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Abstract

Interactive image segmentation is an essential tool in
pixel-level annotation and image editing. To obtain a high-
precision binary segmentation mask, users tend to add in-
teraction clicks around the object details, such as edges and
holes, for efficient refinement. Current methods regard these
repair clicks as the guidance to jointly determine the global
prediction. However, the global view makes the model lose
focus from later clicks, and is not in line with user inten-
tions. In this paper, we dive into the view of clicks’ eyes to
endow them with the decisive role in object details again.
To verify the necessity of focus view, we design a simple
yet effective pipeline, named FocusCut, which integrates the
functions of object segmentation and local refinement. Af-
ter obtaining the global prediction, it crops click-centered
patches from the original image with adaptive scopes to re-
fine the local predictions progressively. Without user per-
ception and parameters increase, our method has achieved
state-of-the-art results. Extensive experiments and visual-
ized results demonstrate that FocusCut makes hyper-fine
segmentation possible for interactive image segmentation.

1. Introduction
Interactive image segmentation aims to obtain an accu-

rate binary mask of the target object with the least inter-
action cost. It has developed into an indispensable tool
in serving pixel-level data annotation and image editing.
The research mainly focuses on two aspects. One is a
more efficient mode of user interaction, and the other is
to make more efficient use of the interaction provided by
users. For the former, the interactive modes are widely
explored and mainly based on the bounding box [50], the
polygon [1, 6, 32], clicks [2, 29, 36], scribbles [3, 48], and
some combinations [34, 52]. Among them, the click-based
method has become the mainstream because of its simplic-
ity. For the latter, researchers have explored the interaction
ambiguity [9, 26, 30], input information [31, 35], backprop-
agating [20,41], etc. These methods provide better segmen-
tation results without changing the user input.

*C.L. Guo is the corresponding author.
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Figure 1. Visual display of FocusCut. The details of the eagle claw
are refined with an additional focus view. The red and green clicks
are provided by users to indicate the foreground and background
in interactive segmentation. The yellow mask is the prediction.

In recent years, with the increase of large screen equip-
ments and the improvement of aesthetic, both image anno-
tation and image editing need more delicate segmentation
masks. In high-precision interactive segmentation, the re-
finement of object details, such as edges and holes, often
requires more interactive clicks and time. When users click
in mislabeled regions, they tend to focus on the detail region
for efficient repairing. However, current methods consider
previous clicks together to determine the global prediction.
In a new round of interaction, a join predicting process may
weaken the decisive effect of the newly-input click on its
surrounding details and feed back disagreeable results.

For more effective refinement, we dive into the view of
a click to consider its surrounding information, which is
called the focus view. In the paper, we design a concise
pipeline, FocusCut, to verify the importance of the focus
view. The original function of the interactive segmentation
network has been changed, and instead, we endow it with
a new role, allowing it to not only segment the target ob-
ject but also repair local details. Specifically, after global
segmentation, which is called the global view in our paper,
it crops a local patch from original images centered by the
newly-clicked point as the focus view to further refine ob-
ject details using the same network. The progressive crop-
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ping scopes are adjusted dynamically according to predic-
tion variation in the global view. Then the crop scope will
gradually decrease according to our progressive focus strat-
egy. To keep it fair with other methods and better prove our
opinion, almost no parameters and specific modules have
been inserted into the common-used architecture of interac-
tive segmentation. Comprehensive experiments have been
carried out on GrabCut [40], Berkeley [37], SBD [15], and
DAVIS [39] datasets to prove the effectiveness of FocusCut.

The contributions can be summarized as follows:

• We introduce the focus view to grasp user intentions by
considering the local segmentation from clicks’ eyes.

• Based on our opinion, we propose the FocusCut, a simple
yet effective pipeline to strengthen the local refinement.

• Without additional parameters, the FocusCut achieves
state-of-the-art performance, and the visualized results
reflect its effectiveness in fine segmentation.

