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Figure 1. Comparison between different 3D representations for neural rendering. Neural implicit surface models accurate surface
geometry but rendering requires expensive sequential sampling. Multi-planar imagery is efficient, but does not reflect true geometry and is
not suitable for extrapolation. While NeRF is flexible, it is not sample-efficient and its learned density field might not reflect true scene
geometry. Our proposed Mixture of Planar Experts is efficient and is able to model complicated surface geometry and appearance.

Abstract

We present Neural Mixtures of Planar Experts (Neur-
MiPs), a novel planar-based scene representation for mod-
eling geometry and appearance. NeurMiPs leverages a
collection of local planar experts in 3D space as the scene
representation. Each planar expert consists of the param-
eters of the local rectangular shape representing geometry
and a neural radiance field modeling the color and opacity.
We render novel views by calculating ray-plane intersections
and composite output colors and densities at intersected
points to the image. NeurMiPs blends the efficiency of ex-
plicit mesh rendering and flexibility of the neural radiance
field. Experiments demonstrate superior performance and
speed of our proposed method, compared to other 3D repre-
sentations in novel view synthesis.

1. Introduction

Metaverse is coming. Imagine one day in the future. Peo-
ple can explore the world freely and immersively without
leaving their room. When they move forward, details pop up;
when they move sideways, the occluded regions re-appear.
Whenever people take action, the metaverse will respond
with corresponding visual scenes that look natural, just as
if people are visiting the place in person. While appeal-
ing, bringing this vision to reality requires advancement in
multiple domains, one of which is real-time, high-quality,
memory-efficient novel view synthesis. Specifically, given

a set of posed images of the world, an ideal NVS system
has to be able to photo-realistically re-render the scene from
novel viewpoints such that people cannot tell the difference.
The system also needs to be fast and lightweight such that it
can be deployed ubiquitously.

Towards this grand goal, researchers have developed a
plethora of methods to reproduce our visual world. One
promising direction is to explicitly model the geometry of
the scene (e.g. multi-planar imagery [12, 13, 73, 85], point
clouds [1, 39, 53], meshes [31, 51, 52]) and conduct image-
based rendering (IBR) [3, 9, 10, 31, 63]. By adapting visual
features from other existing views, these approaches can
render high-quality images efficiently. Unfortunately, they
are often memory intensive and require good proxy geome-
try. On the other hand, recent advances in neural radiance
fields [44, 50, 78, 79, 82, 84] have allowed us to synthesize
highly realistic images with low memory footprint. By en-
coding color and density functions as neural networks, they
can handle complicated geometry and scene effects that are
difficult for conventional methods, e.g., thin structures, spec-
ular reflections, and semi-transparent objects. The flexibility
of volume rendering, however, is a double-bladed sword.
Without proper surface modeling, they cannot capture the
scene geometry accurately, resulting in artifacts during view-
extrapolation setup.

With these motivations in mind, we aim to find an al-
ternative 3D scene representation that is compact, efficient,
expressive, and generalizable. Specifically, we investigate
planes, one of the simplest geometric primitives yet pow-
erful for representing complicated scenes. Most surfaces
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Figure 2. Planar Expert Parameterization Left: each plane
consists of a 3D center, a plane normal, an up vector, and width and
height; Right: the appearance is modeled through a neural radiance
field function, which takes the 3D coordinate and ray direction as
input and outputs color and opacity.

in man-made environments are locally planar. Taking the
scene in Fig. 3 as an example, one could use 500 planes to
fit a 5× 5 m2 scene with a maximum point-to-surface error
of 8.66 mm. This result indicates that we might consider
modeling our real-world surfaces through piece-wise local
planar structures. The local planar world is not a surprisingly
new concept to many researchers in vision [35, 41, 48]. It
also profoundly impacts the graphics community and is the
most common representation for rendering.

