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Abstract

Scene graph generation (SGG) aims to detect objects
and predict their pairwise relationships within an image.
Current SGG methods typically utilize graph neural net-
works (GNNs) to acquire context information between ob-
jects/relationships. Despite their effectiveness, however,
current SGG methods only assume scene graph homophily
while ignoring heterophily. Accordingly, in this paper, we
propose a novel Heterophily Learning Network (HL-Net) to
comprehensively explore the homophily and heterophily be-
tween objects/relationships in scene graphs. More specif-
ically, HL-Net comprises the following 1) an adaptive
reweighting transformer module, which adaptively inte-
grates the information from different layers to exploit both
the heterophily and homophily in objects; 2) a relation-
ship feature propagation module that efficiently explores
the connections between relationships by considering het-
erophily in order to refine the relationship representation;
3) a heterophily-aware message-passing scheme to fur-
ther distinguish the heterophily and homophily between ob-
jects/relationships, thereby facilitating improved message
passing in graphs. We conducted extensive experiments on
two public datasets: Visual Genome (VG) and Open Images
(OI). The experimental results demonstrate the superiority
of our proposed HL-Net over existing state-of-the-art ap-
proaches. In more detail, HL-Net outperforms the second-
best competitors by 2.1% on the VG dataset for scene graph
classification and 1.2% on the IO dataset for the final score.
Code is available at https://github.com/siml3/HL-Net.

1. Introduction

Scene graph generation (SGG) has recently attracted in-

creasing attention from the research community. As illus-

trated in Figure 1, a visual scene could be depicted in the
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Figure 1. An image and its ground-truth scene graph. Objects and

their pairwise relationships are represented as nodes and edges,

respectively. Best viewed in color.

form of a graph structure, where objects and their pairwise

relationships are represented by the nodes and edges, re-

spectively. A triplet constructed by two objects and their

corresponding relationship then takes the form Subject-
Predicate-Object. Intuitively, the key to SGG methods is

to model and explore the connections between objects, as

well as those between relationships. Due to their remark-

able ability to model the connections between graph com-

ponents, graph neural networks (GNNs) have been widely

adopted in SGG tasks [2, 12, 14, 30, 31].

Despite their effectiveness, existing GNN-based SGG

methods only assume homophily [17] between ob-

jects/relationships; in other words, these methods calcu-

late the correlations between objects/relationships by im-

plicitly treating all objects/relationships as belonging to

the same categories. However, as Figure 1 demonstrates,

scene graphs fall naturally into the category of heterophilic

graphs. We, therefore, argue that heterophily, i.e., the in-

teraction between objects/relationships from different cate-

gories, should be modeled directly. In this paper, we focus

on the heterophily in class labels, following the definition

provided in [29, 41].

Exploring heterophily in the SGG is non-trivial. There

are at least two problems that must be considered. First, het-

erophily in both objects and relationships should be taken

into account; however, no prior SGG works have explic-

itly considered heterophily, and no heterophilic GNNs have
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exploited heterophily in visual relationships. Second, two

objects/relationships characterized by significant occlusion

usually have similar visual appearances, despite being from

different classes, which increases the difficulty of distin-

guishing heterophily from homophily. In the light of the

above scene graph analysis, in this paper, we propose a

Heterophily Learning Network (HL-Net) for SGG to com-

prehensively and efficiently explore the heterophily in ob-

jects/relationships. To the best of our knowledge, HL-Net

is the first work to consider heterophily for the SGG. The

main contributions of HL-Net are summarized below.

We first propose an Adaptive Reweighting Trans-
former (ART), which refines object representation with het-

erophily considered. In more detail, we arrange the pre-

layer normalization [28], residual connection, and feedfor-

ward network to deepen the layers and enhance the object

feature with contextual information. Furthermore, the re-

fined object representations of different ART layers are ag-

gregated with learnable weights. These weights depend on

the contributions of different ART layers and can be both

positive and negative. This aggregation procedure is similar

to general polynomial graph filtering [20], which is natu-

rally able to deal with both the high-frequency context (i.e.,

heterophily) and low-frequency context (i.e., homophily)

between objects [3].

We then develop a Relationship Feature Propagation
(RFP) module that explores the connections between het-

erophilic relationships. Two challenges emerge in the de-

sign of RFP: the effectiveness of feature propagation and

heterophily modeling. To reduce computational complex-

ity, we only require each relationship to contact neighboring

relationships that share the subject or object. Moreover, the

contextual coefficients obtained from ART are adopted to

represent the correlations between relationships. To propa-

gate heterophilic features between relationships, we extend

the PageRank-based GNN [8] to a high-pass graph filter.

