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Abstract

We present a cross-modal Transformer-based frame-
work, which jointly encodes video data and text labels for
zero-shot action recognition (ZSAR). Our model employs a
conceptually new pipeline by which visual representations
are learned in conjunction with visual-semantic associa-
tions in an end-to-end manner. The model design provides a
natural mechanism for visual and semantic representations
to be learned in a shared knowledge space, whereby it en-
courages the learned visual embedding to be discriminative
and more semantically consistent. In zero-shot inference,
we devise a simple semantic transfer scheme that embeds
semantic relatedness information between seen and unseen
classes to composite unseen visual prototypes. Accordingly,
the discriminative features in the visual structure could be
preserved and exploited to alleviate the typical zero-shot
issues of information loss, semantic gap, and the hubness
problem. Under a rigorous zero-shot setting of not pre-
training on additional datasets, the experiment results show
our model considerably improves upon the state of the arts
in ZSAR, reaching encouraging top-1 accuracy on UCF101,
HMDB51, and ActivityNet benchmark datasets. Code will
be made available.1

1. Introduction

Action recognition with supervised training is highly
successful [9, 22, 36, 58, 59, 65], e.g., AssemblyNet++ [52]
and X3D [17]. In comparison, zero-shot action recognition
(ZSAR) generally lags behind because it requires a model to
make meaningful inferences about unseen concepts, given
only the data provided from seen training concepts and ad-
ditional high-level semantic label information [55]. Ad-
dressing the general zero-shot challenges, e.g., distribution
shift and semantic gap, recent ZSAR methods mainly ex-
ploit visual features extracted from off-the-shelf pretrained
action recognition models and focus on studying a more ro-
bust visual-to-semantic mapping or learning a joint embed-

1 https://github.com/microsoft/ResT

Figure 1. ResT is a cross-modal transformer network, which
learns visual representations along with visual-semantic associa-
tions for ZSAR. In ResT, visual tokens attend to visual tokens
(modality-specific attention); Word tokens attend to visual and text
tokens on the left (cross-modal attention).

ding space on which to project visual and semantic features.
However, there are limitations in this typical framework.

First, visual features are usually acquired by pretrained
action recognition models and remain unchanged during
training (e.g., C3D [58] is employed in [4, 24, 42, 42, 62],
I3D [9] is adopted in [21, 37, 45, 51]). Hence, they may
not contain enough information for learning a fair repre-
sentation [34]. Besides, when directly using pretrained ac-
tion recognition models to extract visual features, the intrin-
sic zero-shot setting may not be preserved. The pretrained
model acquires the knowledge of classes that should not be
seen during training [51]. For example, I3D was trained
on the ImageNet [13] and Kinetics [28] datasets. C3D was
trained on the I380K and Sports-1M datasets [27]. Simi-
lar to Kinetics, between Sports-1M and UCF101 [53], they
share 23 identical classes [16].

Second, action classes are usually manually labeled with
limited descriptions of many complex actions, causing the
semantic information is often imprecise or incomplete. For
example, many action classes are only labeled by a noun
(e.g., ”uneven bars,” ”hula hoop”), or a single verb (e.g.,
”pour,” ”dive”). In contrast, videos, upon which the words
are placed, are true visual reflections of various classes of
actions. Visual observations are unstructured and complex.
It follows, there is richer and more discriminative informa-
tion in the visual feature space. Despite the visual and se-
mantic spaces being connected, the visual discrimination af-
ter mapping or projection of the two spaces often shrinks
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to a certain extent [46, 70]. This affects the knowledge
transferability from seen classes to unseen classes. Be-
sides, as the projection is performed in high-dimensional
embedding spaces, there inevitably exists the hubness prob-
lem [35, 49, 69], whereby some class prototypes appear to
be the nearest neighbors of many irrelevant test instances.

The question is, how can the visual and semantic spaces
be bridged, while at the same time maintaining the visual
discrimination for an effective knowledge transfer?

In this paper, we study an end-to-end trainable cross-
modal framework, named ResT (ResNet-Transformer).
ResT is able to associate both visual and semantic spaces,
while preserving the descriptive and discriminative infor-
mation implied in the visual embedding space. Considering
the essence of ZSAR, we frame the problem in two ways:
(1) Instead of using pretrained feature extractors, we attach
a vanilla non-pretrained ResNet module to the Transformer
to extract visual features, which is to ensure that no prior
knowledge of unseen classes is acquired during training. (2)
Contrary to normal practice, we integrate the learning of vi-
sual representations and visual-semantic associations into
the same unified architecture. This model design provides a
natural mechanism for visual and semantic representations
to be learned in a shared knowledge space, which can bridge
the semantic gap and encourage the learned visual embed-
ding to be discriminative and more semantically consistent.

Considering the disconnection among source and target
domains, which makes great difficulty in inferring their re-
lationships via a coarse one-on-one nearest neighbor match-
ing, we develop a simple semantic transfer scheme for zero-
shot inference. The idea is to leverage the visual-semantic
associations in ResT and to composite a visual prototype for
each unseen class by embedding a combination of relevant
information. Specifically, in light of the observations that
human activities (e.g., play basketball) are composed of a
series of simple actions (e.g., run, pass, jump and shoot)
or are related to a set of partial elements of other com-
plex activities, we posit that actions are implicitly compo-
sitional [1, 23, 38]. The semantic transfer scheme is thus
formulated as a subgraph selection, based on the semantic
relatedness distances of seen and unseen labels, to compos-
ite the visual prototype of each unseen class in visual space
for the ZSAR task. With the transfer scheme, because the
visual representations are not projected onto other spaces,
the hubness problem is alleviated, and the visual distinction
is preserved. Accordingly, the framework achieves good
expandability in various unseen domains.

