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Abstract

Videos incorporate rich semantics as well as redundant
information. Seeking a compact yet effective video repre-
sentation, e.g., sample informative frames from the entire
video, is critical to efficient video recognition. There have
been works that formulate frame sampling as a sequential
decision task by selecting frames one by one according to
their importance. In this paper, we present a more effi-
cient framework named OCSampler, which explores such
a representation with one short clip. OCSampler designs a
new paradigm of learning instance-specific video conden-
sation policies to select frames only in a single step. Rather
than picking up frames sequentially like previous methods,
we simply process a whole sequence at once. Accordingly,
these policies are derived from a light-weighted skim net-
work together with a simple yet effective policy network.
Moreover, we extend the proposed method with a frame
number budget, enabling the framework to produce correct
predictions in high confidence with as few frames as possi-
ble. Experiments on various benchmarks demonstrate the
effectiveness of OCSampler over previous methods in terms
of accuracy and efficiency. Specifically, it achieves 76.9%
mAP and 21.7 GFLOPs on ActivityNet with an impressive
throughput: 123.9 Video/s on a single TITAN Xp GPU.

1. Introduction
With the explosive popularity of social media platforms

as well as bountiful online video content, there comes
wider attention on effective and scalable approaches that
can deal with actions or events recognition in the face
of the video data deluge. To this end, most efforts have
been devoted to exploring a complicated temporal mod-
ule to capture relationships across the time dimension by
densely applying 2D-CNNs [11, 20, 22, 29, 34, 42] or 3D-
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Figure 1. Comparisons of other methods and our proposed
OCSampler. Most existing works reduce computational cost
by regarding the frame selection problem as a sequential deci-
sion task, while OCSampler aims to perform efficient inference
by making one-step decision with holistic views. Our method
achieves excellent performance on accuracy, theoretical compu-
tational expense, and actual inference throughout.

CNNs [3,6,7,10,28,31,32]. Though achieving superior per-
formance, the exorbitant computational expense limits the
application of these models in real-world scenarios where
the deployment is resource-constrained and requires to pro-
cess high data volumes with stringent latency and through-
put requirements.

To mitigate this issue, a large body of research has been
focusing on designing light-weighted modules [9, 22, 27,
28, 33, 33, 40, 47] to bring efficiency improvements. Being
unaware of the complexity of video contents and instance-
specific difficulties for video recognition, these models treat
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all videos equally and adopt naive sampling strategies. To
overcome this limitation, extensive studies [8,12,14,39,41]
have been conducted to devise adaptive mechanisms of
frame selection on a per-video basis by either determining
which frame to observe next, or conditional early exiting
in a deterministic order. These approaches all model the
frame selection problem as a sequential decision task and
prefer to make per-frame decisions individually, leaving out
the subsequent parts of the video. Thus, these methods re-
quire more inference time even with theoretical computa-
tional efficiency and lead to sub-optimal results. Recent
methods [19, 25, 26, 30, 35, 38] rely on designing different
preset transformations (e.g., process at a specific spatial res-
olution [25], process at a specific patch [35], etc.) and deter-
mining which action should be taken on each frame or net-
work module to alleviate computational burden. However,
the key to video recognition is aggregating features across
different frames. Most of these methods rely on the assump-
tion that several salient frames are equally important to an
effective video representation for video recognition, which
may introduce temporal redundancy and lack specific con-
sideration for temporal modeling.

A promising alternative to reduce the computational
complexity of video analysis, without sacrifice of recog-
nition accuracy, is representing videos with one clip in a
single step. Clip-level features [3, 10, 18, 32] commonly
used in 3D-CNNs methods reveal the superiority owing to
its spatio-temporal information extraction. However, tra-
ditional clip-level sampling requires to average the predic-
tions of multiple clips, and clips containing visual redun-
dancy will pollute the final results. Inspired by that, we
design an efficient video recognition framework that com-
presses trimmed/untrimmed videos into a single clip by
evaluating a clip-based reward on a per-video basis in one
pass. As shown in Figure 1, our basic idea is that modeling
the selection problem as a one-step decision task can yield
significant savings in both theoretic computation and actual
inference time, and sampling an integrated clip is more rea-
sonable than evaluating several frames individually.

