest
deviations from prediction will be involved in supervision.

Finally, the overall loss function of MAN is defined by:

L = LIA + λRlra. (18)

4. Experiments
4.1. Implement Details

Network Structure: We adopt VGG-19 as our CNN back-
bone network which is pre-trained on ImageNet. We refer
to [36] for the structure of transformer encoder and replace
the attention module by our proposed LRA. Specifically, as
LRA is spatial-aware, the feature map is directly fed into
the encoder without position encoding. Our regression de-
coder consists of an upsampling layer and three convolution
layers with activation ReLU function. The kernel sizes of
first two layers are 3× 3 and that of last is 1× 1.
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Dataset ShanghaiTech A UCF-QNRF JHU++ NWPU
Method MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [50] (CVPR 16) 110.2 173.2 277 426 188.9 483.4 232.5 714.6
CP-CNN [30] (ICCV 17) 73.6 106.4 - - - - - -
CSRNet [13] (CVPR 18) 68.2 115.0 - - 85.9 309.2 121.3 387.8

SANet [2] (ECCV 18) 67.0 104.5 - - 91.1 320.4 190.6 491.4
CA-Net [16] (CVPR 19) 61.3 100.0 107.0 183.0 100.1 314.0 - -

CG-DRCN-CC [29] (PAMI 20) 60.2 94.0 95.5 164.3 71.0 278.6 - -
DPN-IPSM [22] (ACMMM 20) 58.1 91.7 84.7 147.2 - - - -

DM-Count [38] (NIPS 20) 59.7 95.7 85.6 148.3 - - 88.4 388.6
UOT [23] (AAAI 21) 58.1 95.9 83.3 142.3 60.5 252.7 87.8 387.5

S3 [14] (IJCAI 21) 57.0 96.0 80.6 139.8 59.4 244.0 83.5 346.9
P2PNet [31] (ICCV 21) 52.7 85.1 85.3 154.5 - - 77.4 362.0

GL [37] (CVPR 21) 61.3 95.4 84.3 147.5 59.9 259.5 79.3 346.1
BL [21] (ICCV 19) 62.8 101.8 88.7 154.8 75.0 299.9 105.4 454.2

MAN (Ours) 56.8 90.3 77.3 131.5 53.4 209.9 76.5 323.0

Table 1. Comparisons with the state of the arts on ShanghaiTech A, UCF-QNRF, JHU-Crowd++, and NWPU. BL [21] serves as our
baseline. The best performance is shown in bold and the second best is shown in underlined.

Training Details: We first adopt random scaling and hori-
zontal flipping for each training image. Then we randomly
crop image patches with a size of 512 × 512. As some im-
ages in ShanghaiTech A contain smaller resolution, the crop
size for this dataset changes to 256× 256. We also limit the
shorter side of each image within 2048 pixels in all datasets.
We use Adam algorithm [12] with a learning rate 10−5 to
optimize the parameters. We set the number of encoder lay-
ers T as 4 and the loss balanced parameter λ as 100.

4.2. Datasets and Evaluation Metrics

Experiments for evaluation are conducted on four
largest crowd counting datasets: ShanghaiTech [50], UCF-
QNRF [11], JHU-Crowd++ [29] and NWPU-CROWD [40].
These datasets are described as follows:

ShanghaiTech A [50] contains 482 images with 244,167
annotated points. 300 images are divided for training and
the remaining 182 images are for testing. Images are ran-
domly chosen from the Internet.

UCF-QNRF [11] includes 1,535 high resolution images
collected from the Web, with 1.25 million annotated points.
There are 1,201 images in the training set and 334 images
in the testing set. UCF-QNRF has a wide range of people
count with the minimum and maximum are 49 and 12,865,
respectively.

JHU-Crowd++ [29] contains 4,372 images with 1.51 mil-
lion annotated points. 2,772 images are chosen for training
and the rest 1,600 images are for testing. The images are
collected from several sources on the Internet using differ-
ent keywords and specifically chosen for adverse weather
conditions.

NWPU-CROWD [40] includes 5,109 images with 2.13
million annotated points. 3,109 images are divided into
training set; 500 images are in validation set; and the re-
maining 1,500 images are in testing set. Compared with
other datasets, it has the largest density range from 0 to
20,033 and contains various illumination scenes.

Evaluation Metrics: We evaluate counting methods by two
commonly used metrics: Mean Absolute Error (MAE) and
Mean Squared Error (MSE). They are defined as follows:

MAE = 1
M

∑M
i=1

∣∣Ngt
i −Ni

∣∣,
MSE =

√
1
M

∑M
i=1(N

gt
i −Ni)2).

where M is the number of sample images. Ngt
i and Ni are

ground truth and estimated count of ith image respectively.
MAE measures the accuracy of methods more and MSE
measures the robustness more. The lower of both represents
the better performance [50].

4.3. Comparison with state-of-the-art methods

We evaluate our model on above four datasets and list
thirteen recent state-of-the-arts methods for comparison.
BL [21] serves as our baseline. The quantitative results
of counting accuracy are listed in Table 1. As the result
shows, our MAN performs great accuracy on all the four
benchmark datasets. MAN improves MAE and MSE val-
ues of second best method S3 [14] from 80.6 to 77.3 and
from 139.8 to 131.5, respectively. On JHU++, it improves
these two values from 59.4 to 53.4 and from 244.0 to 209.9,
respectively.

Compared to BL, MAN significantly boosts its count-
ing accuracy on all four datasets. The improvements are
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Figure 4. Comparison of regions proposed by our Learnable Region Attention (LRA) without (first row) and with (second row) LAR. Each
white circular mark indicates the location of a feature which the mask is corresponding to. For a clearer visualization, we subtracted the
mean mask region map corresponding to each head. The attention region with LAR becomes gradually narrower compared to the first row
as the scale of focus crowd is smaller.