The present work follows a stricter, but more realistic
zero-shot setting proposed by [5], where the set of training
classes that overlap with test data are removed by a similar-
ity threshold. The model is trained from scratch with ran-
dom initial weights on one dataset and tested on three dis-
jointed target datasets. No pre-training on auxiliary datasets

is performed to ensure no prior knowledge of unseen classes
acquired during training. Our approach employs the induc-
tive configuration [4, 5, 24, 37, 69], where the test data is
entirely unknown during training.

The main contributions of this paper are:

• Our approach, based on the described cross-modal
framework, bridges the visual and semantic spaces
while still maintaining the visual discrimination for
an effective knowledge transfer. With a single trained
model on the Kinetics dataset, our framework estab-
lishes new state-of-the-art ZSAR results on UCF101
[53], HMDB51 [32], and ActivityNet [7] benchmarks.

• We develop a simple yet effective semantic transfer
scheme to composite unseen visual prototypes, with
which ZSAR could be realized in the visual space to
alleviate information loss and the hubness problem.

• Our approach has three nice properties: first, it is
end-to-end trainable; second, it achieves a good accu-
racy–complexity trade-off; third, it offers the flexibil-
ity of utilizing different feature encoder backbones and
is capable of cooperating with concurrent pretrained
models for generalization.

2. Related Work
Visual and Semantic Association. In ZSAR, the visual-
semantic mapping can be generally summarized in three
main approaches.

First, a wide range of methods [19, 21, 41, 42, 47, 61–64,
68, 73] employ an indirect semantic-visual mapping. Both
visual and semantic embeddings are projected onto a com-
mon intermediate space, and ZSAR is performed in the
space. Wang and Chen [62] propose a two-stage framework
to learn a latent embedding space and embed the semantic
representations of unseen-class labels onto it via the guid-
ance of the landmarks. Recently, Chen and Huang [10]
recommend a method with human involvements to con-
struct Elaborative Descriptions sentences from action class
names using Wikipedia and Dictionary, and generate Elab-
orative Concepts of the objects in videos using WordNet.
The method uses the BiT model [31] pretrained on Ima-
geNet21k [13] to predict object probabilities, and leverages
objects involved in seen and unseen classes for ZSAR.

Second, instead of indirect mapping, many methods
[2,4,5,24,30,33,66,67] have been proposed to project visual
features into semantic embedding space and perform clas-
sifications directly in that space. Brattoli et al., [5] propose
an end-to-end method that jointly optimizes the visual em-
beddings acquired by C3D or R(2+1)D [59] architectures
and the semantic embeddings computed by the Word2Vec
function. Third, the reverse mapping from semantic to vi-
sual embeddings is another option [37, 69] to alleviate the
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Figure 2. Summary of the framework. At the training stage, ResT jointly encodes video-text pairs in a single cross-modal Transformer to learn discrim-
inative and more semantically consistent visual representations. At inference, the semantic transfer scheme embeds the semantic relatedness information
between seen and unseen class labels to composite unseen visual prototypes. The model then takes a new observation with a single-modality input (unseen
video) to produce its visual representation for zero-shot action classification. (Best viewed in color).

hubness problem. Zhang and Peng [69] propose to model
the joint distribution over high-level video features and se-
mantic knowledge via the Generative Adversarial Network
(GAN), in which seen-to-unseen correlation is embedded
to synthesize video features of unseen categories. Mandal
et al. [37] adapt the conditional Wasserstein GAN with ad-
ditional loss terms to synthesize unseen features for train-
ing an out-of-distribution detector. Unlike prior work us-
ing class labels to synthesize visual features via GANs, our
model leverages the learned visual representations of seen
classes to construct the unseen visual prototypes.
Transformer Architecture. Transformer architectures
have shown exemplary performance on a wide range of ap-
plications, e.g., image recognition [15, 57], object detec-
tion [8, 11, 72], and visual-language tasks [18, 26, 50, 54].
Among the models, the most popular ones include ViT [15],
VideoBERT [54], VIVO [26], and CLIP [48]. Based on a
contrastive approach to learning image representations from
texts, CLIP achieves amazing zero-shot transfer capabilities
on many downstream tasks. CLIP is trained on a large cor-
pus of 400 million image-text pairs. It takes 18 days to train
a CLIP model with ResNet backbone on 592 units of V100
GPUs. In contrast, our model is trained from scratch on
the Kinetics dataset, which consists of around 500 thousand
clips. This underlines the differences in the scale of the
CLIP and the proposed method. We aim to showcase the
extensibility of a model trained on a dataset with limited
data points to multiple disjointed test datasets.

3. Model
The conceptual diagram of our framework is shown in

Figure 2. ResT consists of a primary task and an auxil-
iary task. To learn discriminative visual representations,

the primary task is trained under action classification with-
out semantic cues. This task is modality-specific, without
cross-talk through attention between two modalities (de-
scribed in Section 3.2.2). The goal is to learn richer and
structure-preserving visual embeddings for effective knowl-
edge transfer. The auxiliary task performs masked language
modeling with visual cues. For a given pair of video data
and text labels in the training dataset, this task aims to take
both modalities into account to predict a masked class label.
This task drives the network to align the visual and seman-
tic content (described in Section 3.2.3). Together, the joint
objective enables the model to produce more semantically
consistent visual representations.