Unlike multi-planar imagery [12, 68, 73, 85], which repre-
sents the scene through frontal-parallel planes, our proposed
approach allows each plane to have an arbitrary position,
direction, and size. Consequently, our representation is more
flexible to approximate the scene geometry. Unlike volume
rendering, NeurMiPs explicitly models surface using planar
geometry. Hence fast rendering can be done through the effi-
cient ray-plane intersection and eliminate the computations
in empty spaces. Fig. 1 depicts our proposed 3D represen-
tation and a comparison to other representations for neural
rendering.

We validate our approach on several standard benchmarks
for novel-view synthesis. The experiments demonstrate that
our end-to-end method is significantly faster than the volume-
based method with similar or better rendering quality and
performs favorably against surface-based neural rendering
methods with higher rendering quality and memory reduc-
tion. Furthermore, we evaluate our approach on a new chal-
lenging benchmark for view extrapolation, demonstrating su-
perior performance compared to other state-of-the-art meth-
ods. In particular, NeurMiPs outperforms NeRF with over
1dB PSNR gain at significant novel testing views. The ex-
plicit planar surface representation of NeurMiPs could also
readily be employed in modern graphics engines.

2. Related Work

Our approach is closely related to classical work on
image-based modeling and rendering, as well as recent
learning-based efforts. We also draw inspiration from the
prior art on planar scene representations. In this section, we
briefly review previous work in these two major directions.

(a) Target Scenes (b) # of Planes vs Point-to-Plane Error

Figure 3. Surface Fitting using a Mixture of Planar Sprites Left:
target scenes; Right: fitting results.

2.1. Novel View Synthesis

Explicit surface modeling: Pioneering view synthesis
works leverage explicit surface geometry. Mesh represen-
tations have been adopted as proxy geometry to guide the
image-based warping, from the source views to a target
pose [7,9,10,31]. Dense point clouds and surfels are alternate
explicit representations of polygonal meshes [1, 39, 53, 75].
Both are suitable for hardware acceleration. Hence, they
have superior efficiency and high rendering quality for syn-
thetic data. It is, however, challenging to handle imper-
fect geometry and view-dependent effects. Recent works
investigate learning approaches for explicit surface render-
ing [51, 52, 66, 67] or using 2D network to retouch the im-
ages [39,72]. NeurMiPs is a form of explicit geometry. Thus
we inherit its speed advantage. Unlike most explicit geome-
try methods, we leverage the neural radiance field to improve
rendering quality while being memory efficient.

Multi-plane imagery: Another closely related structure
is the layered imagery, including multi-plane imagery (MPI)
and layered depth imagery (LDI) [3, 12, 13, 24, 43, 58, 60,
73, 85]. MPI represents the scene using a stack of frontal-
parallel images. It allows fast rendering and can deliver pho-
torealistic results with slight and frontal-parallel movement.
However, its layered geometry structure brings artifacts 360◦

surrounding views or sagittal plane movement (e.g. walking
or flying). Recent works extend the view extrapolation abil-
ity [43] by fusing multiple MPIs with additional memory
cost. One of the most related MPI work to us is NeX [73].
Both utilize multi-planar geometry and neural radiance func-
tion. However, NeX uses fixed, frontal-parallel planes. In
contrast, ours uses learnable, slanted planes, bringing more
flexibility to handle complicated scenes and render extrapo-
lated and surrounding views.

Implicit surface: The limitations of explicit geometry
could be alleviated through implicit surface modeling [46].
Recent works start to jointly model surface and appearance
using neural representation [74, 76, 77, 81]. They achieve
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Figure 4. The Rendering Pipeline of NeurMiPs. We first cast rays and identify intersecting points and planes. Color and opacity can then
be evaluated through each plane’s neural radiance field. Finally, alpha-blending step is conducted to output the final ray color.

state-of-the-art reconstruction quality and decent view syn-
thesis results. However, rendering the implicit function re-
quires sequential ray marching steps, and additional steps
are required to extract the surface.

Neural volumetric rendering: Volumetric radiance field
can be dated back to the late 90s [19]. Recent works, such as
NeRF [44] and Neural Volumes [37] start to investigate deep
learning for volume rendering. It leverages the expressive-
ness of neural net and the flexibility of volume rendering. A
plethora of new approaches have been proposed during the
past year to extend NeRF [4, 17, 25, 36, 42, 44, 50, 71, 82, 84].
Representative works can handle sparse input views [69, 79],
unbounded scenes [82], overcome aliasing effect [4] and
take as input unknown/noisy poses [33].