Particularly, in this paper, we propose a novel OCSam-
pler to dynamically localize and attend to the instance-
specific condensed clip of each video. More specifically,
our method first takes a quick skim over the whole video
with a light-weight CNN to obtain coarse global informa-
tion. Then we train a simple yet effective policy network
to select the most valuable combination of the clip for the
subsequent recognition. This module is learnt with rein-
forcement learning due to its non-differentiability. Finally,
we activate a high-capacity classifier to process the selected
clip. Inference on clips constructed with a small number of
frames, considerable computation overhead can be saved.
Our method allocates computation unevenly across the tem-
poral locations of videos according to their contributions to

the recognition task, leading to a significant improvement
in efficiency yet still with preserved accuracy.

The vanilla OCSampler framework processes videos us-
ing the same number of frames, while the only difference
lies in the temporal locations of selected frames. We show
that our method can be extended via an adaptive frame bud-
get to reduce the computation spent on ”easy” videos, which
can be classified precisely with few frames, owing to dis-
criminative backgrounds or objects. This is achieved by in-
troducing an additional budget network that estimates how
many frames should be used for a video, which is optimized
by pseudo-labels in a self-supervised way.

We evaluate the effectiveness of OCSampler on four
efficient video recognition benchmarks, namely Activ-
ityNet [2], Mini-Kinetics [17], FCVID [15], Mini-
Sports1M [16]. Experimental results show that OCSam-
pler consistently outperforms all the state-of-the-art by large
margins in terms of accuracy and efficiency. Especially, we
achieve 76.9% mAP and 21.7 GFLOPs on ActivityNet with
an impressive throughput: 123.9 Video/s on a single TITAN
Xp GPU. We also demonstrate that the frames sampled by
our method can be generalized to boost the efficacy and ef-
ficiency of an arbitrary classifier.

2. Related Work
Video recognition. In the context of deep neural networks,
there exist two families of models for video recognition,
namely 2D-CNN approaches and 3D-CNN approaches. For
2D-CNN approaches, they commonly equip the state-of-
the-art 2D-CNN models with the capability of temporal
modeling to aggregate features along the temporal dimen-
sion, such as temporal pooling [11, 29, 34], recurrent net-
works [5, 21, 42], efficient temporal modules [20, 22–24],
and exploiting explicit temporal information like optical
flow [11, 29]. For 3D-CNN approaches [31], most of the
works learn spatial and temporal representation by adopt-
ing 3D convolution on stacked adjacent frames. Some of
them [28,33] also decompose 3D convolution into a 2D spa-
tial convolution and a 1D temporal convolution or integrate
2D CNN into 3D CNN [45]. However, existing sampling
strategies applied to 2D-CNN approaches and 3D-CNN ap-
proaches have some shortcomings. Frames uniformly sam-
pled along temporal dimension are sent to 2D-CNN mod-
els, which takes fewer frames to represent the whole video
but may miss the key information when actions occur in a
moment. 3D-CNN models need to aggregate predictions
of multiple clips to get a reasonably good result, consum-
ing vast amounts of computation (especially for untrimmed
videos). In contrast, our idea is to exploit an effective way
to condense a video using a single short clip, which is ag-
nostic to different models.
Sequential sampling. To reduce theoretical computation
costs, these approaches consider the frame selection prob-
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Figure 2. The overview of our approach. Given a video, our framework sparsely samples T candidate frames and feeds them into the
skim network fS to take a quick look through the video and extract spatio-temporal features. Then a simple policy network is followed to
derive a frame selection policy based on the output multi-nominal distribution of pL, which activates a subset of N frames to form a single
clip as the product of video condensation. By involving an additional budget module B to determine how many frames should be taken
on each video, we can further reduce the redundant computation spent on less important frames. Afterwards, an arbitrary classifier is used
to obtain the recognition result. Conditioned on the prediction, we back-propagate the expected gradient with the reward of the integrated
clip and the corresponding combinational estimation. See texts for more details.

lem as a sequential decision task and require to wait for pre-
vious information to indicate which frame to observe next
or whether to exit the selection procedure. AdaFrame [39]
proposed a Memory-augmented LSTM that provides con-
text information for searching which one to observe next
over time. ListenToLook [12] proposed to estimate clip in-
formation with a single frame and its accompanying audio
using a distillation framework. However, using audio as
preview information to seek the next frame cannot avoid
irrelevant frames and still takes more than one step to get
the final prediction of the entire video. FrameExit [14] for-
mulated the problem in an early-exiting framework with a
simple sampling strategy. For each video, FrameExit fol-
lowed a preset policy to check each frame sequentially and
threw out an exiting signal to quit the procedure. Although
this simple policy function avoids complex calculations, its
deterministic sampling pattern is sub-optimal in terms of
exploitation and exploration. In practice, these sequential
sampling methods [8, 12, 14, 39, 41] still consume plenty of
inference time due to their complex decision process.
Parallel sampling. To mitigate the above issues, some
works adopt parallel sampling, which usually chooses what
action should be taken on each frame/clip independently
and obtains the final selection in parallel. SCSampler [18]
used a light-weighted network to estimate a saliency score
for each fixed-length clip, while DSN [43] advanced
TSN [34] framework by dynamically sampling a discrimi-