2. Related Work

2.1. Interactive Image Segmentation

Most traditional methods of interactive segmentation
build models on the low-level features of the image, such
as intelligent scissors [38] and lazy snapping [25]. On the
basis of GraphCut [5], Rover et al. propose a method called
GrabCut [40] to make it more convenient. Grady et al. de-
velop the random walker [14] algorithm to determine the
probability for each unlabeled pixel. Kim et al. [22] im-
prove it by introducing a restart simulation. However, due
to too much attention on the low-level features, these meth-
ods may become invalid in complex environments.

Thanks to the neural network’s ability to comprehen-
sively consider global and local features, although there
are also some works [21, 46, 47] to further improve tra-
ditional methods, deep-learning-based methods have re-
cently become the mainstream in this field. Except that
some works are based on recurrent neural network [1, 6],
graph convolutional network [32], and reinforcement learn-
ing [27, 42], most researches are conducted on the tradi-
tional convolutional neural network. Multiple interaction
modes have been explored in this task. For example, the ex-
treme points have been used in the segmentation for com-
mon objects [36], thin objecst [29], and the full image [2].
The boundary clicks [19,24] are also adopted as an effective
interaction. The combination of interactions, such as the
bounding box and clicks [4, 52], is also popular in the field.
Among these, the way of providing points in foreground and
background has gradually become the mainstream, which is
also the interaction mode studied in this paper.

For this interaction mode, Xu et al. [51] first pro-
pose a deep-learning-based algorithm, along with a click

map transformation and several random sampling strate-
gies. In order to make the user interactions into full use,
Liew et al. [28] propose RIS-Net to exploit the local region
from click pairs to refine the segmentation results. Hu et
al. [17] provide a two-branch architecture for this task. Ma-
jumder et al. [35] improve the transformation of user clicks
by generating content-aware guidance maps. Jang et al. [20]
develop BRS to correct the mislabeled pixels in the initial
results, which has been improved in f-BRS [41]. Konto-
gianni et al. [23] employ user corrections as training sam-
ples and update the model parameters instantly. To deal
with the ambiguity of user interactions, Li et al. [26] couple
two convolutional networks to train and select the proper re-
sult. Liew et al. [30] introduce scale diversity into the model
to help users quickly locate their desired target. Lin et
al. [31] emphasize the critical role of the first click and take
it as the special guidance. Chen et al. [9] introduce a non-
local method to fully exploit the user cues. Most methods
transform user interactions into a guidance map sharing the
same size as the whole image. However, we view each click
extra in a focus view, utilizing them to the full potential.

2.2. Local View in Segmentation

Local information has been made full use of in many
segmentation tasks. HAZN [49] can adaptively adjust the
scale of view to the object or the part to refine the segmen-
tation. GLNet [8] aggregates feature maps captured by local
and global branches. Moreover, for semantic segmentation,
AWMF-CNN [44] assigns weights to different magnifica-
tion of local patches separately. CascadePSP [11] feeds
image patches from the original image through the refine-
ment module. Similarly, MagNet [18] refines segmentation
results of local patches with different scales in a progres-
sive way. However, for semantic segmentation tasks, slid-
ing window strategy is inevitable, resulting in a large cost
of calculation and time. Due to the specificity of interactive
segmentation, the local views can be decided by the inter-
action, thus avoiding the shortcoming.

In interactive segmentation, RIS-Net [28] has proved
the significance of local refinement. It generates the local
patch by finding the nearest negative click for each posi-
tive click and constructs a bounding box. The local fea-
ture is extracted by using the ROI pooling layer from the
main branch, whose input is the image concatenated with
the transformed clicks. That is to say, the local refinement is
still under the influence of the entire image and other clicks,
weakening the dominant role of local clicks to some extent.
Additionally, the local features are somewhat lost due to the
down-sampling operation of the network. We go a step fur-
ther and adopt a purer focus view for local refinement, di-
rectly feeding the local patches centered by each click into
the network and completely ignoring the influence of the
whole image and other distant clicks.
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Figure 2. The pipeline of the FocusCut. The process is divided into six steps: (1) Feed the 6-channel input of the whole target into the
shared network to generate the prediction in global view; (2) For current click, judge whether to focus and calculate the focus scope based
on the variation between the current and previous predictions, then update the previous prediction with current one; (3) Crop the patches
from the original image for each focus click with corresponding scopes respectively; (4) Feed the inputs of focus patches into the network
to generate local predictions in focus view; (5) Paste the patch predictions to the global one; (6) Output the final prediction.