This approach enables the RFP module to learn the rela-

tionship correlation of disparate classes by passing relevant

high-frequency graph signals (i.e., heterophily).

Finally, we devise a Heterophily-aware Message Pass-
ing (HMP) scheme to identify the heterophily and ho-

mophily between objects or relationships in complicated vi-

sual scenes (e.g., overlapping objects that belong to differ-

ent classes). More specifically, HMP utilizes the spatial and

visual information of object/relationships to produce signed

messages, which can subsequently be applied to adjust the

contextual coefficients and guide the learning processes in

both ART and RFP.

We conduct extensive experiments on two public

datasets: Visual Genome (VG) [9] and Open Images (OI)

[10]. Experimental results demonstrate that the proposed

HL-Net consistently achieves top-level performance. Abla-

tion studies further verify both the necessity and effective-

ness of considering heterophily for SGG.

2. Related Works

Scene Graph Generation. Early SGG works [33–

36, 42] tended to detect each object/relationship inde-

pendently, ignoring the intrinsic connections between ob-

jects/relationships. Recent SGG methods [2, 4, 12, 14, 23,

30–32] typically explore visual-contextual information be-

tween objects. These methods can be roughly divided into

two categories: Recurrent Neural Network (RNN)-based

methods and Graph Neural Network (GNN)-based meth-

ods. The first category utilizes RNN to encode contextual

information. For example, Zeller et al. [32] and Tang et
al. [23] employed a bidirectional long short-term memory

(LSTM) module and a tree structure-based LSTM module

to refine object representation using context information,

respectively. However, RNN-based SGG approaches may

not adequately depict connections between distant objects.

The second category of methods utilizes GNN to propagate

contextual information. For example, Yang et al. [31] pro-

posed an attentional graph convolutional network to refine

object and relationship representations, while Lin et al. [14]

proposed a direction-aware message-passing module that

encodes the edge direction information. However, recent

studies [29, 41] have proven that most existing GNN-based

methods struggle to describe connections under heterophily.

Unfortunately, scene graphs are naturally heterophilic. To

address these problems, we propose HL-Net in an attempt

to capture the heterophilic property of scene graphs. To the

best of our knowledge, HL-Net is the first work to explicitly

consider heterophily in the SGG.

GNNs and Heterophily. Recent works [15, 17, 18, 41]

have shown that the use of certain GNNs (e.g., Graph Con-

volutional Network [7] and Graph Attention Network [25])

can lead to significant performance loss in heterophilous

settings. A number of works have attempted to address this

issue. For example, Zhu et al. [41] proposed a set of de-

signs including embedding separation, higher-order neigh-

borhoods aggregation, and intermediate representations that

enable GNN to perform well under heterophilic settings.

Zhou et al. [39] introduced a new belief propagation-

based GNN model. Chien et al. [3] devised a generalized

PageRank-based GNN architecture that adaptively learns

the propagation weights to determine the polynomial graph

filter for heterophilic graph. Yan et al [29] proposed a model

that allows negative interactions between nodes in order to

capture heterophily. However, the above approaches focus

primarily on the task of natural language processing, (e.g.,

node classification for citation graphs). Therefore, apply-

ing the above-mentioned heterophilic GNNs directly to the

SGG may not adequately solve the heterophily problem for

visual content.

19477



Faster 
RCNN

food

bowl

boy

hand

mouth

food
table

(a) Ground-Truth Scene Graph

2 6

4

7

1

53

hand

8

food

mouth

fork boy

has
use

has

eat

beside on
in

(a) Ground-Truth Scene Graph

2 6

4

7

1

53

hand

8

food

mouth

fork boy

has
use

has

eat

beside on
in

table

food

platetable

food

plate

(b) Predicted Scene Graph

2 6

4

7

1

53

hand

8

food

mouth

fork boy

has
use

has

eat

beside on
in

(b) Predicted Scene Graph

2 6

4

7

1

53

hand

8

food

mouth

fork boy

has
use

has

eat

beside on
in

platetable

food

4
5

2

1 4 1 8 2 4

1 2 1 4 1 7

6 8 1 8 6 3

1 5

1 3

7 8

fork

plate

food

...

...

...

hold
of

3 2

1

8
6

7

4

5

3 2

5 4

7 6

1

3

7

6
8

ART

R P

HMP

Figure 2. The framework of HL-Net. HL-Net obtains object proposals through Faster R-CNN [19]. It then improves the performance of

SGG through the application of two novel modules: (1) an ART module that enables message-passing between objects with heterophily

considered; (2) an RFP module that explores connections between heterophilic relationships. Moreover, HL-Net includes an HMP scheme

that identifies the heterophily and homophily between objects and those between relationships under complicated visual scenes.