native frame within each segment. They both performed the
sampling procedure in a non-sequential manner at the cost
of limited decision space, leading to sub-optimal selection
due to the holistic information vacancy. MARL [37] utilized
multi-agents to pick frames in parallel and had to go through
a heavy CNN in many iterations to yield STOP actions for
all agents. Other works reduced computational costs by se-
lecting input resolution [25], choosing image patches [35],
or assigning different bits [30].

In contrast, our method relies on a simple one-step rein-
forcement learning optimization and does not require mul-
tiple steps to determine the final frame selection. Besides,
we do not use any RNN-based module but directly aggre-
gate a more holistic feature for video-level modeling. We
formulate the problem in a video-to-one-clip condensation
framework and show that a reasonable reward function, to-
gether with an adaptive frame number budget, can lead to
significant performance in both theory and practice.
Video summarization. Video summarization [1,13,44,46]
targets selecting a set of video clips or frames to gener-
ate a short synopsis that summarizes the video content.
DSNet [46] used a temporal interest proposals strategy
to solve the temporal consistency problem of video sum-
maries. PGL-SUM [1] tried to overcome drawbacks of
RNN-based summarization architectures by using a num-
ber of multi-head attention mechanisms. Rather than
video summarization, our method focuses on efficient video
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recognition, which aims at utilizing as little computation
cost as possible to obtain good recognition performance.

3. Method
Unlike most existing works aiming at promoting efficient

video recognition by selecting a few frames or clips pro-
gressively, our goal is to compress a trimmed/untrimmed
video into one single clip with as few frames as possible,
while preserving sufficient spatio-temporal cues for video
recognition. To this end, we introduce OCSampler, an effi-
cient and effective framework to condense a video into an
integrated clip. With OCSampler, the computation over-
head can be significantly reduced without sacrificing accu-
racy. We first describe the components of OCSampler. Then
we introduce the training algorithm for each component. Fi-
nally, we extend our framework by considering an adaptive
frame number budget, which allocates different amounts of
computation for each video.

3.1. Network Architecture

Overview. Figure 2 illustrates an overview of our approach.
Given an input video, we first uniformly sample T frames
along the temporal dimension as frame candidates. OC-
Sampler first skims the frame candidates at a lower res-
olution using a light-weighted skim network fS, to obtain
coarse frame-level features. Then, the features are fed into
the policy network π to encode spatio-temporal information
across frames and determine the optimal frame set to form
an integrated clip, which maximizes a reward function pa-
rameterized by the output from the classifier fC. The classi-
fier fC takes the single clip as inputs and predicts the action
category. It is worth noting that OCSampler obtains an in-
tegrated clip only in one step. In the following sections, we
describe these components in details.
Skim network fS is a light-weighted network to extract
deep features for frame candidates. It is designed to provide
global views across different time for determining which
frames should be selected to form a clip for classifier fC.
Components like TSM [22] can be inserted to equip Skim
network with the capability of fusing information among
frame candidates. Note that the additional computation cost
incurred by fS is negligible compared with the classifier fC.

Formally, given a candidate set {v1,v2, . . . ,vT } uni-
formly sampled along the temporal dimension with spatial
size H×W , they are first resized to lower resolution H̃×W̃
and then sent to fS to generate a global video descriptor zS

t :

zS = {zS
1, z

S
2, . . . ,z

S
T } = fS({ṽ1, ṽ2, . . . , ṽT }), (1)

where t is the frame index and zS
t encodes context informa-

tion for each frame on a per-video basis.
Policy network π receives the global context feature zS

from Skim network fS, and localizes which frames can be

Global Features 𝒛𝒛𝑺𝑺
𝑻𝑻 × 𝑪𝑪 shape

𝑻𝑻 × 𝟏𝟏 shape

Vectorize

Multinominal 
Distribution

Linear Projection

Frame Candidates
�𝝂𝝂1, … ,�𝝂𝝂𝑁𝑁 ~
𝜋𝜋(· |𝒛𝒛𝑆𝑆,𝜽𝜽𝐿𝐿)