After the training, with a simple semantic transfer
scheme, we use the prototypes of the seen classes to com-
posite visual prototypes of the unseen classes in the learned
visual space by reflecting their semantic relatedness in the
semantic label embedding space. During testing, as the vi-
sual representation learning task is modality-specific, the
model could take a new observation with a single modality
input (video data) to produce its visual representation. The
representation is then classified with the nearest neighbor
search by evaluating its distance to the unseen visual proto-
types that are composited by the seen visual prototypes.

3.1. Problem Definition

Let 𝑆 = {𝑣𝑠
𝑖
, 𝑦𝑠

𝑖
|𝑣 ∈ 𝑉, 𝑦 ∈ 𝐿𝑠} be the training set for

seen classes, where 𝑣𝑠
𝑖

is a video instance in 𝑉 and 𝑦𝑠
𝑖

is the
class label in 𝐿𝑠 = {𝑙𝑠1 , ..., 𝑙

𝑠
𝜅 } with 𝜅 seen classes. Given

the set 𝑆, we train a model 𝑃 to learn visual representations
{𝑥𝑖 , ..., 𝑥𝜈} ∈ 𝑋 , where 𝑥𝑖 ∈ R𝐷 denotes the 𝐷-dimension
embedding in 𝑋 . Let 𝐿𝑢 = {𝑙𝑢1 , ..., 𝑙

𝑢
𝛾} be a set of 𝛾 unseen

class labels. 𝐿𝑢∩𝐿𝑠 = ∅. In addition, Ξ𝑠 = {𝜉𝑠1 , ..., 𝜉
𝑠
𝜅 } and
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Ξ𝑢 = {𝜉𝑢1 , ..., 𝜉
𝑢
𝛾 } denote two sets of semantic embeddings

corresponding to 𝐿𝑠 and 𝐿𝑢 . Given a testing video instance
𝑣𝑢
𝑗
, the ZSAR problem is to estimate its label 𝑦𝑢

𝑗
∈ 𝐿𝑢 .

3.2. ResT Model Formulation

Our model consists of a frame-level feature encoder F
and a cross-modal transformer T . We use a vanilla 2D
ResNet [25] as a base network to extract visual features be-
cause 2D models are typically more efficient than 3D mod-
els in terms of memory and runtime. The outputs of frame
features are fed into the transformer network. To keep ResT
computationally efficient, we take the flattened global fea-
tures after the last average pooling layer in F as the visual
features, which has been shown to work reasonably well on
video understanding tasks [60]. To ensure the restriction of
zero-shot setting is preserved, both feature encoder F and
transformer T are initialized with random weights. During
the training, both F and T are optimized together.

3.2.1 Model inputs

ResT takes a video-text pair (𝑰, 𝑺) as an input, where 𝑰 is
a sequence of 𝑇 sampled frames {𝐼1, 𝐼2, ..., 𝐼𝑇 } in a video
and 𝑺 is the corresponding action label text. For a frame
𝐼𝑡 sampled at time 𝑡 in a video 𝑣, frame-level features 𝑟𝑡
are extracted by the feature extractor, where 𝑟𝑡 ∈ R𝑝 is a
𝑝-dimension vector. The cross-modal transformer T takes
(𝒓, 𝒘) pairs as inputs, where 𝒓 = [𝑟1, 𝑟2, ..., 𝑟𝑇 ] is the set of
frame feature vectors and 𝒘 = [𝑤1, ..., 𝑤𝑁𝑐

] is the sequence
of word embeddings of the corresponding class label 𝑺 with
𝑁𝑐 number of words.

The transformer uses a constant dimension, D, through
all layers. To ensure that both of the visual and word em-
beddings have the same dimension, a trainable linear pro-
jection layer is added to map each visual feature 𝑟𝑡 to the
model dimension D. The sequence of the input features 𝒛0
to the transformer has the form: 𝒛0 = [[CLS], 𝒓, 𝒘], where
a special token [CLS] = 𝑧00 is prepended to the sequence of
input for visual representation learning in 3.2.2.

3.2.2 Visual representation learning

The primary task in ResT is to perform video classification
without semantic clues. We incorporate a feature aggrega-
tor and a classifier into the final layer of the transformer to
predict which action class the visual representation belongs
to. Given a training dataset, this task is to train a model 𝑃 to
learn the visual representation 𝑥 = 𝑃(𝒛0) with only visual
cue 𝒓. Our transformer consists of 𝐿 layers. We denote 𝒛𝒍
as the output of 𝑙 th layers and 𝐴𝑇𝑇 as the attention mask.

To exploit all possible temporal relationships, all vi-
sual feature tokens are used with bidirectional attention to
jointly encode all visual features together (𝐴𝑇𝑇 (𝑟ℎ , 𝑟𝑘 ) =

1, ∀𝑟ℎ , 𝑟𝑘 ). As every visual feature token is able to at-
tend to all other visual feature tokens, the model could

leverage both long-term and short-term temporal relation-
ships to learn a better representation. In addition, we set
all visual features not to attend to any of the word tokens
(𝐴𝑇𝑇 (𝑟ℎ , 𝑤𝑘 ) = 0, ∀𝑟ℎ , 𝑤𝑘 ). This is to encourage the
model to dedicate itself to learning the visual representa-
tions and prevent the model from behaving unexpectedly
when label text input is not available during testing.