3. Heterophily Learning Network
This section presents the framework of our Heterophily

Learning Network (HL-Net). As Figure 2 illustrates, HL-

Net comprises an adaptive reweighting transformer (ART)

module and a relationship feature propagation (RFP) mod-

ule. The ART module strengthens the network’s object clas-

sification ability by means of heterophily-aware message

passing between object representations. The RFP module

promotes its predicate classification performance by explor-

ing connections between heterophilic relationships. We fur-

ther propose a heterophily-aware message passing (HMP)

scheme that identifies the heterophily and homophily be-

tween objects, along with those between relationships, and

enhance the power of both ART and RFP. In the below, we

will describe these three components sequentially.

3.1. Preliminary

Notations. We first introduce the notations used in this sec-

tion. We adopt exactly the same approach used in [32] to

obtain the representation xi for the i-th object/node. More

specifically, xi is transformed using linear projection from

the concatenation of the visual appearance feature, object

classification probabilities, and the spatial feature. We ex-

tract appearance feature form the union box of the two

nodes i and j, denoted as xij ; similarly, the appearance fea-

ture for the union box of three nodes i, j, and k is denoted

as xijk. The relationship feature between the i-th and j-th

nodes is represented as rij , where the i-th node is the sub-
ject and the j-th node is the object. Bij is used to represent

the relative spatial feature between the i-th and j-th nodes.

It is obtained by applying two convolutional layers and two

FC layers to binary maps of size 14 × 14 × 2, with each

channel representing the area of one node. Similarly, Bij,k

denotes the relative spatial feature between the union box of

nodes i, j and the bounding box for the node k, and Bi,jk

represent the relative spatial feature between the bounding

box of node i and the union box of nodes j, k. � represents

the Hadmard product. Ni denotes the set of neighboring ob-

jects for the i-th node. Nrij indicates the set of neighboring

relationships of rij . Finally, W stands for a linear transfor-

mation matrix and w means a linear projection vector.

Homophily and Heterophily. Given a set of node classes,

homophily describes the tendency of a node to have the

same class as its neighbors, while heterophily describes the

tendency of a node to have different classes as its neigh-

bors. In more detail, [3, 18, 29] proposed a metric for

measuring the level of homophily of nodes in a graph:

h = 1
‖V‖

∑
i∈V

‖N s
i ‖

‖Ni‖ , here V represents a node set, N s
i de-

notes the set of neighboring nodes with the same label as the

i-th node, and ‖·‖ is the cardinality operator. Accordingly,

h →1 corresponds to strong homophily, while h →0 indi-

cates strong heterophily. This definition could be extended

to describe the homophily and heterophily of edges.

3.2. Adaptive Reweighting Transformer

Graph attention network has been widely adopted in ex-

isting SGG methods [2, 12, 14, 31]. However, recent works

[3, 29, 41] have shown that graph attention network im-
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plicitly assumes homophily between nodes; therefore and

accordingly ignores the property of heterophily in scene

graph. To address this problem, we propose the ART mod-

ule, which includes two components: namely, the Pre-LN
Transformer and Adaptive Graph Filter.

Pre-LN Transformer: We adopt the same approach as

in [14] to obtain the contextual coefficient cij between two

nodes i and j as follows:

cij = wT
c (Wc1xi � Wc2xj � (xij + Bij)). (1)

Inspired by [28], we employ pre-layer normalization (Pre-

LN) to stabilize the model training. The neighboring mes-

sages for the i-th node can be aggregated as follows:

F(Ni) =
∑

j∈Ni

αijσ(WFLN(xj)), (2)

where σ denotes the ReLU activation function, while αij is

a contextual coefficient, which is obtained by normalizing

cij with softmax. Furthermore, we adopt layer normaliza-

tion [1], FFN layer [24], and residual connection sequen-

tially to refine the node representations. Consequently, the

output of the u-th layer for the i-th node can be denoted as

follows:

xu+1
i = zui + FFN(LN(

zui︷ ︸︸ ︷
xui + Fu(Ni))). (3)

Adaptive Graph Filter: As proven in [40], existing GNN

approaches [6, 8, 26] typically focus on emphasizing ho-

mophily by aggregating the outputs of different GNN lay-

ers with non-negative weights. This aggregation step can

be understood as a low-pass graph filter that emphasizes

the low-frequency part of the graph signal (i.e., homophily).

However, this filter suppresses high-frequency components

(i.e., heterophily) in the graph signal. In comparison, if

the outputs of GNN layers can be aggregated with nega-

tive weights, a polynomial graph filter [20] for heterophilic

graphs can be obtained [3].