3. Proposed Method

3.1. Revisiting Classic Pipeline

With the development of neural networks, most of the
works about interactive segmentation in recent years have
been carried out by introducing the convolutional neural
network. Since interactive segmentation can be regarded
as a specific type of segmentation task, many methods are
designed based on the classic network for semantic seg-
mentation, DeepLab series, especially the DeepLab v3+ [7].
The network architecture contains a backbone network, an
Atrous Spatial Pyramid Pooling (ASPP) part and a decoder
part. For the backbone network, the ResNet [16] is mostly
adopted in interactive segmentation. The ASPP part con-
tains four dilated convolution branches and a global average
pooling branch. The decoder part refines the ASPP mod-
ule’s output by fusing the backbone’s low level features to
generate the final prediction. For interactive segmentation,
the input should contain the information of the interactions.
The click locations will be transformed into two click maps,
such as distance, disk, and our used Gaussian maps, repre-
senting the positive and negative points. Most works in in-
teractive segmentation modify the input part of the network
and take a 5-channel map as input, which concatenates the
RGB image and two click maps. It can be implemented
by adding another head to encode a 5-channel map to a 3-
channel map for satisfying the standard architecture or di-
rectly changing the first convolutional layer like us. The
output will be supervised by the ground truth with the bi-
nary cross-entropy loss and binarized to the final prediction.

3.2. FocusCut Pipeline

In the process of interactive segmentation, the user often
repairs the incorrectly segmented region by providing more
foreground and background points. As the number of clicks
increases, the later points are used for repairing more local
areas gradually. Especially in the later stage, it is likely that
many interaction points are gathered together for repairing a
small area. Due to the size of the receptive field and down-
sampling operations of the neural network, it is difficult to
segment the whole object and detail areas simultaneously.

As shown in Fig. 2, the provided FocusCut is a pipeline
for interactive segmentation which contains two interactive
views. One is the global view to segment the whole ob-
ject, and the other is the focus view to refine the segmen-
tation according to the previous coarse mask around clicks.
To reflect the effectiveness of our method, we decide not
to change the architecture of the common-used network as
much as possible. We take the DeepLab v3+ with output
stride of 16 as the basic network. The difference is that we
regard this as a shared network, which can not only learn
the segmentation of the whole object, but also learn the re-
finement for local areas. To achieve this, we need to unify
the two inputs. Since the refinement in focus view is gen-
erated based on the coarse mask, we add an extra channel
of the previous prediction for the input. We hope that our
network can learn to generate a more accurate segmentation
based on the previous prediction and interaction points be-
sides object segmentation. To achieve this goal, we use the
data of global view and focus view alternately to train our
network. For the global view, we adopt the iterative train-
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ing strategy [33]. The coarse prediction is set to the pre-
vious segmentation if it is the iterative step. For the other
situations, it will be set to an empty map. The RGB image
contains the whole object, and the clicks are also simulated
according to the object mask, which will include at least
one positive point to indicate the location of the object. In
the global view, the network takes this 6-channel map as the
input to generate the prediction of the whole object. For the
focus view, the core of our method, we train the network
with patch samples which represent the local information
of the target. In Sec. 3.3, we will describe the process of
generating patch samples in detail. As shown in Fig. 2, the
input map is also a 6-channel map for this phase. However,
the RGB images will be local areas cropped from the origi-
nal image, which does not represent the object and will pay
more attention to the fine details. Unlike the click maps in
the global view, these click maps must contain the center
point of the map, which may be either positive or negative.
We will generate the coarse mask by processing the local
ground truth to reduce its fineness. These maps will be con-
catenated and fed into the network.

