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Abstract

Scene graph generation (SGG) aims to detect objects
and predict the relationships between each pair of objects.
Existing SGG methods usually suffer from several issues,
including 1) ambiguous object representations, as graph
neural network-based message passing (GMP) modules are
typically sensitive to spurious inter-node correlations, and
2) low diversity in relationship predictions due to severe
class imbalance and a large number of missing annotations.
To address both problems, in this paper, we propose a regu-
larized unrolling network (RU-Net). We first study the rela-
tion between GMP and graph Laplacian denoising (GLD)
from the perspective of the unrolling technique, determining
that GMP can be formulated as a solver for GLD. Based
on this observation, we propose an unrolled message pass-
ing module and introduce an �p-based graph regularization
to suppress spurious connections between nodes. Second,
we propose a group diversity enhancement module that pro-
motes the prediction diversity of relationships via rank max-
imization. Systematic experiments demonstrate that RU-Net
is effective under a variety of settings and metrics. Fur-
thermore, RU-Net achieves new state-of-the-arts on three
popular databases: VG, VRD, and OI. Code is available at
https://github.com/siml3/RU-Net.

1. Introduction

Scene Graph Generation (SGG) aims to provide a graph-

ical representation of objects and their relationships in an

image. Recently, SGG has emerged as a promising ap-

proach that bridges the gap between vision and natural lan-

guage domains. It has been found to be useful for many vi-

sion tasks, including 3D scene understanding [2,40], visual

question answering [8, 32], and image captioning [12, 58].

A scene graph comprises a collection of triplets in the
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Figure 1. (a) Spurious correlation between nodes causes ambigu-

ous representations through graph neural network-based message

passing. (b) Relationship prediction for the same category of node

pairs lacks diversity. Missing relationship annotations are under-

lined and highlighted in gray. Best viewed in color.

form subject-relationship-object. The objects and their pair-

wise relationships are denoted as nodes and edges, respec-

tively. Existing SGG models [6, 19, 22, 39, 46, 47, 60] typ-

ically utilize context modeling strategies to learn discrimi-

native representations for node and edge prediction; specifi-

cally, most of them adopt graph neural network-based mes-

sage passing (GMP) mechanisms. In GMP, node repre-

sentations are iteratively updated through the aggregation

of neighboring information according to learnable attention

weights, which are typically supervised by node labels.

However, current GMPs are negatively impacted by spu-

rious correlations between nodes. Here, a spurious correla-

tion refers to a relatively large attention weight between a

pair of semantically disparate nodes. These spurious corre-

lations frequently occur, as attention weights between spa-

tially proximate nodes tend to be large regardless of whether

their object categories are related. In Figure 1(a), it is evi-

dent that the attention weights for the surfboard are domi-

nated by those for the man (i.e., equal to 0.9). As a result,

the quality of representations for some nodes may degrade

after erroneous message passing. Moreover, relationship

prediction diversity among existing SGG models tends to

be low. This is mainly due to the long-tailed distribution

of relationships and a large number of missing relationship
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annotations. As shown in Figure 1(b), the two images con-

tain six triplets related to the man-street pair; however, only

two of them are annotated, and the relationship categories

are both on. The trained SGG models, therefore, tend to

make biased predictions for the majority classes and the

non-relationship category.

To address the above issues, we propose a regularized

unrolling network (RU-Net) for SGG. First, we study the re-

lation between GMP and graph Laplacian denoising (GLD)

[33] from the perspective of the unrolling technique [29].

We show that 1) GMP can be formulated as the solver for

GLD, and 2) the quadratic penalty widely adopted in the

formulation of GLD is sensitive to outliers (e.g., spurious

correlations between nodes). As an alternative, we propose

an unrolled message passing (U-MP) module and employ

an �p-based graph regularization term to suppress these spu-

rious connections between nodes, thereby effectively reduc-

ing the ambiguity in node representations. Moreover, we

determine that the optimization of the �p-based graph regu-

larization can be efficiently achieved in an end-to-end man-

ner by integrating a reweighting matrix into U-MP, which

accounts for the semantic dissimilarity between nodes.

Second, we introduce a group diversity enhancement

(GDE) module to promote the diversity of relationship pre-

dictions for both labeled and unlabeled samples. More

specifically, since score vectors for relationships tend to be

linearly independent when predicted as different categories,

we formulate the optimization of relationship prediction di-

versity as a rank maximization problem. Because rank max-

imization is NP-hard [36], we use the �2,1-norm to approx-

imate the matrix rank. We also divide the large matrix into

several smaller ones, each of which contains relationship

predictions for node pairs of the same object categories. By

enlarging the �2,1-norm of the smaller matrices, the rela-

tionship prediction diversity is more effectively optimized,

as demonstrated in Section 4.3.