Motivated by the above analysis, ART calculates the fi-

nal node representation as follows:

x̂i = LN(
∑U

u=1
γuxui ), (4)

Here, U denotes the number of GNN layers while γu repre-

sents the weight of the u-th GNN layer. Note that γu can be

a negative number and is optimized simultaneously with the

whole HL-Net in an end-to-end manner. To properly cap-

ture the heterophilic property of the scene graph, we heuris-

tically initialize γu with a high-pass filter based formulation

(the proof of which is provided in Appendix C.1.2), as fol-

lows:

γu =
(−τ)

u−1

∑U
u=1 |(−τ)

u−1|
, (5)

where τ ∈ (0, 1) is a hyperparameter. More details regard-

ing the initialization of γu can be found in the appendix.

Finally, the classification score vector of the i-th node

can be obtained as follows: vi = softmax(Wv x̂i). Compar-

isons between ART and existing message passing modules

can be found in the supplementary materials.

3.3. Relationship Feature Propagation

Existing SGG works typically ignore correlations be-

tween relationships. In this subsection, we propose the RFP

module to use the inter-relationship connections under het-

erophilic settings. To the best of our knowledge, no existing

heterophilic GNNs have explicitly explored the connections

between edges.

An intuitive design choice for RFP is to use the same

architecture as ART. However, there are N(N − 1) poten-

tial relationships for an image containing N objects, imply-

ing that using the same structure as ART for RFP incurs a

high computational cost. Moreover, there are no meaning-

ful relationships between the majority of object pairs. To

address the above issues, we adopt two strategies. First,

we only model the connections between relationships that

share the same subject or object. Second, we utilize the

message-passing coefficients between nodes to guide edges

since the connections between relationships can be decou-

pled into connections between their related objects.

Specifically, the representation of one relationship rij is

obtained as follows:

rij = x̂i ∗ x̂j ∗ (xij + Bij), (6)

where ∗ denotes a fusion function defined in [23]: x ∗ y =
ReLU (Wxx + Wyy)−(Wxx − Wyy)�(Wxx − Wyy). We

then obtain the initial classification score vector of the rela-

tionship between the i-th and j-th nodes as follows:

p0ij = Wpσ(Wrrij). (7)

Subsequently, we obtain the messages passed from

neighboring relationships to rij as follows:

H(Nrij ) =
∑

l∈Nj

α̂jlpil +
∑

m∈Ni

α̂impmj , (8)

where α̂jl and α̂im indicate the normalized contextual co-

efficient according to the elements in Nj +Ni.

To reduce the computational complexity, some GNN

models [8, 11] have utilized PageRank-based approaches to

propagate the label information. However, as proven in [3],

these methods act as low-pass graph filters, which invari-

ably suppress the high-frequency component, namely the

heterophily. To address this issue, we formulate the out-

put of the n-th propagation layer for the relationship rij as

follows:

pk+1
ij = β(pk

ij +Hk(Nrij )) + (1− β)p0
ij . (9)
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Here, β indicates the teleport probability [3], which controls

how fast Eq. (9) moves away from p0ij . As described in The-

orem 4.1 of [3], Eq. (9) could be considered to operate as a

high-pass graph filter such that it allows the teleport proba-

bility β to be negative. In other words, Eq. (9) enables the

model to pass relevant high-frequency graph signals, such

as heterophily.

Finally, the classification score vector for the relationship

between the i-th and j-th nodes can be written as follows:

tij = softmax(pKij + fij), (10)

Here, K denotes the number of RFP layer. fij indicates

the relationship distribution vector between the object cate-

gories of the i-th and j-th nodes in the training set. It func-

tions in the same way as frequency bias and has been widely

adopted in existing works [12, 14, 30, 32].

3.4. Heterophily-aware Message Passing

Heterophily causes GNNs to experience performance

degradation. Recent works [29] in GNN architecture design

mitigate this problem by allowing the messages from inter-

class neighbors to be multiplied by a negative sign. This op-

eration enables the mean distance between inter-class nodes

to be less affected in the aggregation procedure. To bet-

ter distinguish between the homophily and heterophily in

the scene graph, especially within the complicated visual

scene (i.e., occlusion), we define a sign function to adjust

the non-negative contextual coefficient between nodes or

edges. Furthermore, this sign function indicates whether

they belong to the same category. In more detail, we formu-

late the sign message between two nodes with the features

of their union box, defined as follows:

sij = tanh(wT
s σ(Ws[xij + Bij , vi, vj ])), (11)

where [, ] represents the concatenation operation. Tanh is

utilized to approximate the sign function and has the addi-

tional benefit of being differential. In the training process, a

binary cross-entropy (BCE) loss is utilized for supervision

with ground-truth sign labels ysij ∈ {−1, 1}; here, 1 and -1

indicate that the two nodes belong to the same and different

object categories, respectively. By integrating the sign in-

formation into Eq. (2), the message between two nodes can

be refined as follows:

F(Ni) =
∑

j∈Ni

sijαijσ(WFLN(xj)). (12)

Similarly, the sign function for two neighboring edges

with the same subject or object can be approximated as fol-

lows:

qil→ij = tanh(wT
q (x̂i ∗ xlj ∗ (xijl + Bi,lj)))

qmj→ij = tanh(wT
q (xim ∗ x̂j ∗ (xijm + Bim,j))),

(13)

where qil→ij denotes two edges rij and ril that share the

same subject, while qmj→ij indicates two edges rij and rmj

that share the same object.
A BCE loss is adopted for the supervision on qil→ij and

qmj→ij , respectively. The ground-truth labels are 1 and -1

for two edges that belong to the same and different cate-

gories, respectively. Finally, the sign information is utilized

to refine the messages between neighboring edges defined

in Eq. (8) as follows:

H(Nrij ) =
∑
l∈Nj

qil→ijα̂jlpil +
∑

m∈Ni

qmj→ijα̂impmj .

(14)

3.5. SGG by HL-Net

During training, the overall loss function L of HL-Net

can be expressed as follows:

L = Lv + Le + Lv
bce + Le

bce, (15)

where Lv and Le are the standard cross-entropy loss for ob-

ject and relationship classification, respectively. Moreover,

Lv
bce and Le

bce represent the BCE loss for sign prediction in

object and relationship classification, respectively.

During testing, the object category for the i-th node is

predicted by the following equation:

oi = argmaxo∈O(vi(o)), (16)

where O represents the set of object categories. The re-

lationship category of the edge between the i-th and j-th

nodes can be obtained as follows:

eij = argmaxr∈R(tij(r)), (17)

where R represents the set of relationship categories.

4. Experiments
4.1. Dataset and Evaluation Settings

Visual Genome: We follow the same data cleaning strategy

[4] that has been widely adopted in several recent works.

More specifically, the most frequently occurring 150 ob-

ject categories and 50 relationship categories are utilized

for evaluation. The scene graph for each image consists

of 11.6 objects and 6.2 relationships on average. We fol-

low three conventional protocols for evaluation: 1) Scene

Graph Detection (SGDET): Given an image, the model de-

tects object bounding boxes and predicts both the object and

relationship categories for each bounding box pair. 2) Scene

Graph Classification (SGCLS): Given the ground-truth lo-

cation of object bounding boxes, the model predicts both the

object and relationship categories. 3) Predicate Classifica-

tion (PREDCLS): Given the ground-truth object bounding
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SGDET SGCLS PREDCLS

Backbone Model R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 Mean

IMP� [4] 14.6 20.7 24.5 31.7 34.6 35.4 52.7 59.3 61.3 39.3

MOTIFS� [32] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1 43.7

KERN� [2] - 27.1 29.8 - 36.7 37.4 - 65.8 67.6 44.1

GPI� [5] - - - - 36.5 38.8 - 65.1 66.9 -

VCTREE� [23] 22.0 27.9 31.3 35.2 38.1 38.8 60.1 66.4 68.1 45.1

VGG-16 GPS-Net� [14] 22.6 28.4 31.7 36.1 39.2 40.1 60.7 66.9 68.8 45.9

R-CAGCN� [30] 22.1 28.1 31.3 35.4 38.3 39.0 60.2 66.6 68.3 45.3

HL-Net� 22.9 28.5 31.9 37.2 39.8 40.8 61.3 67.5 69.5 46.3

RelDN‡ [37] - - 32.7 - - 36.8 - - 68.4 -

Seq2Seq-RL‡ [16] 22.1 30.9 34.4 34.5 38.3 39.0 60.3 66.4 68.5 46.3

HL-Net ‡ 22.5 31.3 34.7 37.4 40.4 41.3 61.6 67.7 69.7 47.5
VTransE [22] 23.0 29.7 34.3 35.4 38.6 39.4 59.0 65.7 67.6 45.9

VCTREE [23] 24.7 31.5 36.2 37.0 40.5 41.4 59.8 66.2 68.1 47.3

RX-101 MOTIFS [32] 25.1 32.1 36.9 35.8 39.1 39.9 59.5 66.0 67.9 47.0

SGGNLS [38] 24.6 31.8 36.3 36.5 40.0 40.8 58.7 65.6 67.4 47.0

HL-Net 26.0 33.7 38.1 38.8 42.6 43.5 60.7 67.0 68.9 49.0

Table 1. Performance comparisons with state-of-the-art methods on the VG dataset. We compute the mean on all tasks over R@50 and

R@100. � and ‡ denote the methods using the same Faster-RCNN detector as [32] and [37], respectively.

boxes and their object categories, the model predicts only

the relationship categories. All three settings are evaluated

according to Recall@K (R@K) metrics, where K is set to

20, 50, and 100, respectively.