The seminal NeRF [44] does not render in real-time. Sev-
eral works attempt to accelerate NeRF using different strate-
gies. For example, methods like [17,49,50,78] choose to de-
compose the input scene into smaller regions and use smaller
networks to model 3D geometry for each. Other approaches
reduce the amount of samples per ray, through early ray
termination [47], empty space skipping [50, 78], learnable
sparse sampling [2,45,64], or closed-form sampling-free in-
tegration [34]. Deferred rendering or baking techniques have
also been used to accelerate NeRF [17, 25]. Our approach
is a new instantiation of the above acceleration techniques
through the planar representations. Perhaps closet to our
work is MVP [38] who also take advantage of geometric
primitives. There, however, exists a few key differences.
First, while MVP exploits dense voxel grids to capture the
sophisticated texture of human head, we model the scene
structures with planes. Second, MVP explicitly generates
RGBα for each voxel which is memory-consuming, whereas
NeurMiPs models texture with neural nets.

2.2. Planar Scene Representation

We are not the first to realize the potential of multiple
slanted planes for representing the scene geometry. The com-
puter vision and graphics community has a long history of

leveraging planar surfaces for modeling and rendering. Vari-
ous forms of planar scene representations have been investi-
gated [3, 14, 21, 23, 27, 28, 32, 55, 63]. Representative works
include polygon mesh [5, 20], Marr sketch [40], Manhattan
world [15, 26], Binary space partitioning tree [8], 3D box
layout [22, 23], origami theory [28], slanted planes [3, 6, 63],
etc. A closely related line of research is called Layered
sprites [63], which shares a similar geometric representation
to ours. The key difference lies in the appearance repre-
sentation and rendering: layered sprites use image textures
for each plane and rendering is done through homography
warping, whereas our NeurMiPs exploits expressive neural
radiance field, and rendering is done through ray casting,
which captures better view-dependent effects and runs faster
in complicated scenes.

Numerous methods have been developed to reason pla-
nar structures from images. For example, one can detect
planes from images [35,80], recover meshes [18], reconstruct
slanted planar surfaces from stereo [6, 16], leverage planar
structure for SLAM [54], estimate surface normal and bound-
ary based on the local planar assumption [14] and finally
reconstruct planar spirits from multiple images [27, 55]. The
proposed NeurMiPs can be treated as a multi-view slanted
plane reconstruction method by minimizing the photo-metric
rendering loss.

3. Method
In this work, we tackle the problem of novel view syn-

thesis. Our goal is to improve the rendering efficiency as
much as possible while improving the rendering quality at
extreme novel views. Towards this goal, we propose a novel
neural representation called the mixture of planer experts
and design a neural rendering method using NeurMiPs.

Specifically, we first represent the scene as a mixture of
local planar surfaces. Every local surface is an oriented 2D
rectangle in 3D. We then use a neural radiance field function
for each plane to encode its view-dependent appearance and
transparency. Both the geometry and the radiance fields
are learned end-to-end from the input images. During the
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GT NeRF KiloNeRF Ours GT NeRF KiloNeRF Ours
Figure 5. Qualitative Results of Tanks & Temples. Zoom in for better visual comparisons.

rendering time, our method will first conduct a ray-rectangle
intersection check. Each ray will only hit a small subset
of surfaces. The color and transparency will be evaluated
based on intersecting point’s coordinate. Finally, the ray
color will be calculated through alpha blending the colors of
all intersecting points.

Fig. 1 compares different 3D representations for view
synthesis. Compared to neural surface rendering, our method
is efficient in both memory and computation; the approach
is significantly more sample-efficient than volume rendering
with better extrapolation; compared to multi-plane imagery,
our approach better reflects the geometry.