In summary, the contributions of this study are three

fold: (1) a novel unrolling framework that interprets GMP

as a solver for the GLD problem; (2) the U-MP module for

spuriousness-robust message passing via an �p-based graph

regularization, which enhances GMP’s robustness against

spurious connections between nodes; and (3) the GDE mod-

ule, which improves the diversity of relationship prediction

via the group-wise �2,1-based regularization term. The effi-

cacy of the proposed RU-Net is systematically evaluated on

three popular SGG databases: Visual Genome (VG) [16],

OpenImages (OI) [17], and Visual Relationship Detection

(VRD) [25]. Experimental results show that our RU-Net

consistently outperforms state-of-the-art methods.

2. Related Work
Scene Graph Generation. Existing works in SGG

[6, 7, 10, 14, 47, 57, 60] generally focus on context model-

ing or tackling the class imbalance problem (i.e., the long-

tailed distribution). Several context modeling strategies

have been proposed to learn discriminative object represen-

tation by exploring various message passing mechanisms.

Zeller et al. [52] represented the global context via a recur-

rent sequential architecture (i.e., bidirectional long short-

term memory (Bi-LSTM) model). Tang et al. [39] utilized

dynamic tree structures to realize node-specific message

passing. Lin et al. [22] proposed a direction-aware message

passing module that encodes the edge direction information

into context modeling. Li et al. [19] adopted a relation-

ship prediction confidence-based adaptive message passing

strategy to reduce noise in context modeling. Lu et al. [26]

utilized the transformer encoder to acquire contextual in-

formation pertaining to both objects and context. To handle

the class imbalance issue, Tang et al. [38] proposed an unbi-

ased model that removes the vision-agnostic bias with coun-

terfactual causality, while [4, 7] addressed this problem us-

ing positive-unlabeled learning. Some works have addition-

ally explored class imbalance learning strategies [19, 45],

re-sampling and cost-sensitive learning, to relieve the long-

tailed distribution problem. Our work considers both issues

discussed above in a unified framework.

Deep Algorithm Unrolling. In deep algorithm unrolling

(DAU), the structure of the model-based iterative optimiza-

tion algorithms is unrolled into a neural network [11,27,29].

Specifically, each iteration of the algorithm is represented as

one layer of a network. Stacking these layers forms a deep

neural network with an architectural structure that depends

on the optimization method employed. The forward prop-

agation of the network is equivalent to executing the itera-

tive algorithm several times. Compared with fully parame-

terized neural networks, DAU is advantageous in terms of

its interpretability and model complexity [5, 20, 28]; hence,

DAU-based networks can be effectively optimized with less

training data. For example, Yang et al. [49] proposed an

unrolled version of the Alternating Direction Method of

Multipliers [48] for magnetic resonance imaging. Zhang

et al. [56] integrated convolutional networks with the iter-

ative shrinkage-thresholding algorithm [3] for compressed

image sensing. Moreover, the half-quadratic splitting algo-

rithm [1] has been used in [9, 59] to unfold the minimiza-

tion problems for image denoising and super-resolution. In-

spired by these works, we introduce DAU to the SGG and

unify existing GMP modules to solve GLD.

3. Regularized Unrolling Network
This section presents the details of the proposed regular-

ized unrolling network. More specifically, we first introduce

the preliminaries, then explain the network details and the

training losses. As Figure 2 illustrates, RU-Net comprises

a U-MP module and a GDE module. From the perspective

of DAU, the U-MP module utilizes �p-based graph regular-
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Figure 2. The framework of RU-Net. RU-Net adopts Faster R-CNN [31] to obtain object proposals. Compared with conventional SGG

models (highlighted in gray), our RU-Net promotes SGG model optimization with two regularization terms (highlighted in yellow). More

specifically, the graph regularization acts as a reweighting matrix to refine the attention maps and reduce ambiguity in the node represen-

tations. The diversity regularization is incorporated with the cross-entropy loss and prompts the relationship prediction diversity via rank

maximization. ⊕ and � represent addition and the Hadamard product, respectively. The functions H and ∗ are defined in Section 3.2.1

and Section 3.3, respectively. Best viewed in color.

ization to improve the robustness of existing GMP modules

against spurious connections between nodes. For its part,

the GDE module improves relationship prediction diversity

via a group-wise �2,1-based regularization term. In the be-

low, we will describe these two components sequentially.