Fig. 2 shows the inference phase in detail. In this phase,
the user will click continually until the result meets the
user’s needs. Since the first click is bound to segment the
whole object, we introduce our focus view from the second
click and later. When the current click is added, the pipeline
of global view will be firstly adopted, as shown in the top
part of Fig. 2. According to the position of the current click
and the difference between current prediction P and previ-
ous prediction P′ in the global view, the judgment is made
to determine whether the click should go through an addi-
tional path of focus view. If the focus view is adopted, we
will calculate the focus scope r for the current click. This
will be introduced in Sec. 3.4. Then the original image,
clicks, and the current prediction will be cropped to a local
patch according to the focus scope, which will be fed into
the path of focus view to generate the local prediction P̂,
as shown in the bottom part of Fig. 2. It is worth mention-
ing that the image patch here is cropped from the original
image. For high-resolution images, this helps to avoid in-
formation missing and get a clearer RGB patch. Finally, the
local prediction will be pasted back to the original predic-
tion. If there are overlaps between patches, the overlapping
part adopts their mean value. In Sec. 3.4, we also provide
a progressive focus strategy to pay attention to local areas
iteratively to achieve better results.

3.3. Focus Patch Simulation
In this section, we will introduce our simulation algo-

rithm to generate the focus patches around the clicks for
training. We find that in the middle and later stage of in-
teractive segmentation, users often click around the object
boundary to make the boundary more accurate, and the ob-
ject details are often near the boundary. We generate the

Figure 3. The example of focus patch simulation. The border
colors of right patches represent the corresponding cropping in the
left. The pink mask in the left represents the ground truth and the
yellow ones in the right are the generated coarse masks. These
simulated clicks are also shown on the patches.

Algorithm 1 Focus Patch Simulation

Input: The ground truth G, constant αmin, αmax, βmin, βmax;
1: The object size k =

√∑
i,j Gi,j , Gi,j ∈ {0, 1};

2: Select a random α from [αmin, αmax];
3: The focus scope r = α · k;
4: Generate boundary map B from G, Bi,j ∈ {0, 1};
5: Select a random boundary point p̃(x, y), Bx,y = 1;
6: Select random βx, βy from [βmin, βmax];
7: p = (p̃x + βx · r, p̃y + βy · r);

Output: The patch center p, focus scope r.

patch to simulate this situation. We select a point on the
boundary of the object and give it a random offset based on
β within [βmin, βmax] to serve as the center point of the
patch. The focus scope r is a random number related to
the object size. The object size is reflected by k and calcu-
lated from the ground truth G and the random coefficient is
α within [αmin, αmax]. The detailed calculation process is
described in Algorithm 1. The default αmin, αmax, βmin,
and βmax are 0.2, 0.8, -0.3, and 0.3 in our experiments.

With the patch center p and focus scope r, we crop the
image and the corresponding ground truth as a square patch
from (px − r,py − r) to (px + r,py + r). With the patch
data, we generate a coarse mask as the previous prediction
through dilating and eroding randomly as in [11]. The cen-
ter point will always be included as a user click. We will
also select 0 ∼ 3 positive and negative points in the patch
to simulate these clicks around the center one. These patch
clicks will be transformed into click maps and fed into the
network with the RGB image and the coarse mask.

In Fig. 3, we illustrate simulated patches from an image
of a chair and its ground truth. It can be seen that our al-
gorithm simulates the user’s interaction positions and crops
different parts. At least one interaction point is included in
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the center of the patch. These coarse masks are with low
segmentation quality, but retain macroscopic information,
making our neural network pay attention to the refinement.

3.4. Focus Scope Calculation

In the inference phase for the focus view, how to choose
the focus scope is of great significance for the refinement.
We find that these local clicks can still have a certain effect
in the global view, although they are insufficient for detail
refinement. Therefore, by comparing the current and pre-
vious predictions, the influence scope of the current point
can be estimated. According to the size of varied prediction
areas and the object, we can decide whether to dive into a
focus view around this point. The above process is based
on the situation that the user clicks on the area where the
prediction is wrong. In practice, the users sometimes click
in the area where the prediction is already correct, e.g., they
put positive clicks on the predicted foreground for refining
small components or negative clicks on the predicted back-
ground to constrain the boundary. For this situation, we will
always go through a focus view with the focus scope as the
distance between the click and the previous boundary. Be-
cause our clipping is based on a square, we use Chebyshev
distance in the practical calculation. The function η is de-
fined to calculate the Chebyshev distance between points a
and b: η(a,b) = max(|ax − bx|, |ay − by|). Algorithm 2
shows the process. The default λ and ω are 0.2 and 1.75.