3.1. Mixture of Planar Experts

The mixture of planar experts representation con-
sists of K rectangular surface parameterized by {sk =
(pk,nk,uk, wk, hk)}, where pk is the rectangle center; nk

is a normalized 3D vector representing the plane’s normal;
uk is the normalized up vector defines the y-axis direction of
the plane coordinate in the world; (wk, hk) is the plane’s size.
Inspired by the success of recent neural rendering [44, 73],
we represent each planar expert’s view-dependent appear-
ance and transparency as a 3D neural radiance field function

(ck, αk) = fk(xk,d) (1)

The function takes the 3D space coordinate xk and normal-
ized 3D ray direction d = (dx, dy, dz) ∈ S2 as input and
output the corresponding color and transparency. See Fig. 2
for an illustration of the planar representation.

Network Architecture Each planar sprite only needs to
model a local slice of the full radiance field. Hence, we
use a significantly smaller multi-layer perceptron (MLPs)
for each planar expert model. Each MLP model consists of
three fully-connected hidden layers, with ReLU activation
for each hidden layer and sigmoid activation for final output.
The networks predict both color and alpha values. Follow-
ing recent works [44, 65], the ray input is transformed into
a higher dimensional space with high-frequency functions
before passing to the network, which enhances the capability
of capturing high-frequency textures.

Representing the Scene Geometry A natural question
arises: is it sufficient for representing the complicated world
with a mixture of planes? To answer this question, we con-
duct a quick experiment to demonstrate its power. Specif-
ically, we choose two complicated 3D scenes, an indoor
environment from Replica dataset [61] and an outdoor scene
from Tanks and Temple [30]. Both scenes consist of suffi-
ciently complicated geometric structures like trees, poles,
circular shape surfaces. We use a mixture of planar experts
to fit the surface geometry, by minimizing the point to plane
distance for points sampled from the scene’s surface. Fig. 3
illustrates the local planar surface fitting performance as a
curve of the number of rectangles vs. average point-to-plane
distance. From the figure, we could see that with only 1000
planes, we could reach 10−3 RMSE point-to-plane error,
with the whole scene normalized into a unit sphere. These
results suggest the multi-plane surface geometry is suitable
to represent complicated scenes for neural rendering.

3.2. Rendering

At the testing time, a pixel is rendered by shooting a
ray from the eye and evaluating the radiance along the ray.
Formally, the input ray consists of a original point and a
normalized directional vector r = {o,d} where o is the
origin and d is the direction.

Ray-Plane Intersection Rendering NeurMiPs is very ef-
ficient thanks to its simple geometry. The first step is the
ray-rectangle intersection: decide whether a local plane is
intersecting the ray. This intersection check can be done
analytically. Firstly, we will find the intersection between a
given ray r = {o,d} and an infinite size plane {nk,pk}:

xk = o+
(pk − o) · nk

d · nk
d (2)

We will only keep the intersected rectangles for the next
phase. In practice, only a small fraction will be kept.

Radiance Evaluation We then evaluate the ray’s color and
transparency at the intersecting planar experts. Specifically,
given the input coordinate transform xp,k and the direction
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Figure 6. Qualitative Results of the Replica Dataset.

d for each planar expert, we will output a transparency value
αk and a color ck by evaluating its neural radiance function,
according to Eq. 1.

Alpha Composition Now, each ray has collected a set of
of point samples {xj , cj , αj}. We sort the point from closest
to furthest to the eye o, and conduct alpha composition to
get the final estimation of the ray’s color:

c(r) =
∑
j

j−1∏
i

(1− αi)αjcj (3)

Fig. 4 depicts the detailed procedure of our rendering pro-
cess per each ray. We want to highlight three important
properties of our method. First, thanks to our mixture-of-
planar structure, the ray-geometry intersection is computed
efficiently in closed-form, which is extremely efficient. Sec-
ond, each ray will only hit a handful of planes. This results
in a small number of samples we need to evaluate for each
ray, significantly boosting the speed. Finally, each planar
expert radiance function only needs to model a local surface.
Hence, the required computation for the radiance MLPs is
also significantly smaller than NeRF.