Figure 3. The architecture of the policy network. The global
context feature zS is fed into a linear projection layer followed
by a vectorization operation, the output of which establish a
multinomial distribution π(·|zS, θL) on frame candidates (here
we take 9 as an example). During training, we sample frames
v1,v2, . . . ,vN} from π(·|zS, θL), while at the test time, we di-
rectly select frames with the largest N softmax probability.

used to form a salient clip for each video. Note that this pro-
cedure is performed only in one iteration and uses no com-
plicated CNN-based or RNN-based modules but one linear
projection fL followed by Softmax function ϕ with an ef-
fective clip-relevant policy function:

pL = {pL
1, p

L
2, . . . , p

L
T } = ϕ(fL({zS

1, z
S
2, . . . ,z

S
T })), (2)

where pL
t refers to the softmax probability for each frame.

Formally, as shown in Figure 3, π determines the chosen
N frames from candidates {v1,v2, . . . ,vT } to be sent to
classifier fC. Since the target is to determine a representa-
tive clip rather than several salient frames, it involves mak-
ing set-level decisions that are non-differentiable and harder
than making binary ones due to larger search space. Given
that, we still formalize π as a one-step Markov Decision
Process (MDP) and train it with reinforcement learning.
Specifically, the selection of the clip {v1,v2, . . . ,vN} is
drawn from the distribution π(·|zS, θL).

where θL denotes learnable parameters of the linear pro-
jection fL. In our implementation, we establish a multi-
nomial distribution on them, parameterized by the output
probability of π. During training, {v1,v2, . . . ,vN} are
produced by sampling from the policy based on correspond-
ing multinomial distribution. During testing, candidates
with maximum probabilities are adopted in a deterministic
inference procedure.
Classifier fC can be any classification network used in
video recognition. It receives a clip of temporal length N
from policy network π and outputs the recognition result of
the video. To be specific, Classifier fC directly processes a
clip of N frames {v1,v2, . . . ,vN} with original resolution
H×W , i.e.,

p = fC({v1,v2, . . . ,vN}), (3)

where p indicates the probability scores for each class. No-
tably, Classifier fC accounts for most of the computational
overhead in our framework and yields the prediction at a
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time, instead of sequentially processing each frame. Such
a design reduces both computational complexity in theory
and inference time in practice.

3.2. Training Algorithm

There are two stages in our training algorithm to opti-
mize OCSampler framework.
Stage I: Initialization. In this stage, we warm up fS and fC
by video recognition tasks on target datasets. We train fS by
randomly sampling T frames with size H̃×W̃ to minimize
the cross-entropy loss LCE(·) over the training set Dtrain:

minimize
fS

E{ṽ1,ṽ2,...,ṽT }∈Dtrain [LCE(p̃, y)] . (4)

Similarly, we pretrain fC by using randomly sampled N
frames with H×W resolution:

minimize
fC

E{v1,v2,...,vN}∈Dtrain [LCE(p, y)] . (5)

Here, y refers to the corresponding label of the sample.
Given the good recognition performance, fS and fC are
equipped with the ability to extract spatio-temporal fea-
tures from an arbitrary sample on target datasets and pro-
vide good quality reward signals with less noise, leaving
the basis for policy network π.
Stage II: Optimizing policy network. In this stage, we
freeze the parameters of classifier fC learned in stage I and
train policy network π with reinforcement learning by solv-
ing one-step Markov Decision Process problem. Based on
the probability pL predicted by fL with global context fea-
ture zS (see Eq. 2), π receives a reward r indicating how
beneficial this combination is to construct a clip for recogni-
tion. We optimize π by maximizing the sum of the rewards:

maximize
π

E{v1,v2,...,vN}∼π(·|zS,θL) [r] . (6)

In our implementation, we adopt the off-the-shelf policy
gradient algorithm [36] to solve Eq. 6. Note that there are(
T
N

)
different cases to choose N frames from T candidates,

which makes it hard to precisely calculate the combinato-
rial probability and intractable to handle directly. Formally,
we define q(i1, . . . , iN |pL) as the probability of sampling
frames sequentially with the order (i1, . . . , iN ):

q(i1, . . . , iN |pL) = pLi1×
pLi2

1− pLi1
× . . .×

pLiN
1−

∑N−1
j=1 pLij

, (7)

There are N ! different permutations for N elements, we de-
note the set of all N ! as P . Then the probability of sampling
these N frames can be precisely calculated by summing q
for all N ! different permutations:

Prob{v1,v2,...,vN} =
∑
σ∈P

q(σ(i1), σ(i2), ..., σ(iN )|pL). (8)

However, Eq. 8 is only tractable for a small N (e.g., N <
10). In experiments, we estimate this term with the proba-
bility of a subset of all permutations (e.g., subset with

(
T
8

)
items) and find that the policy network can be optimized
well either with the precise or the estimated probability.