3.1. Preliminaries

Notations. To obtain the appearance feature for each pro-

posal, we adopt the same approach used in [52]. There are

O object categories (including background) and R relation-

ship categories (including non-relationship). The represen-

tation for the i-th node is denoted as xi ∈ R
d. Specifically,

xi is obtained via linear projection from the concatenation

of the appearance feature, object classification probabilities,

and the spatial feature. For an image that includes n nodes,

we can obtain a node representation matrix X ∈ R
n×d,

where d is the feature dimension. In addition, we extract

features from the union box of one pair of nodes i and j,

denoted as uij ∈ R
d. | · |, ‖ · ‖2, and ‖ · ‖F denote the

absolute value of a number, the �2-norm of a vector, and the

Frobenius norm of a matrix, respectively. [; ] represents the

concatenation operation. � is the Hadamard product. For

a matrix S ∈ R
m×n, [S]ij and si represent the ij-th entry

and the i-th row of S, respectively.

Smoothed �p-norm Distance Metric. To improve the ro-

bustness against spurious correlations between nodes, we

utilize a smoothed �p-norm distance metric [35] as follows:

κε
p(x) �

{
εp−2|x|2, |x| ≤ ε
2
p |x|p − 2−p

p εp, |x| > ε
, (1)

where ε > 0 and 0 < p ≤ 2. As depicted in the coor-

dinate plane of Figure 2, with a smaller value of p (e.g.,

p = 0.1), Eq. (1) places far less emphasis on large |x| and

is more robust against outliers than the �2-based distance

function. More details regarding the properties of Eq. (1)

can be found in Appendix A.

3.2. Unrolled Message Passing

Existing SGG methods [19, 22, 24, 47] typically utilize a

sequence of GMP layers to iteratively refine node represen-

tations with contextual information. However, these GMP

modules may be sensitive to spurious correlations between

nodes, which may lead to more ambiguous node representa-

tions. To clarify and address this issue, we will discuss two

key aspects in what follows: the relation between GMP and

GLD [33] and spuriousness-robust graph regularization.

3.2.1 The Relation between GMP and GLD

In each GMP layer, a function is utilized to compute the at-

tention weight for each node pair. The node representation

is then updated by aggregating neighboring information ac-

cording to the learnable attention weights. The output of the
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k + 1-th GMP layer can be represented as follows:{
A(k+1) = Normalize(H(Y (k)))

Y (k+1) = ReLU(Y (k) +A(k+1)Y (k))
, (2)

where Y ∈ R
n×d represents the node representations re-

fined by GMP. A ∈ R
n×n stands for the learned attention

matrix. H(Y ) is a trainable attention function with Y as

input. “Normalize” denotes the row-wise normalization via

softmax function.

Next, we will prove that the GMP module defined in

Eq. (2) essentially solves the GLD [33] problem in the SGG

context. Specifically, the GLD problem can be defined as:

L
GLD

(Y ,L) � ‖Y −X‖2F + G
GLR

(Y ,L) , (3)

where

G
GLR

(Y ,L) =
∥∥∥L 1

2Y
∥∥∥2
F
=

∑
(i,j)∈E [A]ij

∥∥yi − yj

∥∥2
2
.

(4)

Here, Eq. (4) is well known as the Graph Laplacian Regu-

larization (GLR) [30]. E denotes the entire set of node pairs

in the scene graph. Unlike the standard GLD problem [33]

where the Laplacian matrix L is already known, this matrix

needs to be learnt in SGG. Specifically, the Laplacian matrix

is defined as follows: L = D−A, where [D]ii =
∑

j [A]ij .

Motivated by the algorithm unrolling strategy [29], we

can unfold a sequence of gradient steps to form an unrolled

message passing (U-MP) module and optimize Eq. (3).