Transformer LRA LAR IAL MAE MSE
88.7 154.8

✓ 85.2 149.5
✓ 84.7 150.9

✓ 84.2 150.8
✓ ✓ 83.0 146.2
✓ ✓ 82.9 144.2
✓ ✓ ✓ 81.5 137.9
✓ ✓ ✓ 80.5 140.4
✓ ✓ ✓ ✓ 77.3 131.5

Table 2. Ablation study. Transformer is the vanilla form [36].
LRA, LAR and IAL are short for the Learnable Region Atten-
tion, Local Attention Regularization and Instance Attention Loss
respectively. All experiments are performed on UCF-QNRF. The
full model combining all proposed modules performs best.

9.6% and 11.3% for MAE and MSE on ShanghaiTech A,
12.9% and 15.1% on UCF-QNRF, 28.8% and 30.0% on
JHU-Crowd++, and 27.4% and 28.9% on NWPU-CROWD.
Visualizations of our MAN are shown in Figure 6.

4.4. Key Issues and Discussion

Ablation Studies We perform the ablation study on UCF-
QNRF and provide quantitative results in Table 2. We start
with the baseline BL [21] and then test the contribution of
vanilla transformer encoder [36]. MAE and MSE are re-
duced by 3.9% and 3.4%, respectively. By adding IAL, the
performance from baseline is improved by 4.5% and 2.5%.
The combination of transformer and IAL further boosts the
counting accuracy. Then, we replace the vanilla attention
module by our proposed LRA, the performance is improved
by 2.7% and 3.5% without IAL and by 1.8% and 5.7% with
IAL. However, it is worth noticing that when we only adopt
LRA without global attention, the performance will drop,
indicating both global and local information are important.
Finally, when the LAR is adopted, the best performance is

Figure 5. Effect of threshold δ. The dotted line represents our
network without proposed Instance Attention Loss. When 0.8 ≤
δ < 1, the results are better than supervision by all annotations.

achieved, boosting the counting accuracy of BL by 12.9%
and 15.1% for MAE and MSE, respectively.

Effect of δ: We hold experiments to understand the pa-
rameter selection of proposed Instance Attention Loss. We
compare the counting accuracy under different thresholds
on UCF-QNRF, which result is shown in Figure 5.

We set Multifaceted Attention Network without Instance
Attention Loss as the baseline, which also means δ = 1.
We observe that the counting accuracy reaches best when
δ = 0.9, representing the model cuts off 10% annotations
with largest deviations from the prediction.

As δ is selected smaller, the accuracy of MAN declines
obviously. It can be explained by the insufficient use of
ground truth and that the model is weakly supervised. Then,
when we focus on 0.8 ≤ δ < 1, the results are much better
than supervision by all annotations. This may suggest that
there are about 20% annotations which will negatively influ-
ence the performance of model in counting when adopted in
training. And by our Instance Attention Loss, it reduces this
negative influence conveniently and effectively.

Visualizations of LRA: Figure 4 presents a comparison of
the region mask R̃i in Learnable Region Attention (LRA)
without (first row) and with (second row) LAR, where the
location of corresponding feature i is marked by a white
circle. Supervised by LAR, LRA is able to balance the allo-
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GT: 127 GT: 183 GT: 367 GT: 4535

MAN: 125.37 MAN: 181.73 MAN: 369.01 MAN: 4311.00

GT: 953 GT: 1018 GT: 1211 GT: 405 GT: 540

MAN: 947.04 MAN: 1013.15 MAN: 1205.58 MAN: 404.02 MAN: 534.72

Figure 6. Visualizations on UCF-QNRF. The first and third rows are input images while the second and forth rows are the corresponding
density maps predicted by our MAN. The warmer color means higher density.

cations of attention resources. As can be seen, the attention
region becomes gradually narrower in the second row as the
scale of focus crowd is smaller and the number of people
needed attention in each region is about the same. Such a
dynamic attention scheme is more in accord with human’s
efficient deployment of attention resources and justifies the
usefulness of our LRA and LAR.

Running Cost Evaluation: Table 3 reports a comparison of
model size, floating point operations (FLOPs) computed on
one 384× 384 input image, inference time for 1024× 1024
images. It can be easily observed that the model size and in-
ference time of MAN are closed to those of VGG19+Trans
and much smaller than those of ViT-B. Moreover, MAN and
VGG19-Trans are with a marginal difference in FLOPs. It
thus shows that the proposed components are lightweight
compared with vanilla transformers.

5. Conclusion
This paper is aimed to enhance the ability of transform-

ers in spatial local context encoding for crowd counting. We
contribute to the structure of transformers by proposing a
Learnable Region Attention module. We also improve the

ViT-B [10] Bayesian [21] VGG19+Trans MAN
Model Size (M) 86.0 21.5 29.9 30.9

GFLOPs 55.4 56.9 58.0 58.2
Inference time 21.3 10.3 10.8 11.3

Table 3. Comparison of the model size (M), FLOPs and Inference
time (s / 100 images). Trans stands for the vanilla encoder. The
computational cost of MAN only increases a little.

training pipeline by designing Local Attention Regulariza-
tion to balance the attention allocated for each proposed re-
gion and introducing the Instance Attention Loss to reduce
the influences of label noise. The proposed Multifaceted At-
tention Network has achieved state-of-the-art performances
on four crowd counting datasets. We consider future direc-
tions for applying model to a wider range of vision tasks.
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