Algorithm 2 Focus Scope Calculation

Input: The previous and current global predictions, P′,P,
the patch center p in global view, constant λ, ω;

1: The prediction variation ∆P = |P−P′|;
2: if ∆Pp=1 then
3: Generate area A around p using flood fill in ∆P;
4: Get focus judgement by

∑
A < λ ·

∑
P;

5: r̃ = max∀{a|Aa=1} η(p,a);
6: else
7: r̃ = min∀{a|P′

a=1−P′
p} η(p,a);

8: The focus judgement is set to true;
9: end if

10: Generate the r by relax coefficient, r = ω · r̃;
Output: The focus judgement, focus scope r.

3.5. Progressive Focus Strategy

For our focus view, the smaller the focus scope is, the
more detailed information may be focused on. Based on
this, we propose Progressive Focus Strategy (PFS), which
gradually focuses on areas that need to be repaired more.
This is different from the traditional multi-scale way, and
the scale is changing dynamically according to the variation
of the previous and current patch predictions. And each
time the new prediction is obtained, its part will be used as

the next input in the progressive focus view. We show this
iterative process in Algorithm 3. The default T is set to 3,
ω̂ is set to 1.1, ε is set to 2.

Algorithm 3 Progressive Focus Strategy

Input: The previous patch prediction P̂′,
the patch center p̂ in focus view, constant T , ω̂, ε;

1: for t = 1, 2, · · · , T and r̂ ̸= 0 do
2: Generate new patch prediction P̂ = Network(P̂′);
3: The prediction variation ∆P̂ = |P̂− P̂′|;
4: Generate area Â by erode ε pixels from ∆P̂;
5: if

∑
Â > 0 then

6: r̃ = max∀{a|Âa=1} η(p̂,a);
7: Generate the r̂ by relax coefficient, r̂ = ω̂ · r̃;
8: Update the previous prediction P̂′ ← P̂;
9: Crop the new patch according to r̂;

10: else
11: r̂ = 0;
12: end if
13: end for
Output: The final patch prediction P̂.

The standard PFS needs to iteratively take use of the cur-
rent prediction to repair the next patch. Parallel operations
cannot be realized among these multiple iterative processes.
Therefore, we also propose a fast version to alleviate this
problem and improve the speed by sacrificing a little perfor-
mance. For each turn, we use 0.8 times the previous focus
scope as the current one. At the same time, the previous pre-
diction of the cropped patch comes from the original global
prediction. In this way, the three turns can be conducted in
parallel, accelerating the calculation process.

4. Experiments
4.1. Settings

Datasets. We adopt the following widely used datasets for
our experiments:

◦ GrabCut [40]: The dataset contains 50 images whose
background and foreground have a clear difference.

◦ Berkeley [37]: The dataset contains 96 images with
100 object masks, among which some are challenging
for the task of interactive image segmentation.

◦ SBD [15]: The dataset contains 8498 images for train-
ing and 2857 images for test. In this paper, we train
our model on the training set and evaluate it on the
validation set, which includes 6671 object masks.

◦ DAVIS [39]: The dataset contains 50 videos, which is
initially proposed for video image segmentation. As
previous works [9, 20, 41] did, we use the same 345
frames for evaluation, whose masks are of high quality.
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# Candidate
Berkeley DAVIS

NoC@90 ↓ IoU&5 ↑ ASSD&5 ↓ BIoU&5 ↑ NoC@90 ↓ IoU&5 ↑ ASSD&5 ↓ BIoU&5 ↑

R
es

N
et

-5
0 GV 4.510 0.917 2.451 0.785 7.899 0.862 9.711 0.771

GV + FV 3.560 0.923 2.365 0.793 6.649 0.870 9.424 0.785
GV + FV + PFS 3.440 0.929 2.170 0.804 6.377 0.870 9.338 0.787

R
es

N
et

-1
01 GV 4.280 0.922 2.787 0.792 7.713 0.868 9.547 0.777

GV + FV 3.350 0.930 2.272 0.805 6.475 0.876 9.038 0.793
GV + FV + PFS 3.010 0.933 2.050 0.811 6.223 0.879 8.840 0.796

Table 1. The core ablation study of the FocusCut. We use the metric ‘NoC@90’ and ‘IoU&5’ to evaluate the segmentation of the whole
object and the ‘ASSD&5’ and ‘BIoU&5’ to evaluate the segmentation of details. The ↑ and ↓ mean that the performance is better when the
metric is larger or smaller. The experiments of taking ResNet-50 and ResNet-101 as the backbone are shown in this table.