Because a transformer encoder creates an embedding for
each of its feature inputs, we add a 1-hidden-layer MLP,
𝑓 (·), as a classification head to the output of the special
token [CLS], 𝑧0

𝐿
, to obtain a unique visual representa-

tion. The classification head, 𝑓 (·), is used to predict the
final video classes with Softmax cross-entropy loss: L𝑐𝑙𝑠 =

−𝐸 (𝑟 )∼𝑆 log 𝑝(𝑦𝑠 | 𝑓 (𝑥)). Only 𝑧0
𝐿

is used for classification
during training, which forces the embedding of the [CLS]
token to aggregate and contextualize all frame-level feature
embeddings. 𝑧0

𝐿
serves as a video representation 𝑥. 𝑥 = 𝑧0

𝐿
.

3.2.3 Visual-semantic association

The auxiliary task in ResT performs masked language mod-
eling with visual cues. Given a pair of input (𝒓, 𝒘), this task
attends over both modalities to predict the masked tokens,
reconstructing the corresponding class label. As illustrated
in Figure 1, unlike visual tokens that attend to visual tokens
only, word tokens attend to all visual and word tokens on
their left side. The task is designed to align visual-semantic
concepts and serve as a bridge to connect the visual and se-
mantic spaces.

We apply the Masked Token Loss (MTL) to the discrete
token sequence 𝒘 for training. This is similar to the stan-
dard task of Masked Language Modeling (MLM) in BERT
[14]. Each input token in 𝑤 is masked at random with a
probability of 15%, but the minimum number of masked
tokens is set to one to ensure MLM takes part in each itera-
tion. The masked one, 𝑤𝛼, is replaced with a special token
[MASK]. The objective of the training is to predict these
masked tokens based on their surrounding word tokens 𝒘\𝜶

and all visual feature tokens 𝒓 by minimizing the negative
log-likelihood: L𝑚𝑡𝑙 = −𝐸 (𝑟 ,𝑤)∼𝑆 log 𝑝(𝑤𝛼 |𝒘\𝜶, 𝒓). This
task leads the model to grasp the dependencies between vi-
sual and semantic contents, thus driving the network to align
the visual and semantic concepts.

3.2.4 Training

The loss of L𝑐𝑙𝑠 is used to guide the model in learning dis-
criminative visual representations, and the loss of L𝑚𝑡𝑙 is
used to associate visual and semantic representations. By
optimizing both loss functions in the same network, the
model is trained to learn a more semantically consistent vi-
sual representation. The final training objective is the sum
of both losses: L = L𝑐𝑙𝑠 + 𝜔𝑚𝑡𝑙 · L𝑚𝑡𝑙 , where 𝜔𝑚𝑡𝑙 is the
weighting of L𝑚𝑡𝑙 .

19981



3.3. Zero-shot Action Recognition

After the training, we generate a visual prototype 𝜑𝑠
𝑖

for

each seen class 𝑙𝑠
𝑖
: 𝜑𝑠

𝑖
= 1

𝑁 𝑠
𝑖

∑𝑁 𝑠
𝑖

𝑞=1 𝑥
𝑠,𝑖
𝑞 , 𝑖 = 1, ..., 𝜅, where

𝑥
𝑠,𝑖
𝑞 is 𝑞th visual representation of seen class 𝑙𝑠

𝑖
, and 𝑁𝑠

𝑖
is

the total number of videos in the seen class 𝑙𝑠
𝑖
.

3.3.1 Semantic relatedness transfer

Figure 3. The examples of semantic relatedness matrix and binary ad-
jacency matrix are created using subsets of label embeddings on Activi-
tyNet and Kinetics. In the semantic relatedness matrix, brighter colors de-
pict larger values. In the binary matrix, black color depicts the true value.

As ResT is designed to learn more semantically consis-
tent visual representations, our supposition is that, the un-
derlying embeddings share a co-occurrence relationship to
some extent when the video-text pairs describe the same
thing (e.g., the visual of “jump” & the text semantic of
“jump”) [71]. The idea of our transfer scheme is to use the
outputs of the learned video-text pairs as anchors to build
each unseen visual prototype, 𝜑𝑢

𝑗
. We first obtain the most

representative and distinctive bidirectional relationships be-
tween the seen and unseen class labels based on their se-
mantic relatedness, and then embed the combination of this
relevant information into the learned visual space to com-
posite 𝜑𝑢

𝑗
. A weighted sum is commonly used as a combi-

nation operator [6]. The proposed scheme is only applied
in the testing phase, without employing any video instance
from unseen classes.

Given a set of 𝛾 unseen class labels 𝐿𝑢 = {𝑙𝑢1 , ..., 𝑙
𝑢
𝛾}

and 𝜅 seen class labels 𝐿𝑠 = {𝑙𝑠1 , ..., 𝑙
𝑠
𝜅 } with their cor-

responding semantic embeddings Ξ𝑢 = {𝜉𝑢1 , ..., 𝜉
𝑢
𝛾 } and

Ξ𝑠 = {𝜉𝑠1 , ..., 𝜉
𝑠
𝜅 } where 𝐿𝑢 ∩ 𝐿𝑠 = ∅, our task is to link

the best sets of the seen labels 𝐿𝑠 to the unseen labels 𝐿𝑢

subject to a set of constraints, such that we could obtain
representative and distinctive composite visual prototypes
for the unseen classes. This task can be formulated as a
subgraph selection problem. Each class label represents a
node. In this problem, for each of the unseen class nodes,
we aim to construct a subgraph with possibly different sets
of edges to the seen class nodes.