Specifically, given L, we have

∂L
GLD

(Y )

∂Y
= 2LY + 2Y − 2Y (0), (5)

where Y (0) = X . Therefore, the k+1-th step in the gradi-

ent descent can be written as follows:

Y (k+1) = Y (k) − 2α[(L+ I)Y (k) − Y (0)], (6)

where α is the step size and I denotes an identity matrix. If

we replace L with the random-walk normalized Laplacian

[15] version L = I −D−1A and set α as 1/6, we have:

Y (k+1) = 1
3 (D

−1AY (k) + Y (k) + Y (0)) . (7)

Given Y , rather than updating L, we can instead di-

rectly update A with any H(Y ) proposed in previous SGG

works [6, 46, 47]. In this paper, we define the H(Y ) as:

[H(Y )]ij =wT
a [yi;yj ;uij ], where wa ∈ R

3d represents a

fusion vector. This enables us to solve the GLD problem,

defined in Eq. (3), with a GMP-like procedure as follows:⎧⎨
⎩

Ã
(k+1)

= Normalize(H(Y (k)))

Y (k+1) = 1
3 (Y

(k) + Ã
(k+1)

Y (k) + Y (0))
, (8)

where Ã = D−1A can be viewed as a row-normalized at-

tention matrix. It is worth noting that nonlinear activation

can be incorporated into Eq. (8) by solving the revised ver-

sion of Eq. (3) as: L
GLD

+
∑

i η (yi). Here, η(yi) represents

an indicator function that assigns infinite penalty to any ele-

ment of yi is less than zero. According to the proximal gra-

dient method [18], the proximal descent version of Eq. (8)

can be written as follows:⎧⎨
⎩

Ã
(k+1)

= Normalize(H(Y (k)))

Y (k+1) = ReLU( 13 (Y
(k) + Ã

(k+1)
Y (k) + Y (0)))

.

(9)

Regardless of the scalar term (i.e., 1
3 ), the only differ-

ence, between the GMP layer defined in Eq. (2) and the

solver for the GLD problem defined in Eq. (9), is the skip

connection with original node representation Y (0). There-

fore, existing GMP modules can be utilized as means of
solving the GLD problem in SGG. This conclusion enables

us to solve the problem of spurious inter-node correlations

in the GLD framework.

3.2.2 Spuriousness-robust Graph Regularization

As a quadratic penalty, the Frobenius norm in GLR (Eq. (4))

is known to be sensitive to outliers as errors accumulate

quadratically [43]. For GMP-based SGG models, this im-

plies that spurious correlations between nodes could domi-

nate the loss, resulting in ambiguous node representations.

To address this issue, we propose the following �p-based

graph regularization to replace GLR in Eq. (4):

Gp(Y ,L) =
∑

(i,j)∈E [A]ijκ
ε
p

(‖yi − yj‖2
)
. (10)

Accordingly, we can define a general GLD problem as

follows:

Lp
GLD

(Y ,L) � ‖Y −X‖2F + Gp(Y ,L). (11)

When p is 2, Eq. (11) is equivalent to Eq. (3), which is

the traditional GLD problem. Conventional optimization

strategies, e.g., gradient-based or Hessian-based methods,

are computationally expensive when optimizing Eq. (11),

especially when n is a large number. Motivated by

the majorization-minimization algorithm [37], we utilize

a quadratic upper-bound function to approximate Eq. (10)

(Proof is provided in Appendix B). Specifically,

Ĝp(Y ,L) =
∑

(i,j)∈E [A]ij [Ω]ij‖yi − yj‖22, (12)

where

[Ω]ij �
{
εp−2, ‖yi − yj‖2 ≤ ε

‖yi − yj‖p−2
2 , otherwise

. (13)
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Here, [Ω]ij acts as a reweigting factor for [A]ij . Accord-

ingly, we modify the architecture of U-MP as follows:⎧⎨
⎩

Ã
(k+1)

= Normalize(Ω(k) �H(Y (k)))

Y (k+1) = ReLU( 13 (Y
(k) + Ã

(k+1)
Y (k) + Y (0)))

.

(14)

More details of the U-MP can be found in Appendix C.

Finally, the classification score vector of the i-th node

can be obtained as follows: ti = softmax(W tŷi). Here,

W t ∈ R
O×d denotes the object classifier, while ŷi is

the output node representation obtained by the final U-MP

layer.

3.3. Group Diversity Enhancement

Entropy minimization has been widely adopted for op-

timization in previous SGG models. However, it may also

reduce relationship prediction diversity due to issues related

to class imbalance and missing annotations; since there are

significantly more samples in majority categories, relation-

ship prediction tends to exhibit a bias towards majority cate-

gories. In this part, we propose the GDE module to promote

relationship prediction diversity. More specifically, the pre-

diction score vector for the relationship between the i-th and

j-th nodes can be expressed as follows:

pij = softmax(W r(ŷi ∗ ŷj ∗ uij) + f ij), (15)

where W r ∈ R
R×d denotes the relationship classi-

fier. ∗ denotes a fusion function defined in [39]:

x ∗ y = ReLU (W xx+W yy) − (W xx−W yy) �
(W xx−W yy), where W x and W y project x, y to d-

dimensional space, respectively. f ij indicates the relation-

ship distribution vector between the object categories of the

i-th and j-th nodes in the training set, which functions in the

same way as frequency bias and has been widely adopted in

existing works [22, 39, 46, 52]. By gathering all prediction

score vectors in the same image, we obtain a relationship

prediction matrix P ∈ R
N×R, which satisfies:∑R

j=1
[P ]ij = 1

s.t. [P ]ij ≥ 0, ∀i ∈ 1 . . . N, j ∈ 1 . . . R,
(16)

where N is the total number of node pairs in the image.

Considering that row-vectors in P are linearly indepen-

dent when predicting different relationship categories, we

can utilize the rank of P to measure the prediction diver-

sity. However, maximizing the rank of a matrix is known to

be an NP-hard problem [36]. We propose two strategies to

address this issue.

First, inspired by [23, 55], we adopt the �2,1-norm based

regularization to approximate the rank of P as follows:

‖P ‖
2,1

=
∑R

j=1

√∑N

i=1
[P ]2ij , (17)

which encourages a column-sparse structure for P , and

therefore promotes relationship prediction diversity.

Second, rather than promoting prediction diversity for all

node pairs, we find it is more effective to encourage predic-

tion diversity within pairs that share the same object cate-

gories. This is mainly because the rank maximization of P
is hard to optimize when the number of nodes n is large. Ac-

cordingly, we divide the node pairs into several groups, each

of which contains correlated node pairs. In practice, we find

that selecting node pairs of the same object categories for

each group is helpful to the optimization of Eq. (17).

Finally, by extending to the whole batch, we can utilize

the following loss function to prompt the relationship pre-

diction diversity:

Le =
1

MB
Le
cls −

τ

B

∑B

b=1

1

Nb
‖P b‖2,1 , (18)

where Le
cls denotes the cross-entropy (CE) loss for relation-

ship classification, τ is a weight, and B represents the num-

ber of groups in a mini-batch. Each group contains predic-

tion score vectors for node pairs that share the same object

categories. P b denotes the relationship prediction matrix

for the b-th group, MB denotes the number of score vec-

tors in the same batch, while Nb represents the number of

score vectors in the b-th group.

The critical insight of Eq. (18) is to decrease a certain

level of prediction hit rate on majority categories to enhance

the prediction hit rate on minority categories. When the

prediction diversity increases, one key concern is that some

samples belonging to the majority classes may be classified

as the minority class. Fortunately, the classification loss

on the labeled samples will penalize incorrect predictions

caused by encouraging diversity. Consequently, by select-

ing an appropriate value of τ , the model can generate di-

verse predictions while ensuring that the vast majority of

labeled samples are correctly predicted.

3.4. SGG by RU-Net

During training, the overall loss function L for RU-Net

can be expressed as follows:

L =
1

nb
Lo
cls + Le, (19)

where nb represents the number of nodes in the batch. Lo
cls

denotes the CE loss for object classification.

During testing, the object category for the i-th node is

predicted by the following equation:

ei = argmaxo∈O(ti(o)), (20)

where O represents the set of object categories. The re-

lationship category of the edge between the i-th and j-th

nodes can be obtained as follows:

qij = argmaxr∈R(pij(r)), (21)
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SGDET SGCLS PREDCLS

Backbone Method R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 Mean

IMP� [10] 14.6 20.7 24.5 31.7 34.6 35.4 52.7 59.3 61.3 39.3

MOTIFS� [52] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1 43.7

KERN� [6] - 27.1 29.8 - 36.7 37.4 - 65.8 67.6 44.1

GPI� [14] - - - - 36.5 38.8 - 65.1 66.9 -

VCTREE� [39] 22.0 27.9 31.3 35.2 38.1 38.8 60.1 66.4 68.1 45.1

VGG-16 GPS-Net� [22] 22.6 28.4 31.7 36.1 39.2 40.1 60.7 66.9 68.8 45.9

R-CAGCN� [46] 22.1 28.1 31.3 35.4 38.3 39.0 60.2 66.6 68.3 45.3

RelDN‡ [57] - - 32.7 - - 36.8 - - 68.4 -

Seq2Seq-RL‡ [26] 22.1 30.9 34.4 34.5 38.3 39.0 60.3 66.4 68.5 46.3

RU-Net� 22.9 28.7 32.0 37.2 39.8 40.9 61.6 67.8 69.8 46.6

RU-Net ‡ 22.6 31.3 34.8 38.2 41.2 42.1 61.9 68.1 70.1 48.0
VTransE∗ [38] 23.0 29.7 34.3 35.4 38.6 39.4 59.0 65.7 67.6 45.9