Evaluation Metrics. Following the previous works [9,20,
23, 26, 28, 30, 31, 35, 41, 51], we adopt the same robot user
to simulate the clicks. To be brief, the next click will be
placed at the center of the largest error region by compar-
ing the ground truth and prediction. We adopt the Number
of Click (NoC) as the evaluation metric, which counts the
average number of clicks needed to achieve a fixed Inter-
section over Union (IoU). We set the target IoU to 85% and
90%, denoted as NoC@85 and NoC@90 respectively. The
default maximum number of clicks is limited to 20 for each
instance and the Number of Failure (NoF) that could not
reach the target IoU will also be reported. We also use the
IoU metric at the N-th clicks (IoU&N) to represent the seg-
mentation quality. The IoU-NoC curves are also adopted
to represent the convergence trend in the later phase when
interacting. Since our method is more helpful for detail re-
finement, we also introduce two indicators for details. The
boundary IoU (BIoU) [10] focuses on the IoU metric near
the object boundary. The Average Symmetric Surface Dis-
tance (ASSD), which is used to evaluate the similarity of
the boundaries of the prediction and ground truth, has also
been used in interactive medical image segmentation [45].
For these two metrics, we also adopt that at the N-th clicks
(‘BIoU&20’ and ‘ASSD&20’) to evaluate the performance.
The larger the IoU and BIoU are, the better the performance
is, while NoC and ASSD are on the contrary.
Implementation Details. The ResNet [16] pre-trained on
ImageNet [12] is adopted as the feature extractor. The train-
ing process lasts for 40 epochs with the batch size of 8.
The exponential learning rate decay strategy with the initial
learning rate of 7× 10−3 and gamma of 0.9 for each epoch
is used. We take stochastic gradient descent with a momen-
tum of 0.9 and weight decay of 5×10−4 for parameters op-
timization. We use random flipping and cropping with 384
pixels to augment the data. For annotation simulation in the
global view, we follow the strategy in [31]. The Zoom-In
strategy [41] is also adopted in the inference phase from the
initial click. The experiments are implemented with the Py-
Torch [43] framework on a GPU of NVIDIA Titan XP.

Speed Analysis. The inference time is convenient to cal-
culate because our method is composed of two branches
with a shared network. We take the speed of the network, as
‘1×’. When introducing the focus view, since these clicks
with focus view can be calculated in parallel, the speed is
‘2×’. When introducing the progressive focus strategy, the
speed of fast version is still ‘2×’ because all turns can be
still in parallel. The speed of standard version becomes
‘4×’ when we adopt our default T . For images with differ-
ent resolutions, the input will always be resized to the fixed
length as short side. In our environment, the ‘1×’ speed of
ResNet-50 and ResNet-101 are 0.0295 and 0.0346 Seconds
Per Click (SPC) with 384 pixels as the fixed length. Even
for our standard version, the inference speed is enough to
meet the needs of practical applications.

4.2. Ablation Study
As shown in Tab. 1, we carry out the core ablation studies

to demonstrate the necessity of each component adopted in
FocusCut. We choose the Berkeley and DAVIS datasets to
do these experiments because the Berkeley dataset is similar
but larger than GrabCut dataset, and the annotation quality
of the SBD dataset is poor. We use four metrics for these
experiments in Tab. 1, among which the first two are for
the whole object segmentation, and the last two are for the
details. For progressive focus strategy, we also ablate the
strategy with different turns and settings.