3.3. Training

Training NeurMiPs requires jointly optimizing the plane
geometry {(ck,nk,uk, wk, hk)} and the radiance fk(·, ·).
Training from scratch results in artifacts and low-fidelity
geometric structures. In practice we observed better results
can be acquired through two training techniques: 1) pla-
nar initialization through geometric loss minimization; 2)
distillation from a large teacher radiance model.

Plane Initialization We initialize the plane geometric pa-
rameters {sk} using the coarse 3D point cloud {xi} esti-
mated by structure-from-motion [56]. Specifically, we op-
timize the following point-to-rectangle distance function:

Lg =
∑
i

min
k

d(xi, sk) + λ
∑
k

(wkhk)
2, (4)

where mink d(x, sk) is the distance from point x to the clos-
est rectangular surface sk. An area regularization (wkhk)

2

is adopted to forbid the rectangle to be arbitrarily large.

Distillation After the planar geometry initialization, we
then jointly optimize radiance and geometry. Inspired by
the success of NeRF distillation [50, 62, 78], we first train
a large-capacity, ordinary NeRF as the teacher model to
distill knowledge from. It follows standard NeRF neural
network architecture with two noticeable differences. First,
the point sampling is conducted through NeurMiPs’s ray-
planar intersection. Second we also jointly optimize the
planar experts’ geometric parameters. The joint geometry
and photo-metric loss are used for training the planar-guided
NeRF:

Ltotal = Lg + Lc,

where Lg is the point-to-rectangle geometry loss defined in
Eq. 4 and Lc is the L2-photometric loss

Lc =
∑
r

∥c(r)− cgt(r)∥22. (5)

For each planar expert, we then distill knowledge from the
teacher model by minimizing the difference between the
teacher’s output and each student’s output. Specifically, we
draw random points uniformly from the rectangle and ran-
dom view directions from the half unit sphere for each batch.
Student network’s parameters are updated by minimizing the
L2 loss of both alpha values and the colors.

Fine-Tuning After over-fitting to the teacher network, we
will fix plane parameters and fine-tune our student radiance
field models to further improve the rendering quality. Specif-
ically, we minimize the L2-photometric loss Lc between the
rendered pixel color and the ground-truth color.

3.4. Implementation

Despite being efficient by design, NeurMiPs will benefit
from several techniques during implementation to further
boost the rendering speed, making it to be real-time.

Alpha Baking Another acceleration technique is texture
pre-baking. Inspired by prior work on pre-caching NeRF [17,
73, 78], we propose to pre-render alpha values and bake
them as alpha textures for each rectangular plane. To be
more specific, the view-independent alpha is baked into each
plane i as texture maps Ai of size w × h. During inference,
when a ray hits a surface, we could retrieve its corresponding
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Model PSNR↑ SSIM ↑ LPIPS ↓
NeRF [44] 28.32 0.904 0.168
SRN [59] 24.10 0.847 0.251
Neural Volumes [37] 23.70 0.834 0.260
NSVF [36] 28.40 0.900 0.153
PlenOctrees [78] 27.99 0.917 0.131
KiloNeRF [50] 28.41 0.910 0.090
Ours 28.46 0.908 0.089

Table 1. Quantitative comparison on Tanks & Temples.

alpha value by bilinear interpolating from the baked alpha
texture Ai. Note that applying alpha baking directly during
inference might bring a minor rendering performance drop.
Therefore, we fine-tune the RGB branch of planar experts
for better rendering quality.

Early Ray Termination Evaluating radiance for all in-
tersecting rectangles is unnecessary, in particular when the
transmittance value

∏
i(1− αi) is close to zero (e.g. ray hit-

ting a non-transparent plane) since it may only have a minor
impact. In practice, we exploit early ray termination to avoid
additional network evaluation, thereby enhancing rendering
efficiency considerably. We also perform re-normalization if
the sum of the alpha values is smaller than 1. We empirically
observe that it will improve performance.

Custom CUDA kernel To further accelerate model infer-
ence, we implement a custom CUDA kernel for ray-plane
intersection, model inference, and alpha composition. We
fuse the network evaluation of each expert into a single
CUDA kernel so that all experts can render in parallel. As
we will show in Sec. and supp. materials, this improves
rendering efficiency significantly.