In our case, where policy network aims at figuring out
how to condense a video with one clip rather than pick up
several frames separately, the reward r is expected to evalu-
ate the integrated clip V , i.e., {v1,v2, . . . ,vN}, in terms of
video recognition. To this end, we define r as:

r({v1, . . . ,vN})
= py({v1, . . . ,vN})

− EV∼UniformSample({v1,...,vT })
[
py(V )

]
,

(9)

where py refers to the softmax prediction on y (i.e., con-
fidence on the ground-truth label, see Eq. 3). When com-
puting r, we take all of the N frames {v1, . . . ,vN} into
consideration to avoid information redundancy and short-
sighted mistakes raised by single frame judgement. The
second term in Eq. 9 refers to the expected value obtained
by uniformly sampling N frames from candidates. Since re-
inforcement learning may be of high variance and converge
slowly, we introduce another policy, which does not depend
on the policy network, to affect the variance and stabilize
the training process significantly.

3.3. Adaptive Frame Number Budget

Processing videos of different complexity equivalently
with the same amount of computation is still sub-optimal.
To overcome this, we extend our OCSampler to OCSam-
pler+, which automatically learns to select fewer frames for
easier videos and more frames for harder ones.
Budget module. We add an additional Budget module fB
that takes global context feature zS as input between Skim
network fS and policy network π. Each of these features is
first passed to one layer of MLP with 64 neurons indepen-
dently (shared weights among all streams). The resulting
features are then averaged and linearly projected, followed
by a softmax function to estimate the frame budgets.
Training with Self-Supervision. We construct a budget
label yB indicating the probability of how many frames
should be used by analyzing the statistics obtained from
considering all of the combinations. Formally, given a
video, we define Gm = {gm1 , gm2 , . . . , gmc } (where 1≤m≤
T and c =

(
T
m

)
) as the list containing combinations of m

frames from the frame candidate set {v1,v2, . . . ,vT }. We
send each item gmi ∈ Gm to classifier fC to obtain a boolean
value ami ∈ {0, 1} , which specifies whether this combina-
tion can be predicted correctly. After that, we obtain the
ratio of prediction correction rm with the estimation:

rm =
∑
i

ami /
(
T
m

)
. (10)

13898



(c) 𝜀𝜀 = 0.8,𝛼𝛼 = 2.0

Correct predictions Incorrect predictions Num of frames (#𝐹𝐹)

(a) 𝜀𝜀 = 0.9,𝛼𝛼 = 1.5

#𝐹𝐹
#𝐹𝐹 = 1

(b) 𝜀𝜀 = 0.9,𝛼𝛼 = 2.0

#𝐹𝐹

#𝐹𝐹

#𝐹𝐹 = 1

#𝐹𝐹 = 1

#𝐹𝐹 = 10

#𝐹𝐹 = 10

#𝐹𝐹 = 10

Figure 4. Trade-off between frame number budgets and pre-
diction accuracy. The statistics of our method equipped with a
budget module for different ϵ and α on the validation set of Ac-
tivityNet. The circle area at a certain number of #F represents
the percentage of samples using #F frames for prediction. Easier
examples use fewer frames with higher accuracy, while harder ex-
amples use more frames leading to increased miss-classifications.

Based on rm, we use ϵ to determine the minimum budget
required to predict a video correctly with classifier fC:

yBk = 1, where k = argmin
i

(ϵ≤ri). (11)

Provided that single-label is more likely to lead to bias on
accuracy, we leverage other options with a smooth function
to balance the accuracy and efficiency:

yBi =

{
0 if i < k,

1
α(i−k) if i > k,

(12)

where α>1 and is the hyper-parameter that controls the
trade-off between accuracy and computational cost. An ex-
ample is shown in Figure 4. Then, we learn parameters of
the budget network by minimizing the cross-entropy loss
between the predicted probability and the pseudo label yB :

LBudget = LCE(z
S, yB). (13)

Notably, this procedure of estimating frame budgets also
applies for one step. Similar to Eq. 8, we use Monte-Carlo
sampling to estimate rm for Eq. 10. Moreover, to overcome
the long-tail issue owing to sample imbalance, we assign
class weight based on the sample distribution for Eq. 13.
During training, we first optimize the Budget module fB
with skim network fS to get the frame budget estimation,
and then learn the policy network π as mentioned in Stage
II. During inference, we choose the maximum probability
in fB as the number of used frames.