Open Images: Open Images (OI) [10] is a large-scale

dataset proposed by Google. We conduct our experiments

on Open Images V4 and V6. In more detail, the Open Im-

ages V4 dataset contains 53,953 and 3,234 images as the

training and validation sets, respectively. It comprises a to-

tal of 57 object categories and 9 predicate categories. Open

Images V6 contains 126,368/1,813/5,322 images used for

training/validation/testing, respectively. It has 301 object

categories and 31 predicate categories. We follow the

same data processing and evaluation protocols outlined in

[12, 14, 37]. More specifically, the results are evaluated by

calculating Recall@50 (R@50), the weighted mean AP of

relationships (wmAPrel), and the weighted mean AP of

phrase (wmAPphr). The final score is given by scorewtd =
0.2×R@50+0.4×wmAPrel+0.4×wmAPphr. Note that

wmAPrel evaluates the AP of the predicted triplet in which

both the subject and object boxes have an IoU of at least

0.5 with ground truth, while wmAPphr evaluates the AP of

the predicted triplet where the union area of the subject and

object boxes has an IoU of at least 0.5 with ground truth.

4.1.1 Implementation Details

To facilitate a fair comparison with the majority of existing

works, we utilize ResNeXt-101-FPN [13, 27] as the back-

bone for the OI database. We adopt both ResNeXt-101-

FPN [13, 27] and VGG-16 [21] as the backbones for the

VG database. During training, we freeze the layers before

the ROIAlign layer and optimize the remaining layers in the

model using both the object and relationship classification

losses. We optimize HL-Net via Stochastic Gradient De-

scent (SGD) with momentum, using an initial learning rate

of 10−3 and a batch size of 6. The top-64 object proposals

in each image are selected following per-class non-maximal

suppression (NMS) with an IoU of 0.3. Moreover, the sam-

pling ratio between pairs without any relationship (back-

ground pairs) and those with relationships during training is

set to 3:1. We further set the teleport probability β to -0.5.

4.2. Comparisons with State-of-the-Art Methods

Visual Genome: Table 1 shows that HL-Net outperforms

all state-of-the-art methods on all metrics. More specif-

ically, HL-Net outperforms one very recent GNN-based

SGG model, named R-CAGCN [30], by 1.0% on average

at R@50 and R@100 over the three protocols. It further

outperforms R-CAGCN [30] by 0.6 %, 1.8 %, and 1.2 % on

SGDET, SGCLS, and PREDCLS at R@100, respectively.

Moreover, HL-Net outperforms VCTREE [22,23] using the

same ResNeXt-101-FPN backbone by 2.1% and 1.9% on

SGCLS and SGDET at R@100, respectively.

To demonstrate the effectiveness of HL-Net in explor-

ing heterophilic information under occlusion scenarios, we

propose to calculate two different R@K metrics for the SG-

CLS task. More specifically, we decompose the SGCLS

task into two subtasks, namely C-SGCLS and S-SGCLS.

The former determines the SGCLS performance on triplets

where at least one object is heavily occluded by others, i.e.,

IoU>0.5. Otherwise, we term the subtask as S-SGCLS. As

shown in Table 2, HL-Net outperforms all state-of-the-art

methods on both tasks. In particular, when compared with
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C-SGCLS S-SGCLS

Backbone Method R@50 R@100 R@50 R@100

MOTIFS [32] 32.5 33.4 35.5 36.4

KERN [2] 33.7 34.6 36.8 37.7

VCTREE [23] 34.9 35.9 38.0 38.9

VGG-16 GPS-Net [14] 35.8 37.1 38.4 39.3

HL-Net 38.3 39.4 38.7 39.6
VTransE [22] 34.9 36.0 38.7 39.9

RX-101 MOTIFS [32] 35.4 36.5 39.9 40.9

HL-Net 41.0 42.2 41.8 42.7

Table 2. SGCLS performance comparison under occlusion and

non-occlusion scenarios. C-SGCLS denotes the SGCLS perfor-

mance of triplets where at least one object is heavily occluded by

others, otherwise, results are marked S-SGCLS.