Introducing Focus View. For the core part of introducing
the focus view, the performance improvement is significant,
whether for the whole object or the details. As for the core
metric, the NoC decreases by about one click in Berkeley
and DAVIS datasets. We compare the other three metrics at
the 5-th click. The improvement of IoU metric shows that
the focus view brings a more complete object. The increase
of BIoU and decrease of ASSD also imply that our method
improves the details obviously and provide a more accu-
rate boundary. Whether ResNet-50 or ResNet-101 and no
matter which metric, their improvements are obvious. The
introducing of the focus view is undoubtedly useful.
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Figure 4. The local IoU-NoC curves to represent the convergence trend in four datasets. ‘(50)’ means taking ResNet-50 as the backbone.

Method
GrabCut Berkeley SBD DAVIS

NoC@85 NoC@90 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90

§ DOS w/o GC [51] CVPR16 8.02 12.59 - 14.30 16.79 12.52 17.11
§ DOS with GC [51] CVPR16 5.08 6.08 - 9.22 12.80 9.03 12.58
§ RIS-Net [28] ICCV17 - 5.00 6.03 - - - -
† Latent diversity [26] CVPR18 3.20 4.79 - 7.41 10.78 5.05 9.57
§ CM guidance [35] CVPR19 - 3.58 5.60 - - - -
† BRS [20] CVPR19 2.60 3.60 5.08 6.59 9.78 5.58 8.24
§MutiSeg [30] ICCV19 - 2.30 4.00 - - - -
§ Continuous Adaptation [23] ECCV20 - 3.07 4.94 - - 5.16 -

ResNet-50 2.18 2.62 4.66 - - 5.54 8.83§ FCANet [31] CVPR20 ResNet-101 1.88 2.14 4.19 - - 5.38 7.90
ResNet-50 2.50 2.98 4.34 5.06 8.08 5.39 7.81† f-BRS [41] CVPR20 ResNet-101 2.30 2.72 4.57 4.81 7.73 5.04 7.41
ResNet-50 2.22 2.64 3.69 4.37 7.87 5.17 6.66† CDNet [9] ICCV21 ResNet-101 2.42 2.76 3.65 4.73 7.66 5.33 6.97

ResNet-50 1.58 1.78 3.48 3.76 5.86 5.18 6.59† FocusCut* Ours ResNet-101 1.48 1.68 3.22 3.54 5.55 4.98 6.32
ResNet-50 1.60 1.78 3.44 3.62 5.66 5.00 6.38† FocusCut Ours ResNet-101 1.46 1.64 3.01 3.40 5.31 4.85 6.22

Table 2. Comparison of the NoC metric with other methods in four evaluation datasets. Symbol † means adopting SBD [15] dataset for
training. § means adopting the Augmented PASCAL VOC [13, 15] dataset for training. * means the fast version of the FocusCut.

Progressive Focus Strategy. As shown in Tab. 1, the pro-
gressive focus strategy can assist our method and further
improve its performance. In the standard version, the chan-
nel of the previous prediction will be updated iteratively ac-
cording to the output in the last turn. Tab. 3 shows the re-
sults without iterative prediction, from which we can find
that the performance will have a certain degree of degrada-
tion in this situation. In Fig. 5, we also show the metric of
NoC@90 with different turns for the strategy. The perfor-
mance improvement of the first few turns is obvious, while
that of the latter turns fluctuates because the patch size is
too small. Since the operation of iterative prediction and
step-by-step determination of the focus scope need to be
carried out according to the previous result, it cannot be im-
plemented in parallel on devices. The standard version may
sacrifice a certain speed, but we also provide a fast version
shown in Tab. 2, in which the reduction factor of the focus
scope is set as a constant. In this way, the time used for
updating prediction can be saved, but it can still achieve ex-
cellent performance. Users can choose whichever version
they want according to their demand and environment.