4. Experiment
In this section, we conduct comprehensive experiments

on widely used datasets to verify our method. We first
briefly describe our experimental setup. Then, we com-
pare OCSampler with state-of-the-art approaches , showing
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Figure 5. Accuracy vs. efficiency curves on ActivityNet. Our
proposed OCSampler obtains the best recognition accuracy with
fewer GFLOPs than state-of-the-art methods. We directly quote
the numbers reported in published papers.

that OCSampler boosts the performance of existing meth-
ods. Finally, we provide ablation results to provide addi-
tional insights into our policy learning.

4.1. Experimental Setup

Datasets. We report the performance of our approach
on four datasets: (1) ActivityNet-v1.3 [2] consists of 200
classes and contains 10,024 training videos and 4,926 vali-
dation videos with an average duration of 117 seconds; (2)
FCVID [15] is labeled with 239 action categories and in-
cludes 45,611 training videos and 45,612 validation videos
with an average duration of 167 seconds; (3) Mini-Kinetics
has 200 classes from Kinetics [17] assembled by [25, 26],
including 121,215 training videos and 9,867 validation
videos with an average duration of 10 seconds; (4) Mini-
Sports1M is a subset of full Sports1M [16] introduced
by [12], containing 30 training videos per class and 10 val-
idation videos per class with a total of 487 action classes.
Evaluation metrics. To evaluate the accuracy, We use
top-1 accuracy for multi-class (Mini-Kinetics) classification
and mean average precision (mAP) for multi-label classifi-
cation (ActivityNet, FCVID, and Mini-Sports1M), respec-
tively. To measure the computational cost, we use giga
floating-point operation (GFLOPs) as efficiency reflection,
which is a hardware-independent metric. We report per
video GFLOPs for all experiments since some methods use
different numbers of frames per video for recognition.
Implementation details. Experiments are conducted on
MMAction2 [4]. If not specified, we uniformly sample
10 frames from each video as frame candidates on all the
datasets. Following [14, 25], during training, we adopt ran-
dom scaling to all frames followed by 224 × 224 random
cropping and random flipping. For inputs to light-weighted
CNN, we further lower the resolution of video frames to
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Table 1. Comparison to state of the art on ActivityNet-v1.3 and
Mini-Kinetics. OCSampler outperforms exiting methods in terms
of accuracy and efficiency using ResNet, SlowOnly, and X3D-S
backbones with ImageNet/Kinetics pretraining. The column of
Backbones is for classifier, and best results are bold-faced.

Methods Backbones
ActivityNet Mini-Kinetics

mAP GFLOPs Top-1 GFLOPs
ImageNet

LiteEval [38] ResNet 72.7% 95.1 61.0% 99.0
SCSampler [18] ResNet 72.9% 42.0 70.8% 41.9

AR-Net [25] ResNet 73.8% 33.5 71.7% 32.0
videoIQ [30] ResNet 74.8% 28.1 72.3% 20.4

AdaFocus [35] ResNet 75.0% 26.6 72.9% 38.6
FrameExit [14] ResNet 76.1% 26.1 72.8% 19.7

OCSampler ResNet 77.2% 25.8 73.7% 21.6
OCSampler ResNet 76.9% 21.7 72.9% 17.5

OCSampler+ ResNet 75.4% 17.9 72.2% 15.8
Kinetics

Ada2D [19] SlowOnly-50 84.0% 701 79.2% 738
ListenToLook [12] R(2+1)D-152 89.9% 2640 – –

MARL [37] SEResNeXt-152 90.0% 7540 – –
OCSampler SlowOnly-50 87.3% 68.2 82.6% 27.3
OCSampler SlowOnly-101 90.1% 593 - -

Kinetics
FrameExit [14] X3D-S 86.0% 9.8 – –

OCSampler X3D-S 86.6% 7.9 – –

128 × 128. During inference, we still feed light-weighted
CNN with 128 × 128 resolution frames and average pre-
diction of 224×224 center-cropped patches for all sampled
frames. If not mentioned, we adopt MobileNetV2-TSM and
ResNet50 as skim network fS and classifier fC respectively.
A one-layer fully-connected network with a hidden size of
1280 is used in policy network π. T is set to 10 by default.