VCTREE∗ [39] 24.7 31.5 36.2 37.0 40.5 41.4 59.8 66.2 68.1 47.3

RX-101 MOTIFS∗ [52] 25.1 32.1 36.9 35.8 39.1 39.9 59.5 66.0 67.9 47.0

SGGNLS∗ [60] 24.6 31.8 36.3 36.5 40.0 40.8 58.7 65.6 67.4 47.0

RU-Net∗ 25.7 32.9 37.5 38.7 42.4 43.3 61.2 67.7 69.6 48.9

Table 1. Performance comparisons with state-of-the-art methods on the VG dataset. We compute the mean over all tasks on R@50 and

R@100. �, ‡, and ∗ denote using the same Faster-RCNN detector as [52], [57], and [38], respectively.

SGDET SGCLS PREDCLS

Model mR@100 mR@100 mR@100

IMP � [10] 4.8 6.0 10.5

FREQ� [52] 7.1 8.5 16.0

MOTIFS � [52] 6.6 8.2 15.3

KERN� [6] 7.3 10.0 19.2

VCTREE [39] 8.0 10.8 19.4

R-CAGCN� [46] 8.8 11.1 19.9

MOTIFS∗ [38] 6.8 8.5 15.8

VCTREE∗ [38] 6.9 7.9 16.1

Transformer∗ [13] 8.8 10.2 17.5

RU-Net� 10.1 13.9 24.7
RU-Net∗ 10.8 14.6 24.2

Table 2. Performance comparisons on mean recall (%) across all

50 relationship categories in the VG dataset.

where R represents the set of relationship categories.

4. Experiments
4.1. Dataset and Evaluation Settings

Visual Genome (VG): We follow the same data cleaning

strategy [10] that has been widely used in recent works.

The most frequently occurring 150 object categories and

50 relationship categories are utilized for evaluation. We

further adopt three conventional protocols for evaluation:

(1) Scene Graph Detection (SGDET): Given an image, the

model detects objects and predict relationship categories be-

tween each pair of objects. (2) Scene Graph Classification
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Figure 3. Absolute R@100 improvement in PREDCLS by RU-

Net compared with R-CAGCN [46] on the VG dataset. We use

the same backbone and evaluation metric as [39]. The Top-35

relationship categories are selected according to their occurrence

frequency.

(SGCLS): Given the ground-truth location of objects, the

model predicts both the object and relationship categories.

(3) Predicate Classification (PREDCLS): Given the ground-

truth object location and categories, the model predicts only

the relationship categories. All algorithms are evaluated

using the Recall@K metrics, where K=20, 50, and 100,

respectively. Considering that the distribution of relation-

ships in VG is highly imbalanced, we further utilize mean

recall@K (mR@K) to evaluate the average performance on

relationships [6].

Open Images (OI): We conduct experiments on both Open

Images V4 and V6. we follow the same data processing and

evaluation protocols utilized in [19, 22, 57]. The results are
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Daraset Model R@50
WmAP

scorewtdrel phr

RelDN [57] 74.9 35.5 38.5 44.6

V4 BGNN [19] 75.5 37.8 41.7 46.9

RU-Net 78.3 38.9 42.4 48.2

V6

RelDN [57] 73.1 32.2 33.4 40.8

VCTREE [39] 74.1 34.2 33.1 40.2

G-RCNN [47] 74.5 33.2 34.2 41.8

MOTIFS [52] 71.6 29.9 31.6 38.9

GPS-Net [22] 74.8 32.9 34.0 41.7

BGNN [19] 75.0 33.5 34.2 42.1

RU-Net 76.9 35.4 34.9 43.5

Table 3. Comparisons with state-of-the-art methods on OI. We

adopt the same evaluation metric as in [57].

evaluated by calculating Recall@50 (R@50), the weighted

mean AP of relationships (wmAPrel), and the weighted

mean AP of phrase (wmAPphr). The last metric is given by

scorewtd = 0.2×R@50+0.4×wmAPrel+0.4×wmAPphr.

Note that wmAPrel requires the IoUs between the predicted

and ground-truth bounding boxes to be larger than 0.5 for

both objects. The wmAPphr metric is similar but only

requires the IoU between the predicted and ground-truth

union boxes of the subject and object to be over 0.5.