We first construct a semantic relatedness matrix 𝑴 ∈
R𝛾×𝜅 where each element𝑚 𝑗 ,𝑖 in 𝑴 is defined as the seman-
tic relatedness between 𝜉𝑢

𝑗
and 𝜉𝑠

𝑖
. Here, 𝑚 𝑗 ,𝑖 is measured

by cosine similarity: 𝑚 𝑗 ,𝑖 = 𝑐𝑜𝑠(𝜉 𝑗 , 𝜉𝑖). Let 𝐴 ∈ R𝛾×𝜅
denote a binary adjacency matrix, where each element 𝑎 𝑗 ,𝑖

in 𝐴 is a binary-valued variable that indicates whether the

unseen class 𝑙𝑢
𝑗

and the seen class 𝑙𝑠
𝑖

are connected. We for-
mulate this problem of subgraph selection as below. The
goal is to find the assignments to the variables 𝑎 𝑗 ,𝑖 in 𝐴,
which maximizes the objective function, with the space of
the solutions bounded by a set of linear constraints.

arg max
∑

𝑀 ⊙ 𝐴 (1)

s.t. 𝑎 𝑗 ,𝑖 ≤ 𝟙𝑙𝑠
𝑖
∈N𝑙𝑢

𝑗

, (2)

𝑎 𝑗 ,𝑖 ≤ Λ𝑟 ( 𝑗 , 𝑖), (3)∑
𝑖

𝑎 𝑗 ,𝑖 ≤ 𝜌, (4)

where ⊙ represents the element-wise multiplication; 𝟙 is an
index function; N𝑙𝑢

𝑗
denotes 𝑙𝑢

𝑗
’s K-nearest neighbors ac-

cording to a distance function 1 − 𝑚 𝑗 ,𝑖; Λ𝑟 ( 𝑗 , 𝑖) is used to
impose a relative distance constraint; 𝜌 is a threshold. We
define Λ𝑟 ( 𝑗 , 𝑖) as:

Λ𝑟 ( 𝑗 , 𝑖) =
{

1, otherwise
0, min𝑘≠ 𝑗 ( 1−𝑚𝑘,𝑖

1−𝑚 𝑗,𝑖
) ≤ 𝜗, (5)

where 𝜗 is a threshold. With the constraint in Eq. 2, only
relatively close-related nodes are considered. Eq. 3 and
Eq. 4 together promote the composited visual prototypes of
unseen classes to be distinctive from one another.

We use an Integer Programming (IP) [12] to perform our
search. With the IP solution �̂�, each row in �̂� corresponds
to an optimal subgraph. Specifically, in the 𝑗 th row, all of
the seen class 𝑙𝑠

𝑖
with 𝑎 𝑗 ,𝑖 = 1 are selected to composite

the visual prototype of the unseen class �̂�𝑢
𝑗
. To preserve the

semantic relatedness, �̂�𝑢
𝑗

is calculated as follows:

�̂�𝑢𝑗 =
1∑

𝑎 𝑗 ,𝑖 · 𝑚 𝑗 ,𝑖

𝜅∑
𝑖=1

𝑎 𝑗 ,𝑖 · 𝑚 𝑗 ,𝑖 · 𝜑𝑠𝑖 . (6)

We follow a common protocol to compute the semantic
embeddings of class labels [5, 51]. Given a class label with
𝑁𝑐 words 𝑐1, ..., 𝑐𝑁𝑐

, we adopt Word2Vec [40] to calculate
the semantic embeddings 𝜉 of the class 𝑗 by averaging the
word vectors to obtain a single fixed-size embedding vector:
𝜉 𝑗 =

1
𝑁𝑐

∑𝑁𝑐

𝑘=1 𝑤2𝑣(𝑐𝑘 ) ∈ R300.

3.3.2 Zero-shot evaluation

With {�̂�𝑢
𝑗
}, we can now perform the ZSAR in the learned

space. For any unseen video instance (𝑣𝑢 , 𝒓𝑢), we first input
𝒓𝑢 into the learned model 𝑃 to extract its visual representa-
tion 𝑥𝑢 . 𝑥𝑢 = 𝑃(𝒛𝑢0 ), where 𝒛𝑢0 = [[CLS], 𝒓𝒖 , [MASK]]. The
zero-shot recognition of 𝑣𝑢 is achieved by evaluating its dis-
tance to the composite visual representations of the unseen
classes. We assign the unseen label 𝑦∗ ∈ 𝐿𝑢 to the un-
seen video instance 𝑣𝑢 as follows: 𝑦∗ = arg min 𝑗 𝑑 (𝑥𝑢 , �̂�𝑢𝑗 ),
where 𝑑 (·) denotes cosine distance.
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4. Experiments

4.1. Experimental Setup

Datasets and training/evaluation protocol. We train our
model on the Kinetics dataset [28] and perform evalua-
tions on three action recognition datasets: UCF101 [53],
HMDB51 [32], and ActivityNet [7]. For a fair comparison,
we adopt the same protocol introduced in [5] to remove a
source category if its label is semantically identical to one of
the target categories by a similarity threshold. This results
in a subset of Kinetics 700 with 664 classes when classes
are removed with respect to UCF ∪ HMDB, and a subset of
605 classes considering UCF ∪ HMDB ∪ ActivityNet [5].
We refer the reader to the E2E [5] paper for the detailed
procedure. Our models are only trained once on the Kinet-
ics dataset, without additional training on 50% of the target
datasets. In the 0/50 (seen/unseen) split, we randomly se-
lect half classes from the test dataset, randomly generate 10
splits and report the averaged results.
Implementation details. We sample 𝑇 frames with stride 6
as a clip from each video at a random start time. Each frame
is randomly cropped to a 224 × 224 patch. We design three
models, named ResT 18, ResT 34, and ResT 101, where
we replace the backbone of feature encoder F with ResNet-
18 (512D), ResNet-34 (512D), and ResNet-101 (2048D).
To maintain a similar magnitude of computation complex-
ity, the corresponding sampled frames for three models are
16, 8, and 4 frames. We use one clip for training and 25
clips for testing per video. The transformer in ResT con-
sists of 12 layers with a hidden size of 768D.