SGDET SGCLS PREDCLS

Model mR@100 mR@100 mR@100

IMP [4] 4.8 6.0 10.5

FREQ [32] 7.1 8.5 16.0

MOTIFS [32] 6.6 8.2 15.3

KERN [2] 7.3 10.0 19.2

VCTREE-SL [23] 7.7 10.5 18.5

VCTREE-HL [23] 8.0 10.8 19.4

R-CAGCN [30] 8.8 11.1 19.9

HL-Net 9.2 13.5 22.8

Table 3. Performance comparison on mean recall (%) across all 50

relationship categories. All methods in this table adopt the same

Faster-RCNN from [32] model as object detector.

Dataset Model R@50
WmAP

scorewtd
rel phr

RelDN [37] 74.9 35.5 38.5 44.6

V4 BGNN [12] 75.5 37.8 41.7 46.9

HL-Net 78.1 38.9 42.2 48.1

V6

MOTIFS [32] 71.6 29.9 31.6 38.9

VCTREE [23] 74.1 34.2 33.1 40.2

RelDN [37] 73.1 32.2 33.4 40.8

GPS-Net [14] 74.8 32.9 34.0 41.7

BGNN [12] 75.0 33.5 34.2 42.1

HL-Net 76.5 35.1 34.7 43.2

Table 4. Comparisons with state-of-the-art methods on OI. We

adopt the same evaluation metric as in [37].

MOTIFS [32] using the same ResNeXt-101-FPN backbone,

HL-Net achieves an advantage of 5.7% and 1.8% at R@100

for C-SGCLS and S-SGCLS, respectively.

Moreover, to demonstrate the robustness of HL-Net to

the class imbalance problem on VG, we additionally com-

pare its performance with that of state-of-the-art methods

using the Mean Recall metric [2, 23]. As shown in Ta-

ble 3, HL-Net achieves a notable absolute performance gain

without specifically considering the imbalance problem in

Module SGCLS PREDCLS

Exp ART RFP HMP R@50 R@100 R@50 R@100

1 - - - 40.1 40.9 65.5 67.3

2 � - - 41.7 42.5 65.8 67.6

3 - � - 40.6 41.3 66.4 68.3

4 - - �� 41.2 41.9 65.9 67.7

5 � � - 41.8 42.7 66.6 68.5

6 - � � 41.3 42.1 66.8 68.7

7 � - �� 42.4 43.3 66.1 67.9

8 � � � 42.6 43.5 67.0 68.9

Table 5. Ablation studies. We consistently adopt the same object

detection backbone as in [22]. “��” denotes that we only apply

HMP to refine the representation of objects.

model design. These results indicate that HL-Net also has

advantages to handle the class imbalance problem in SGG.

Open Images: Table 4 compares the performance of HL-

Net with state-of-the-art methods. RelDN is an improved

version of the model that won the Google Open Images Vi-

sual Relationship Detection Challenge V4. Using the same

object detector, HL-Net outperforms RelDN [37] by 3.5%
and 2.4% on the overall metric scorewtd for OI V4 and V6,

respectively. In more detail, on OI V4, HL-Net outperforms

RelDN [37] by 3.2%, 3.4%, and 3.7% at R@50, wmAPrel,

and wmAPphr, respectively. Moreover, when compared

with other approaches that use the same backbone on OI

V6, HL-Net consistently achieves the best performance.

4.3. Ablation Studies

Effectiveness of the Proposed Modules. We first perform

an ablation study to validate the effectiveness of ART, RFP,

and HMP, respectively. The results are summarized in Ta-

ble 5. Details of the baseline can be found in Appendix D.2.

From Exps 1-8, we can clearly see that the performance im-

proves consistently when more modules are involved. This

shows that each module is helpful in promoting the perfor-

mance of SGG.

Design Choices in ART and RFP. We verify the impact of

hyperparameters on the ART and RFP modules. As shown

in Table 6(a), HL-Net achieves the best performance when

τ is set to 0.5 in Eq. (5). In Table 6(b), we compare the per-

formance of HL-Net with different numbers of ART layers,

ranging from two to five; it is evident that the performance

of HL-Net improves with an increasing number of ART lay-

ers (due to limitations on GPU memory size, we only con-

ducted experiments up to five ART layers). In Table 6(c),

we compare the performance of HL-Net with different num-

bers of RFP layers, ranging from two to five; it is shown that

the best performance is achieved when the number of RFP

layers is set to four.