Visual Relationship Detection (VRD): We adopt the same

dataset split used in [25] and the same object detector from

[57]. The evaluation metrics are the same as those in [57],

which reports R@50 and R@100 for relationship detection

and phrase detection, respectively.

Implementation Details. To facilitate a fair comparison

with the majority of existing works, we utilize ResNeXt-

101-FPN [21, 44] as the backbone for the OI benchmark.

We further adopt ResNeXt-101-FPN [21, 44] and VGG-16

[34] as the backbones for the VG benchmark. For VRD

benchmark, we utilize the VGG-16 [34] as the backbone.

During training, we freeze the layers before the ROIAlign

layer and optimize the remaining layers in the model using

the loss functions described in Section 3.4. We optimize

RU-Net via Stochastic Gradient Descent with momentum,

using an initial learning rate of 10−3 and a batch size of 6.

The top-64 object proposals in each image are chosen using

per-class non-maximal suppression (NMS) with an IoU of

0.3. Additionally, the sampling ratio between pairs that do

not have any relationship (background pairs) and pairs that

do have relationships during training is set to 3:1. In all

experiments, ε is set to 0.5.

4.2. Comparisons with State-of-the-art Methods

Visual Genome: As Table 1 shows, RU-Net achieves su-

perior performance relative to the current state-of-the-art

methods across various metrics. In more detail, RU-Net

Relation Detection Phrase Detection

Model R@50 R@100 R@50 R@100

VTransE [54] 19.4 22.4 14.1 15.2

KL distilation [51] 19.2 21.3 23.1 24.0

Zoom-Net [50] 18.9 21.4 24.8 28.1

CAI + SCA-M [50] 19.5 22.4 25.2 28.9

GPS-Net [22] 21.5 24.3 28.9 34.0

MF-URLN [53] 23.9 26.8 31.5 36.1

RelDN [57] 25.3 28.6 31.3 36.4

HetH [42] 22.4 24.8 30.6 35.5

Seq2Seq-RL [26] 26.1 30.2 33.4 39.1

RU-Net 27.4 31.4 33.8 39.5

Table 4. Comparisons with state-of-the-arts on VRD.

Module SGCLS PREDCLS

Exp U-MP GDE R@50 R@100 R@50 R@100

1 � � 40.3 41.2 66.0 67.8

2 � � 40.7 41.6 67.3 69.2

3 � � 42.2 43.1 66.3 68.1

4 � � 42.4 43.3 67.7 69.6

Table 5. Ablation studies of the proposed method. We use the

same object detection backbone as in [38].

outperforms the recent GMP-based SGG model, named R-

CAGCN [46], by 1.3% on average at R@50 and R@100

over the three protocols. It also outperforms R-CAGCN

[46] by 0.7 %, 2.2 %, and 1.5 % on SGDET, SGCLS, and

PREDCLS at Recall@100, respectively. Moreover, RU-

Net outperforms VCTREE [39] with the same ResNeXt-

101-FPN backbone by 1.3%, 1.9%, and 1.5% on SGCLS,

SGDET, and PREDCLS at Recall@100, respectively. Fur-

thermore, to demonstrate RU-Net’s robustness to the class

imbalance problem on VG, we also compare its perfor-

mance with state-of-the-art methods using the Mean Recall

metric. As shown in Table 2, RU-Net delivers a notable ab-

solute performance gain, indicating its advantages in han-

dling the class imbalance problem in SGG. To illustrate this

advantage more vividly, we present the R@100 improve-

ment of each predicate category compared with R-CAGCN

[46] under the PREDCLS setting in Figure 3. These im-

provements are much larger for minority relationship cat-

egories. We owe this advantage to the power of the GDE

module.

Open Images: We compare the performance of RU-Net

with state-of-the-art methods in Table 3. Using the same

object detector, RU-Net outperforms RelDN [57] by 3.6%
and 2.7% in terms of overall metric scorewtd for OI V4

and V6, respectively. More specifically, in OI V4, RU-Net

outperforms RelDN by 3.4%, 3.4%, and 3.9% on R@50,

wmAPrel, and wmAPphr, respectively. Furthermore, when
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p 0 0.1 0.3 1 2

R@20 38.1 38.3 38.0 38.7 37.1

SGCLS R@50 41.9 42.1 41.8 41.4 40.8

R@100 43.1 43.3 43.0 42.6 41.9

(a) Evaluation on the value of p in Eq. (13).