4.2. Main Results and Analysis

Comparison with the state-of-the-art methods. The
result for ActivityNet and Mini-Kinetics are shown in Ta-
ble 1. For ImageNet-pretrained cases, we use the ResNet-
50 model provided by [14] as the classifier backbone and
use T = 10 to keep the same with [14]. OCSampler outper-
forms all other approaches by obtaining an enhanced accu-
racy with up to 5× GFLOPs reduction for both ActivityNet
and Mini-Kinetics. Particularly, we outperform all previ-
ous methods with more than 4.4 GFLOPs on ActivityNet,
and achieve the same Top-1 accuracy with AdaFocus [35]
using less GFLOPs than half of its on Mini-Kinetics. For
Kinetics-pretrained cases, we use SlowOnly models as clas-
sifier backbones, and it can be observed that our method
outperforms alternative baselines by large margins in terms
of efficiency. In particular, on ActivityNet, we outperform
MARL [37], the leading method among competitors, with
11.7× less computational overhead. And for Mini-Kinetics,
we also surpass Ada2D [19] with 3.4% higher accuracy
and 26.0× less GFLOPs. The gain in accuracy is mainly
attributed to the larger search space without limitation in
our framework, while the gain in efficiency is attributed to
the reasonable reward function for video condensation (see
Section 4.3 for detailed analysis). To verify that the perfor-

Table 2. Practical efficiency performance of OCSampler
and other currently proposed methods on ActivityNet. The
throughtput are evaluated on a NVIDIA TITAN Xp GPU. Here
we use MN, MN-T, RN and SLOW to denote MobileNetV2,
MobileNetV2-TSM, ResNet and SlowOnly respectively. The best
results are bold-faced.

Methods Backbones mAP GFLOPs
Throughput
(Videos/s)

ImageNet
AdaFrame [39] MN+R50 71.5% 79.0 6.4
FrameExit [14] ResNet-50 76.1% 26.1 19.1

AR-Net [25] MN+RN 73.8% 33.4 23.1
AdaFocus [35] MN+RN 75.0% 26.6 44.9
OCSampler MN-T+R50 76.9% 21.7 123.9 (↑2.8x)

Kinetics
MARL [37] SEResNeXt-152 90.0% 7715 0.5

ListenToLook [12] (R2+1)D-152 89.9% 2640 0.8
OCSampler MN-T+SLOW101 90.1% 593 4.4 (↑5.5x)

mance of our framework is not limited to the type of clas-
sifiers, we conduct experiments with the X3D-S backbone
following [14]. With the same light-weight X3D-S as our
backbone, OCSampler achieves higher accuracy with 1.9%
less GFLOPs, saving 13 frames for inference. This demon-
strates the superiority of our framework for efficient video
recognition with any classifiers.
Results of varying number of used frames are presented
in Figure 5. We change the number of used frames within
N ∈{2, 3, 4, 6, 8}, and plot the corresponding mAP v.s.
GFLOPs trade-off curves on ActivityNet. We also present
current state-of-the-art with various computational costs.
One can observe that OCSampler leads to a considerably
better trade-off between efficiency and accuracy.
Adaptive frame number budget. We investigate the effec-
tiveness of extended OCSampler with frame number bud-
gets by altering the amount of computational overhead per
video. Figure 4 illustrates accuracy and the number of pro-
cessed frames with different values of α and ϵ. According to
Eq. 11 and Eq. 12, a higher α encourages more videos to use
fewer frames for recognition (the first row) compared to a
lower α (the second row), while a higher ϵ serves as a more
strict threshold to depress using fewer frames for recogni-
tion (the second row) compared to a lower ϵ (the third row).
It can also be seen that the fewer number of frames are used,
the more correct the result becomes. This trend is desirable
since easier samples require less computational cost while
harder ones take more overhead.
Practical efficiency. To gain a better understanding of the
efficiency achieved by OCSampler, we also test the real in-
ference speed of different methods on a single NVIDIA TI-
TAN Xp GPU. Table 2 shows that our practical accelera-
tion is significant compared to other approaches, which is
attributed to the one-step decision procedure for all frames
without multiple iterations in our framework.
Results on FCVID and Mini-Sports1M. As shown in
Table 3, our approach shows excellent efficacy and effi-
ciency. Without additional modalities, OCSampler outper-
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Table 3. Comparison with state of the art methods on Mini-
Sports1M and FCVID. OCSampler achieves the best mAP while
offering significant savings in GFLOPs.