All our models are trained from scratch with random ini-
tial weights. We observe that directly optimizing the tasks
in the encoder F and the transformer T with randomly ini-
tialized weights is not effective. Thus, we divide the train-
ing process into two stages: warm-up and joint-training. For
the warm-up, we train only F for 150 epochs using SGD
with a learning rate of 0.01 and weight decay of 0.0001.
Then the whole pipeline is jointly trained for 50 epochs us-
ing AdamW with a learning rate of 0.00015 and weight de-
cay of 0.05. The cosine learning rate scheduler is used on
both stages. All experiments are performed on the Nvidia
Tesla V100 GPUs. The mini-batch size is 16 clips per GPU.
To train ResT focusing on visual representation learning, we
set the MTL loss weight, 𝜔𝑚𝑡𝑙 , to 0.5. For semantic relat-
edness transfer, the coefficients (𝜗 , 𝐾 , 𝜌) are obtained with
5-fold cross-validation on the training class labels.

4.2. Main Results

We compare our approach with recent state-of-the-art in-
ductive ZSAR methods. The experimental results on 50%
class split, summarized in Table 1, show that our approach is
competitive among these leading methods, achieving 54.7%
and 39.3% top-1 accuracy on UCF101 and HMDB51 with

Table 1. Comparison with recent state-of-the-art on the 50%
classes of UCF101 and HMDB51. The results are top-1 (%) with
mean and standard deviation evaluated on inductive setting.

Method Pre VE1 SE1 UCF101 HMDB51

GA [42], WACV18 C3D2 [58]
W1 17.3 ± 1.1 19.3 ± 2.1
A1 22.7 ± 1.2 -

TARN [4], BMVC19 C3D2 [58]
W 19.0 ± 2.3 19.5 ± 4.2
A 23.2 ± 2.9 -

CEWGAN [37], CVPR19 I3D2 [9]
W 26.9 ± 2.8 30.2 ± 2.7
A 38.3 ± 3.0 -

TS-GCN [19], AAAI19 Obj1,3 W 34.2 ± 3.1 23.2 ± 3.0
PS-GNN [20], PAMI20 Obj1,3 W 36.1 ± 4.8 25.9 ± 4.1
E2E C3D [5], CVPR20 None W 43.8 24.7
E2E R(2+1)D [5] 48.0 32.7
DASZL [29], AAAI21 TSM2 [36] A 48.9 ± 5.8 -
ER [10], ICCV21 S1+ Obj1,4 ED1 51.8 ± 2.9 35.3 ± 4.6

ResT 18
None W

54.7 ± 2.3 39.3 ± 3.5
ResT 34 55.2 ± 3.0 40.6 ± 3.5
ResT 101 58.7 ± 3.3 41.1 ± 3.7

1 Visual embedding obtained by pretrained models (Pre VE); Semantic em-
bedding (SE); Objects (Obj); Spatial features (S); Word embedding (W);
Attributes (A); Elaborated descriptions by Wiki/Diction./WordNet (ED).

2 Visual features from pretrained action recognition models: C3D [58]
(trained on I380K [58] and Sports-1M [27]); I3D [9] (ImageNet [13] and
Kinetics); TSM [36] (ImageNet [13] and Kinetics [28]).

3 Object scores by GoogLeNet [56] (12,988-class ImageNet Shuffle [39]).
4 Spatial features and object scores obtained by Big transfer model (BiT)

[31] (ImageNet/ImageNet21K [13]).

Table 2. Comparison with E2E [5] on all test classes (0/100)
in UCF101, HMDB51, and ActivityNet datasets.

Method UCF101 HMDB51 ActivityNet

0/50 0/100 0/50 0/100 0/50 0/100

E2E R(2+1)D [5] 44.1 35.3 29.8 24.8 26.6 20.0
ResT 18 50.9 41.2 37.6 30.6 29.2 23.0
ResT 101 55.9 46.7 40.8 34.4 32.5 26.3

1 Both methods train on a subset of Kinetics with 605 classes. The sub-
set is the result of removing all the classes whose distance to any class
in UCF101 ∪ HMDB51 ∪ ActivityNet is smaller than a threshold.

ResT 18. We attribute the considerable gain in accuracy
to the reduced information loss in our unified cross-modal
framework, which is designed to exploit visual discrimina-
tions for effective knowledge transfer. The last two sets of
results demonstrate that the performance could be further
improved with deeper networks while keeping similar com-
putational complexity in GFLOPs (shown in the ablations).