Qualitative Evaluation. Figure 3 presents a qualitative

comparison between HL-Net and MOTIFS [32]. As can
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τ = 0.2 τ = 0.5 τ = 0.7

R@20 38.5 38.8 38.6

SGCLS R@50 42.3 42.6 42.4

R@100 43.2 43.5 43.3

(a) Evaluation on the value of τ in Eq. (5).

2-step 3-step 4-step 5-step

R@20 38.1 38.3 38.6 38.8
SGCLS R@50 41.9 42.1 42.3 42.6

R@100 42.8 43.0 43.3 43.5

(b) Evaluation on the number of ART layers U .

2-step 3-step 4-step 5-step

R@20 60.3 60.5 60.7 60.4

PREDCLS R@50 66.6 66.8 67.0 66.7

R@100 68.5 68.7 68.9 68.6

(c) Evaluation on the number of RFP layers K.

Table 6. The impact of hyperparameters on the ART and RFP modules, respectively.

onon on

umbrella

chair
bottle

basket

fruit
chair2 table

tree1

chair1

in

on in front of

near

behind

table

chair1

bottle

basket

umbrellatree

fruit

chair

chair2

on

on

on

in

on in front of

near

behind

table

chair1

bottle

basket

umbrellatree

fruit

chair

chair2

on

on

on

in

on in front of

near

behind

table

chair1

bottle

basket

umbrellatree

fruit

chair

chair2

on

on

on

in

on in front of

near

behind

table

chair1

bottle

basket

umbrellatree

fruit

chair

chair2

on

on

on

in

on in front of

near

behind

table

chair1

bottle

basket

umbrellatree

fruit

chair

chair2

on

on

on

Image HL-Net (w/o HMP) HL-Net MOTIFS [32]

man

glass

desk

keyboard

monitor

wearing

has
under

on

arm

hand

cup

holding

of

on

has

fingerofman

glass

desk

keyboard

monitor

wearing

under

on

arm

hand1

cup

holding on

has

of

fingerofcup

desk

monitorman

hand

arm

glass

finger

keyboard

man

glass

desk

keyboard

monitor

wearing

under

on

arm

hand

cup

holding on

has

of

fingerof

Image HL-Net (w/o ART) HL-Net MOTIFS [32]

Image

woman

television controller

table

sofa

flower

hair

vase

sitting on of

behind in

watching using

woman

television controller

table

sofa

flower

hair

vase

sitting on of

behind in

watching using
sofa

table vase

television
woman

hair

flowercontroller

woman

television controller

table

sofa

flower

hair

vase

sitting on of

behind

watching using

in

HL-Net (w/o R P) HL-Net MOTIFS [32]

has

of of

has

Figure 3. Qualitative comparisons between HL-Net and MOTIFS [32]. Specifically, we show the comparisons at R@100 in the SGCLS

setting in the first and third rows. In the second row, we show the comparisons at R@100 in the PREDCLS setting. The green color

indicates correctly classified objects or predicates; the red indicates those that have been misclassified. Best viewed in color.

be seen from the first row of Figure 3, HL-Net makes bet-

ter predictions than MOTIFS for “monitor” and “keyboard”

that are hard to recognize from its proposal. Therefore, we

owe this performance gain to the ART module that utilizes

the heterophilic context to refine the node prediction. In the

second row of Figure 3, it is shown that HL-Net can iden-

tify “watching” by inferring from their neighboring ones.

We give this credit to the RFB module. Finally, in the third

row of Figure 3, it can be observed that HL-Net has clear

advantages in predicting the categories of both nodes and

edges under heavy occlusion scenarios (e.g., “umbrella in

front of chair”), via the HMP scheme.

4.4. Conclusion and Limitations

Scene graphs are naturally heterophilic. In this paper, we

devise HL-Net to comprehensively explore homophily and

heterophily for both object and relationship prediction in the

SGG. More specifically, the heterophily between nodes is

encoded in the message passing via an Adaptive Reweight-

ing Transformer module. The connections between het-

erophilic relationships are explored by means of a Rela-

tionship Feature Propagation module. Moreover, the het-

erophily and homophily between objects and those between

relationships in complicated visual scenes are considered

using a Heterophily-aware Message Passing scheme. Ex-

tensive experiments on two popular databases justify the ef-

fectiveness of HL-Net for SGG. The same as the majority

of existing SGG models, one limitation of our method is its

dependency on sufficiently labeled data. In the future, we

will explore how to train the HL-Net more robustly in the

face of a large number of missing annotations.

Broader Impacts. SGG can potentially provide valu-

able assistance for many real-world applications (e.g., au-

tonomous driving). To the best of our knowledge, our work

is not harmful in ethical aspects or with future societal con-

sequences.
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