Methods
Mini-Sports1M FCVID

mAP GFLOPs mAP GFLOPs
LiteEval [38] 44.7% 66.2 80.0% 94.3

SCSampler [18] 44.3% 42.0 81.0% 42.0
AR-Net [25] 45.0% 37.6 81.3% 35.1
AdaFuse [26] 44.1% 60.3 81.6% 45.0
OCSampler 46.7% 25.7 82.7% 26.8

Table 4. Comparisons of frame selection policies. We report the
results on different number of N . All of the policies use the same
classifier and frame candidates, where T is set to 10.

Policy
mAP

N = 1 N = 2 N = 4 N = 6

Deterministic
Policy

Random 50.1% 62.2% 71.2% 73.8%
Uniform 54.2% 65.5% 72.6% 73.8%

FrameExit 54.2% 62.2% 70.4% 74.0%

Learned
Policy

Frame Reward 61.5% 68.8% 74.2% 76.2%
Vanilla Reward 60.5% 69.7% 75.2% 76.6%

Ours 61.5% 70.6% 75.8% 77.2%

forms SCSampler by a margin of 2.4% in mAP while using
38.8% less computation on Mini-Sports1M and achieves
1.4% improvement in mAP alleviating 23.6% computa-
tional overhead over AR-Net.

4.3. Ablation Studies

Effectiveness of the learned selection policy. Table 4 sum-
marizes the effect of different selection policies. For deter-
ministic policy, we investigate three alternatives: (1) ran-
domly sampling frames, (2) uniformly sampling frames, and
(3) A deterministic policy proposed by FrameExit, which
can be seen as decoding videos from sparsely to densely.
Besides, we also consider using different reward functions
for reinforcement learning: (1) frame reward considers the
confidence of each frame rather than the integrated clip as
rewards, (2) vanilla reward removes the second item in
Eq. 9 as rewards. One can observe that the learned policies
have better performance and the best results are obtained
by our designed reward function. Notably, uniform policy
appears stronger than FrameExit policy when N is set to
2 or 4. This is a reasonable observation, as in these cases,
FrameExit policy collects more frames from the first half of
videos but omits the second half while uniform policy lever-
ages temporal information with evenly sampled frames.
Effectiveness of decision space. We investigate the ef-
fectiveness of decision space by using different numbers
of frame candidates. As shown in Table 5, only adopting
T = 16 frame candidates leads to an mAP increase of 4.0%
with only 1.7 GFLOPs additional computation overhead.
An interesting phenomenon is that expanding frame candi-
dates leads to a significant rise in accuracy performance at
the beginning, but the growth gradually becomes stabilized

Table 5. Effectiveness of Decision space. The number of frame
candidates N is set to 6 for all settings. For T = 6, we directly
send frames to classifier without sampling.

No. frame candidates 6 8 10 16 24

mAP 74.0% 76.2% 77.2% 78.0% 78.3%
GFLOPs 24.7 25.6 25.8 26.4 27.2

Table 6. Generality of selected frames from OCSampler. Here
we set N to 4 for all classifiers. RN, MN-T and SLOW denote
ResNet, MobileNetV2-TSM and SlowOnly respectively.

Ablation
mAP(%)

RN X3D-S R(2+1)D MN-T SLOW
Baseline 67.5 62.1 61.1 57.2 77.1

OCSampler 75.8 (↑8.3) 68.3 (↑6.2) 67.2 (↑6.1) 62.0 (↑4.8) 81.9 (↑4.8)

as the candidate set becomes large, which may be attributed
to the saturation of video information. In this sense, the can-
didate set includes salient frames to represent certain con-
tent of the video. As the expansion of candidate set, more
salient frames are involved in condensing the entire video,
while duplicate information might also pollute the recogni-
tion performance owing to introduced temporal redundancy.
Generality of selected frames. These selected frames are
of good generality to improve other classifiers’ performance
without an extra training scheduler. As shown in Table 6,
we directly apply the frames selected by OCSampler with
ResNet-50 to other backbones, which also leads to signifi-
cant improvements in recognition performance.

5. Conclusion

In this paper, we have presented a both accurate and ef-
ficient sampling framework by condensing a video into a
clip within one step, which we refer to as OCSampler. Our
OCSampler avoids heavy computational overhead and ad-
dresses the problem of multiple inference times existing in
most sampling methods. Moreover, our work designs a sim-
ple but reasonable reward function to consider all frames
in one clip collectively rather than individually, and strikes
an excellent performance on accuracy without sacrificing
efficiency. We further extend our method to select adap-
tive numbers of frames by adopting a frame number budget
module. Experiments on four widely used benchmarks ver-
ify the effectiveness of our method over existing works in
terms of recognition accuracy, selection transferring, com-
putational cost, and practical speed.
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