4. Experiments
4.1. Experimental Setup

Datasets: We evaluate NeurMiPs on two challenging
datasets: Tanks & Temple [30] and Replica [61]. Tanks
& Temples consists of five bounded real-world scenes [36].
Each scene contains 152 ∼ 384 high-resolution images
(1920× 1080) captured from surrounding 360◦ viewpoints.

Replica is a synthetic dataset featuring a diverse set of
indoor scenes. Each scene is equipped with high-quality
geometry and photorealistic textures, allowing one to ren-
der high-fidelity images from arbitrary camera poses. The
flexibility also allows us to generate challenging novel view
synthesis scenarios that are not available in existing bench-
marks (e.g., extreme view extrapolation). In this work, we
randomly select seven scenes and render 50 training images
and 100 test images for each of them. The camera poses are
sampled randomly within a pre-defined range. We adopt a
wider range for the test split so that the test images can cover
broader views and may include unseen areas. The setup

Model PSNR↑ SSIM↑ LPIPS↓
NeX [73] 24.76 0.832 0.152
NeRF [44] 30.12 0.901 0.097
PlenOctrees* [78] 27.72 0.872 0.174
KiloNeRF* [50] 29.37 0.904 0.097
Ours 30.80 0.900 0.088

Table 2. Quantitative comparison on Replica. All models are
evaluated on a single TITAN RTX. Please see text for more details.

allows to evaluate the extrapolation capability of existing ap-
proaches. We adopt BlenderProc [11] as our physical-based
rendering engine. The image size is set to 512× 512.

Metrics: Following [44,50], we adopt peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM) [70], and
perceptual metric (LPIPS) [83] for quantitative evaluation.

Baselines: We compare our approach against state-of-
the-art neural radiance field (i.e., NeRF [44]), MPI-based
method (i.e., NeX [73]), and hybrid, real-time methods (i.e.,
NVSF [36], KiloNeRF [50], PlenOctrees [78]). We refer the
readers to supp. materials for more details.

Implementation details: For each scene, we initialize
our plane geometry with the sparse point clouds from
COLMAP [56, 57]. Plane centers {pk} are selected by far-
thest point sampling, and plane orientations {nk, uk} are
initialized as normals estimated from local point sets around
pk. We set the number of planar experts to be 500 for Replica
and 1000 for Tanks and Temple. We first train the teacher
model for 6K epochs, then we distill the planar experts for
1.5K epochs. Finally, we fine-tune the experts for 2.5K
epochs. We use Adam [29] optimizer with a learning rate of
5× 10−4 across all experiments.

4.2. Tanks & Temples

As shown in Tab. 1, our approach is comparable to or
better than prior art on all three metrics. Specifically, while
NeRF generates blurry textures for large-scale scenes and
KiloNeRF produces blocking artifacts, NeurMiPs is able
to capture detailed textures on planar surfaces with sharp
boundaries. Furthermore, our local planar structure can
handle non-planar and thin objects well through a combina-
tion of planar experts and alpha composition. See the tree
branches and leaves in the Barn example in Fig. 5.

4.3. Replica

We further evaluate our approach on Replica. Since
Replica consists of extrapolated views (as mentioned in
Sec. 4.1) that have not been observed during training, previ-
ous voxel-based implicit methods such as PlenOctrees [78],
KiloNeRF [50] suffer drastically. Those methods prune out
redundant voxels during training. Therefore, they cannot
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Easy Medium Hard
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeX [73] 25.88 0.844 0.136 24.56 0.828 0.156 23.86 0.826 0.164
NeRF [44] 31.41 0.915 0.081 29.98 0.901 0.097 29.02 0.887 0.113
PlenOctree [78] 28.05 0.877 0.171 27.613 0.872 0.174 27.51 0.866 0.179
KiloNeRF [50] 28.00 0.908 0.085 28.06 0.893 0.105 27.50 0.886 0.117
Ours 31.98 0.914 0.074 30.31 0.894 0.092 30.05 0.892 0.096

Table 3. Performance vs viewpoint difference.