4.3. Comparison & Discussion

Performance Evaluation. As shown in Tab. 2, we com-
pare our method with others on the most common NoC met-
rics. The GrabCut, Berkeley, SBD, and DAVIS datasets are
all evaluated like others. All the performances of ResNet-
50 and ResNet-101 are available in this table. We can find
that our proposed method has achieved the state-of-the-art
performance in all datasets. In Tab. 2, we also provide the
fast version of our method, which is slightly worse than
our standard version, but still performs well compared to
other methods. It is worth noting that almost no parameters
or modules are inserted into the baseline network, which
strongly reflects the validity of the FocusCut. To reflect
the convergence trend, we crop and enlarge the IoU-NoC
curves and show them in Fig. 4. In the figure, we choose
some recent methods with available codes. The FCA-Net is
not in SBD subfigure because it use Augmented PASCAL
for training. We can find that in the later interactive phase,
our method still has a certain upward trend. The results at
20-th click shows that our method has a higher upper bound,
reflecting that it can segment the objects more finely.
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Figure 5. NoC@90 vs. iterations for progressive focus strategy.

Setting
Berkeley DAVIS

ResNet-50 ResNet-101 ResNet-50 ResNet-101
w/o IP 3.51 3.11 6.56 6.38
w/ IP 3.44 3.01 6.38 6.22

Table 3. The comparison of the NoC@90 metric for the progres-
sive focus strategy with or without iterative prediction (IP).

Method
Berkeley DAVIS

ASSD BIoU ASSD BIoU
DOS [51] 4.150 0.594 7.402 0.741

LD [26] 2.218 0.773 7.186 0.776
BRS [20] 1.099 0.866 6.188 0.829

f-BRS [41] 1.218 0.866 6.318 0.825
FCA-Net [31] 1.147 0.861 6.051 0.834

Ours 0.928 0.892 4.427 0.874

Table 4. The comparison of the detail metrics (ASSD and BIoU)
at the 20-th click for the methods with available codes. The last
four are based on ResNet-101. LD is short for latent diversity [26].

Segmentation Quality. Fig. 6 shows some cases where
our FocusCut can play a dominant role. For example, in
the position of small parts such as the wheels of an aircraft,
the FocusCut can generate excellent prediction with only
one click in the foreground. In some places where there are
many gaps, such as the region between dog legs or people’s
fingers in the picture, although background points are pro-
vided, the neural network is likely to over suppress them
from the global view, while our FocusCut can deal with this
situation well. Like previous works [9,20,41], we also show
the metric of Number of Failure (NoF) images for recent
methods in Tab. 5. The result with 100 clicks as maximum
can reflect the performance for segmenting details. Whether
the metric is NoF or NoC, we have exceeded all the latest
methods and achieved a new state-of-the-art performance.
What’s more, we also compare our method to other meth-
ods whose codes are available with BIoU and ASSD met-
rics, and the experimental results are available in Tab. 4.
Obviously, our method is superior to other methods in both
ASSD and BIoU, showing the effectiveness of our method
for detail refinement. In practical use, we provide a small
window serving as a magnifying glass on the user interface
to show the area near the mouse, which helps users click on
the more accurate location in small areas.

Full Image Baseline FocusCut GT

Figure 6. The quality results of the FocusCut and the comparison
with the baseline. The predictions and clicks are shown above.

Method NoF20@90 NoF100@90 NoC100@90
BRS [20] 77 51 20.89

f-BRS [41] 78 50 20.70
FCA-Net [31] 87 54 22.56

CDNet [9] 65 48 18.59
Ours 57 43 17.42

Table 5. Comparison in different clicks setting in DAVIS dataset
with ResNet-50. NoFN@90 indicates the Number of Failure im-
ages that could not reach IoU 0.9 under N clicks. NoC100@90
metric is the same as NoC@90 with maximum clicks as 100.

Limitation Analysis. Our method requires multiple runs
of segmentation, the inference time will inevitably increase.
Even for the fast version, the computational burden is actu-
ally the same. For some old equipments, the time consump-
tion and computational burden might still be a bottleneck.

5. Conclusion
In this paper, we introduce the focus view to grasp the

user’s intention from the newly-input clicks’ eyes. We con-
certize the focus view with a simple yet effective pipeline,
FocusCut, in which the prediction of the cropped click-
centered patch is updated by the shared network with the
global view. The patch updating is progressive under multi-
ple adaptive scopes. Extensive experiments on four datasets
have demonstrated the superiority of our FocusCut, setting
the new state-of-the-art performance.
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