K 2 3 4 5

R@20 38.1 38.4 38.5 38.7

SGCLS R@50 41.8 42.0 42.2 42.4

R@100 42.7 43.0 43.1 43.3

(b) Evaluation on the number of U-MP layers K.

τ 0.05 0.1 0.15 0.2

R@20 60.8 61.2 60.5 59.9

PREDCLS R@50 67.3 67.7 67.0 66.4

R@100 69.2 69.6 68.9 68.3

(c) Evaluation on the value of τ in Eq. (18).

Table 6. The impact of hyperparameters on the U-MP and GDE modules, respectively.

Group I B+G B+G∗

R@50 66.7 67.2 67.7

PREDCLS R@100 68.5 69.1 69.6

mR@100 22.5 23.8 24.2

Table 7. The Design Choices for the GDE modules.

compared with other approaches for OI V6, RU-Net consis-

tently achieves the best performance.

Visual Relationship Detection: In Table 4, we compare

the performance of RU-Net with state-of-the-art methods

on the VRD dataset. It can be seen that RU-Net consistently

achieves superior performance under both relation detection

and phrase detection metrics.

4.3. Ablation Studies

Effectiveness of the Proposed Modules. We first perform

an ablation study to justify the effectiveness of U-MP and

GDE. The results are summarized in Table 5. Exp 1 in Ta-

ble 5 shows the performance of the baseline, which adopt

neither U-MP or GDE modules. It employs the GMP mod-

ule defined in Eq. (2) for message passing. To facilitate

fair comparison, all the other settings remain the same as

RU-Net. Exps 2-4 show that each module helps to pro-

mote the performance of SGG. The best performance is

achieved when both modules are involved. Note that U-

MP and GDE are designed to refine object and relation-

ship representations, respectively. Therefore, U-MP helps

the model achieve outstanding SGCLS performance, which

heavily depends on the object classification ability. Mean-

while, GDE enables the model to achieve a significant per-

formance gain on the PREDCLS task, mainly relying on

relationship prediction power.

Evaluation on hyperparameters for U-MP and GDE. We

go on to verify the impact of the hyperparameters of the U-

MP and GDE modules. As shown in Table 6(a), RU-Net

achieves the best performance when p is set to 0.1 in the

�p-based graph regularization. In Table 6(b), we show the

performance of RU-Net with different numbers of U-MP

layers, ranging from two to five. The model performance

improves consistently as the number of U-MP layers in-

creases. However, due to limitations on GPU memory size,

we only conduct experiments up to five U-MP layers. Fi-

nally, the value of the weight τ determines the impact of

the �2,1-based regularization on relationship prediction. As

shown in Table 6(c), the model achieves the best perfor-

mance when τ equals 0.1.

Design Choices for the GDE module. In Table 7, we com-

pare the performance of GDE with and without the grouping

strategy described in Eq. (18). “I” denotes that we impose

the diversity regularization on relationship predictions for

each training image. “B + G” represents that we divide all

node pairs in batch into several groups according to the ob-

ject categories of the nodes. For each group, we impose an

�2,1-based regularization term. Besides, “B+G
∗” means we

remove small groups that contain less than three elements.

Experimental results in Table 7 show that the grouping strat-

egy consistently achieves better performance.

4.4. Conclusion and Limitations

In this paper, we propose the RU-Net model, which

adopts scene graph-based regularizations to handle two crit-

ical issues in SGG: ambiguous node representations and

low relationship prediction diversity. From the perspective

of the unrolling technique, we first prove that GMP can be

interpreted as a solver for GLD. We then address the am-

biguous node representation problem with the U-MP mod-

ule, which utilizes an �p-based graph regularization to sup-

press spurious correlations between nodes. We further en-

hance the diversity in the relationship prediction through a

group-wise �2,1-based regularization term. Extensive exper-

imental results justify the effectiveness of RU-Net on three

popular SGG datasets. Like most SGG models, one limita-

tion of our method is its dependency on pre-trained object

detectors [31, 41]. In the future, we will apply the proposed

techniques to end-to-end SGG models. We hope this study

will provide valuable insights for future research to design

interpretable and robust SGG models.

Broader Impacts. SGG is able to simultaneously provide

object and relationship predictions. This merit enables more

in-depth scene understanding and can potentially benefit

many real-world applications, like intelligent service robot

and autonomous driving. We do not foresee any negative

societal consequences arising specifically from our contri-

butions in this paper.
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