Model Median ↓ Inlier (%)
< 0.05

Inlier (%)
< 0.10

Inlier (%)
< 0.50

NeX [73] 0.767 3.3 6.6 33.3
NeRF [44] 0.137 19.6 38.3 87.8
KiloNeRF [50] 0.125 32.9 45.9 77.2
Ours 0.066 43.7 59.0 84.2

Table 4. Peformance of estimated depth.

estimate the appearances of unseen regions. To (partially)
alleviate this issue, we reduce the pruning threshold so that
voxels are preserved even if they have lower volume density,
at the cost of larger memory footprint/slower inference speed.
In contrast, NeurMiPs represents the scene geometry with
multiple planes, and can generalize better in view extrapola-
tion. As shown in Tab. 2 and Tab. 7, our approach reaches
the best quality-efficiency trade-off and is comparable to or
better than prior art on all three metrics. We refer the readers
to the supp. material for implementation details of the base-
lines and more comprehensive comparison. We also show
some qualitative results in Fig. 6. NeRF produces fog-like
artifacts in free space, while NeX [73] has significant “stack-
of-cards” effects. NeurMiPs, in contrast, has significantly
better visual quality, even at extrapolated novel views.

4.4. Analysis

Performance vs viewpoint difference: To gain insights
into when NeurMiPs performs the best, we divide the test
split of Replica into three categories, namely easy, medium,
and hard, based on the proximity to the nearest training
views, and evaluate our model. As shown in Tab. 3, Neur-
MiPs is comparable to or better than competing methods
across all settings. In particular, NeurMiPs improves the
performance the most when the viewpoint difference is large
(i.e., 1.03 dB PSNR gain and 0.017 LPIPS score reduction).

Depth estimation: To verify how well NeurMiPs models
the scene geometricy, we follow previous work [44] to gen-
erate depth map at each viewpoint and compare with those
from the baselines. Specifically, we estimate the expected
depth value d(r) along each ray r by alpha composition:

d(r) =
∑
j

j−1∏
i

(1− αi)αjtj (6)

where tj is the depth of sampled points j. As shown in Tab. 4,
our planar experts are flexible and are able to approximate
scene geometry well in most cases. However, since the size
of the plane is finite, the planes may not cover all regions
in extreme viewpoints. The scenes that are modeled by the
background thus induce higher depth error. Note that this
can be resolved by adopting multiple-layer boxes. We leave
this for future study.

SfM geometry Distillation PSNR SSIM LPIPS
25.069 0.818 0.158

✓ 30.810 0.909 0.082
✓ ✓ 33.659 0.941 0.051

Table 5. Ablation study. Scene: Replica kitchen. “SfM geom-
etry” refers to planes initialization with point cloud extracted by
COLMAP [56, 57].

Speed-memory trade-off: NeurMiPs models the scene
with a mixture of planar experts. The compact representation
of the planes and the associated tiny MLPs not only induces
a significantly lower memory footprint compared to voxel-
based approaches, the planar parameterization also allows
us to exploit ray-plane intersection to sample query points
efficiently for low-cost radiance evaluation. Together with
our customized CUDA kernel, we can achieve 19.16 frames
per second on Replica. Comparing to the baselines (see Tab.
7), NeurMiPs achieves the best speed-memory trade-off.

Training strategy: To validate the contribution of each
training technique (Sec. 3.3), we evaluate our model with dif-
ferent combinations. As shown in Tab. 5, initializing plane
geometry with sparse point clouds significantly improves
the performance. We conjecture this is because good ini-
tialization allows the model to alleviate the shape-radiance
ambiguity [82] and converge to the correct geometry. With
the help of distillation, one can further reduce the artifact
and improve the results. We hypothesize this is because the
guidance of teacher model prevents our model from getting
stuck at local minima. Both observations concur with the
findings of previous works [50, 71]. We also note that one
needs to conduct SfM to obtain the camera poses in practice,
hence the sparse point cloud from SfM is essentially “free”.