Due to the domain shift issue, few studies have explored
the more realistic cross dataset configuration, where the
model is trained on one independent dataset and is evalu-
ated on other disjoint datasets. As both E2E [5] and the
proposed method adopt this configuration, we are able to
perform further comparisons on 0/100 (seen/unseen) full
dataset test. In Table 2, we compare our models with
the best-performing model of E2E, E2E R(2+1)D. Overall,
our baseline ResT 18 achieves noticeable improvements on
three datasets (e.g., 5.9% absolute gains in top-1 accuracy
on 0/100 UCF101).

Next, we visualize a random subset of testing video in-
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Table 3. Transformer model

(a) Importance of the Transformer architecture

SE ResT Transfer 0/50 0/100

RNN ✓ 28.2 20.5
LSTM ✓ 29.7 21.8

Transformer ✓ ✓ 54.7 44.3

(b) Transformer model design

CLS MLM Transfer 0/50 0/100

✓ 47.4 40.0
✓ 45.0 38.7

✓ ✓ 48.9 41.5
✓ ✓ ✓ 54.7 44.3

(c) Attention scheme

CLS MLM 0/50 0/100

Attention Cross Cross 39.0 30.7
Single Cross 54.7 44.3

Table 4. Feature extractor backbone

(a) Performance of different feature encoder backbones

Network Frames GFLOPs × clips 0/50 0/100

VGG16 16 248× 25 52.5 42.4
MobileNetV2 16 6.9 × 25 50.6 38.5

GoogleNet 16 25.9 × 25 51.6 40.3
R(2+1)D Archi. 16 41.2 × 25 59.5 48.6

(b) Accuracy-complexity trade-off

Network Frames GFLOPs × clips 0/50 0/100

E2E R(2+1)D 16 40.8 × 25 48.0 37.6
E2E R(2+1)D 16 40.8 × 1 43.0 35.1

ER S+Obj 8 70.2 × 1 51.8 -

ResT 18 16 30.8 × 25 54.7 44.3
ResT 18 16 30.8 × 1 54.0 43.5
ResT 34 8 30.3 × 1 54.7 43.8
ResT 101 4 32.0 × 1 57.0 47.7

Table 5. ZSAR in semantic or visual space

SE ResT Transfer Space 0/50 0/100

W2V ✓ S 48.9 41.5
GloVe ✓ S 48.6 40.8
S2V ✓ S 50.9 40.7

W2V ✓ ✓ V 54.7 44.3
Glove ✓ ✓ V 52.6 41.8
S2V ✓ ✓ V 55.9 42.8

Table 6. with and w/o pre-trained
features and end-to-end training

VE pre-trained e2e UCF HMDB

C3D ✓ 40.5 26.5
C3D ✓ ✓ 52.7 37.1

Object ✓ 57.3 40.5
ResT 101 ✓ 58.7 41.1

Figure 4. Visualization of data points from 30 random unseen classes on
UCF101 with the learned visual representations 𝑋 . Each color corresponds
to one unseen class. The stars denote the unseen visual prototypes, which
are composited from the seen visual prototypes by the proposed semantics
transfer scheme.

stances on UCF101 in Figure 4, where each color corre-
sponds to an unseen class label. It can be seen from the t-
SNE plot that most of the test samples belonging to the same
classes are in the vicinity, which shows that our model could
learn discriminative visual representations. Overall, we ob-
serve that while the unseen composite prototypes deviate
from the centroid of the corresponding instances, they are
still distinctive enough to classify various unseen classes.
Qualitatively, the results provide supports for the effective-
ness of the proposed semantic transfer scheme. One exam-
ple of the unseen prototypes composited from seen classes
is that ”clap” is composited by ”shouting,” ”singing,” ”salut-
ing,” and ”dancing macarena” with semantic relatedness
𝑚 𝑗 ,𝑖 = 0.42, 0.48, 0.50 and 0.50, respectively (Figure 2).

4.3. Ablation Study

For a controlled evaluation, unless noted otherwise,
the ablation results are performed using the same training
recipe with randomly initialized weights in ResT 18 (Ki-
netics 664) model on the UCF101 dataset.
Importance of the Transformer architecture. We first
replace the Transformer with RNN and LSTM architec-