Performance w.r.t. number of planar experts: Since we
aim to model the scene appearance and geometry with planar
experts, one natural question to ask is: how well does the
approach scale with the number of planar experts. As shown
in Tab. 6, more planes in general leads to better results. This
is reasonable as we can fit the scene much better. However,
it may also increase the model size and reduce the efficiency
due to more ray-plane intersections.

Specular effect: Similar to NeRF, our planar experts
model view-dependent effects by taking viewing direction
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# Planes 25 50 100 200 500 1000
# Params(M) 0.15 0.31 0.62 1.24 3.11 6.21

PSNR 26.41 27.69 29.19 30.10 30.87 30.64
SSIM 0.828 0.851 0.877 0.888 0.900 0.902
LPIPS 0.168 0.140 0.112 0.098 0.088 0.085

Table 6. Effect of plane number. Dataset: Replica. Note that
#planes=500 achieves the best complexity-quality trade-off.

Ground-Truth Ours Rendering Geometry
Figure 7. Visualizing the geometry of learned planes. Each color
is a plane learned by NeurMiPs.

Figure 8. Selected planar experts on Tanks & Temple. We
prebake the alpha and color values into a 2D texture for each planar
expert, capturing diverse local surfaces with diverse appearance
and geometry, e.g., the bike rack and the wheel.

d into account (see Eq. 1). We further alpha-composite
radiances from all intersecting planes (∼10 per ray) to com-
pensate for the specular effect (similar to MPI). An example
of specular windows is shown in Fig. 9.

Planar experts visualization: To better understand what
is learned in the NeurMiPs, we visualize its planar spirits ge-
ometry, plane index, and textures. Specifically, we show the
rendered surface colored by alpha-composed planar surface
indices in Fig. 7. NeurMiPs learns to capture these structures
with few large planes (denoted in the same color), while ap-
proximating the non-planar regions (e.g. tires, front of car)
with more planes. Fig. 8 depicts a collection of learned tex-
tures maps baked from the radiance field of several planar
experts. We see that comprehensive per-plane textures have
been learned with sufficient interpretability.

Combining with graphics engine: One appealing prop-
erty of our approach is its compatibility with polygon-mesh-
based rendering engines. In fact, our representation could
be considered as a polygon mesh with K rectangular faces.
We can thus pre-bake ray colors into high-resolution, view-

NeX NeRF PlenOctree* KiloNeRF* Ours
# Params (M) 21.28 1.19 1457.2 6.21 3.11
FPS 0.142 0.106 78.04 4.19 19.16

Table 7. Model size and inference speed on Replica.

Figure 9. Specular effects. Dataset: Tanks&Temples.

dependent textures for each plane and save the textured mesh
representation of the scene. We can then write our view-
dependent shader in OpenGL and render the scene using
the standard rasterization engine. Note that depth sorting
for each planar surface and back-to-front rendering is neces-
sary to ensure the correct alpha blending procedure in Eq. 3.
Texture baking brings notoriously acceleration at the cost of
additional memory consumption and small rendering quality
drop, due to the discretization of the continuous radiance
field. The final accelerated rendering achieves 976 frames
per second for the 1000-plane Truck scene at 1920x1080
resolution on a single RTX 3090 desktop.

Limitations: Our method has several key limitations.
First of all, NeurMiPs relies heavily on SfM point clouds for
plane initialization (see Tab. 5). If the sparse point clouds
are noisy or unavailable, our performance will degrade. Fur-
thermore, our model currently cannot handle unbounded
scenes. One possible solution is to incorporate techniques
from NeRF++ [82] to model the background texture with
non-euclidean coordinates. We leave this for future study.

5. Conclusion

In this paper, we proposed NeurMiPs, a novel 3D repre-
sentation for novel view synthesis. NeurMiPs represents the
3D scene with a mixture of learnable planar experts. Each
plane consists of a rectangular shape and a neural radiance
field. Our approach alleviates the frontal-parallel limitation
of MPI-based methods while remaining efficient thanks to
the efficient ray-casting-based rendering. We demonstrated
that our approach could be integrated with classic rendering
pipelines. We believe NeurMiPs will open new possibilities
for 3D modeling and rendering.
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