tures to validate the rationale of choosing a Transformer
as our main architecture. In the experiment with a sin-
gle RNN/LSTM architecture taking both modalities, we ob-
serve the models converge to a trivial solution as the models
rely on text modal for classifying actions. Thus, we exper-
iment with a two-stream approach [70]. Table 3(a) shows
that the RNN/LSTM models perform substantially worse
than the Transformer model. The difference is that, when
compared to RNN/LSTM, a great advantage in Transformer
architecture for our task is the controllable attention mecha-
nism 𝐴𝑇𝑇 (·) and the special token [CLS]. Controlling the
amount of information obtained through the attention and
from the specific tokens, our model design encourages the
visual and semantic representations to be learned in a shared
knowledge space while still preserving visual distinctions.
Impact of CLS and MLM components. The ResT con-
sists of two major components: classification (CLS) and
masked language modeling (MLM). To evaluate the impor-
tance of each component, we train several models, turning
them on and off. The proposed transfer scheme is not appli-
cable to CLS-only or MLM-only models as two spaces are
not associated. In the evaluation, a seen label �̃�𝑠 is first as-
signed to unseen 𝑣𝑢 by a cosine distance, and ZSAR is then
performed by the nearest neighbor (NN) search between
seen �̃�𝑠 and unseen {𝑦𝑢}. Table 3(b) shows that CLS-only
and MLM-only models obtain inferior results. The auxil-
iary MLM is served as a bridge to align semantic and visual
concepts. It is designed not to directly involve in the video
classification task. Although the direct benefit from MLM
is modest, the inclusion of MLM is essential because it re-
lates two spaces and enables the application of the transfer
scheme. Consequently, the framework could exploit the vi-
sual capacity to a greater extent. The last row shows that our
design choices of CLS, MLM, and transfer improve results
and lead to higher Top-1 scores.
Attention mechanism. The way contextual information is
explored via the attention mechanism is a key factor of the
proposed method. To validate our design choice, we exper-
iment with a version of ResT 18 with cross-modality atten-
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tion in both CLS and MLM, where both visual and word
tokens attend to visual and text contexts. In Table 3(c), We
notice it leads to substantial performance degradation. After
20 epochs, the training accuracy reaches 100%. This is be-
cause CLS relies solely on semantic cues for the classifica-
tion task, making it fail to learn informative visual represen-
tations. The benefit of single-modality attention in CLS is
that the task is constrained in the same modality, rather than
absorbing the complementary information from the other
modality. It also prevents the model from performing un-
expectedly when it takes only a single-modality video input
during inference.
Performance of different feature encoder backbones.
We experiment with variants, replacing the ResNet feature
encoder with different 2D/3D CNN backbones: VGG16,
MobileNetV2, GoogleNet and R(2+1)D. No pretrained
weights are used in all variants. Table 4(a) reports the com-
putational complexity and accuracy evaluated on 25 clips.
Among the 2D backbones, the model with MobileNetV2
achieves reasonable accuracy while using much less com-
putation cost. We can observe that the model with a 3D
CNN backbone (R(2+1)D) achieves higher accuracy at the
cost of higher computational complexity.
Accuracy-complexity trade-off. Table 4(b) compares the
accuracy and computation cost with respect to different
numbers of clips in inference. The results of another end-
to-end training method, E2E R(2+1)D, and the SOTA, ER
[10], are included for reference. At inference, we randomly
sample 𝑁𝑒 clips (e.g., 𝑁𝑒=1 and 25) from each video and
average these 𝑁𝑒 clip predictions to obtain the final results.
The result shows that using one clip in ResT 18 is only
within 1% loss in accuracy compared to using 25 clips.
We hypothesize that, with discriminative visual informa-
tion, one clip might contain sufficient information for rec-
ognizing actions. We also study the effect of using fewer
frames for training. As stated in implementation details,
to achieve computational efficiency, the number of frames
sampled for training and testing in ResT 18, ResT 34, and
ResT 101 are 16, 8, and 4 frames. In Table 4(b), we observe
that training on a deeper network with fewer frames gives a
better trade-off between computation cost and accuracy.
ZSAR in different spaces. In this experiment, we disable
the transfer scheme and map each representation of unseen
instance to the semantic space using different word embed-
ding approaches (e.g., Word2Vec, GloVe [44], Sent2Vec
[43]). We also evaluate the proposed semantic transfer
scheme using different word embeddings to perform ZSAR
in the visual space. As shown in Table 5, it can be seen that
the classification accuracy in the semantic space is notice-
ably lower than that in the visual space. This could be due to
the information loss in the mapping process. The semantic
information is generally incomplete and less discriminative;
thus, the model’s generalization capability is constrained.

In contrast, our model achieves consistently higher accuracy
with the proposed semantic transfer scheme using different
word embeddings. We hypothesize that it is mostly because
the discriminative property in the visual space is substantial.
Also, because the design of the transfer scheme is to embed
a combination of the most representative and distinctive in-
formation, the proposed framework is thus less prone to the
hubness problem and the bias with NN search.

Generalization. While we propose a framework in which
the model is not pretrained on additional datasets, the pro-
posed model is flexible and capable of cooperating with
other pretrained models. In this experiment, instead of in-
tegrating a ResNet module to encode visual features, we
consider three cases to showcase the generalization of the
proposed framework: (i) take pretrained visual features by
a C3D model; (ii) integrate a pretrained C3D module and
perform end-to-end training with our model; (iii) take pre-
trained object features [3]. In Table 6, the first two rows
of results show our model is able to cooperate with concur-
rent models, and the end-to-end training allows our model
to finetune task-specific features for performance enhance-
ment. For example, compared to directly taking pretrained
C3D features, incorporating the pretrained C3D model to
train end-to-end with our model boosts the top-1 accuracy
on UCF from 40.5% to 52.7%. In the object experiments,
considering some unseen classes (e.g., ”balance beam”) are
simply named for primary objects in videos, we only take
object features into the model, but not object labels. This is
to prevent the model achieving high accuracy by matching
object names instead of recognizing actions. Table 6 shows
that our model is able to handle contextual information in
object features and make the classification of actions rela-
tively effective. In sum, beyond the proposed e2e training
scheme, it is also suitable to adopt our framework to explore
other ZSAR solutions. More details and our limitations are
discussed in the supplementary.

5. Conclusions

We have explored a cross-modal transformer-based
framework that could establish effective knowledge trans-
fer for the ZSAR task, where the distributional shift, se-
mantic gap, and hubness problem exist and affect the way
by which many heretofore existing methods perform. The
competitiveness of our method on three benchmark datasets
suggests that preserving the discriminative capacity in the
visual embedding space can be a core factor for success in
ZSAR. Comprehensive ablation studies indicate several key
factors and advantages of the proposed model, including
Transformer model design, computational efficiency, and
flexibility of e2e training with various feature encoder back-
bones. Further, the proposed model is capable of cooperat-
ing with concurrent pretrained models for generalization.
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