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Abstract
Given a single scene image, this paper proposes a

method of Category-level 6D Object Pose and Size Esti-
mation (COPSE) from the point cloud of the target object,
without external real pose-annotated training data. Specif-
ically, beyond the visual cues in RGB images, we rely on
the shape information predominately from the depth (D)
channel. The key idea is to explore the shape alignment
of each instance against its corresponding category-level
template shape, and the symmetric correspondence of each
object category for estimating a coarse 3D object shape.
Our framework deforms the point cloud of the category-
level template shape to align the observed instance point
cloud for implicitly representing its 3D rotation. Then we
model the symmetric correspondence by predicting symmet-
ric point cloud from the partially observed point cloud. The
concatenation of the observed point cloud and symmetric
one reconstructs a coarse object shape, thus facilitating ob-
ject center (3D translation) and 3D size estimation. Ex-
tensive experiments on the category-level NOCS benchmark
demonstrate that our lightweight model still competes with
state-of-the-art approaches that require labeled real-world
images. We also deploy our approach to a physical Bax-
ter robot to perform grasping tasks on unseen but category-
known instances, and the results further validate the effi-
cacy of our proposed model. Code and pre-trained models
are available on the project webpage 1.

1. Introduction
Estimating accurate 6D poses of objects plays a pivotal

role in the tasks of augmented reality [34], scene under-
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Figure 1. (a) The visual difference between synthetic and real im-
ages. They may have different textures and colors, but the shape
and geometry maintain the same. (b) Illustration of shape align-
ment. Objects within a category have consistent 3D rotation if
their shapes are visually aligned. (c) Illustration of symmetric cor-
respondence. Most objects are manufactured with (near) symmet-
ric shapes with reflectional symmetry or rotational symmetry.

standing [49], and robotic manipulation [7, 9, 33, 51, 53].
However, most 6D pose estimation works [8,9,15,19,28,37,
39,55,57] assume exact 3D CAD object models at instance-
level, which unfortunately greatly limits their practical ap-
plicability in real-world applications. To this end, this pa-
per studies the task of Category-level 6D Object Pose and
Size Estimation (COPSE). Thus the model is trained only
by category-level supervision, reducing reliance on the ex-
act CAD model for each instance.

Generally, the key challenge of COPSE task lies in the
huge color and shape variations of instances from the same
category [43–45]. To handle intra-class variations, previ-
ous works [5,24,52,58] learn the RGB(-D) features of each
instance to help map these instances into a unified space
and minimize the intra-class variations. On the other hand,
as the COPSE task relies on supervised learning from large
amounts of well-labeled data, recent works [5, 30, 52, 58]
utilize synthetic data to train the COPSE model. Unfortu-
nately, as illustrated in Fig. 1(a), the domain gap between
synthetic and real images potentially hinders the perfor-
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mance of COPSE model in the real-world deployment.
While most previous works exploit texture and color

cues in RGB images, the shape information has been less
touched, with some recent exceptions of reconstructing the
observed point cloud [6], and analyzing geometric stability
of object surface patches [47]. For example, cups of simi-
lar or identical shapes have very diverse colors in Fig. 1(a).
This motivates us to systematically explore shape informa-
tion predominately from the depth (D) channel. Thus to al-
leviate challenges of intra-class variation and synthetic-real
image domain gap, we propose encoding the shape by shape
alignment and symmetric correspondence. Particularly, our
method encourages insightful shape analysis about geomet-
rical similarity and symmetric correspondence.
Shape alignment. Assuming the instances of the same cat-
egory are well aligned by shapes, they should have the con-
sistent 3D rotation, as cups are shown in Fig. 1(b). Thereby,
the idea of shape alignment can be implemented as object
3D rotation consistency. In particular, given a category-
level template shape in the form of a point cloud, it is de-
formed to align against the observed instance point cloud.
We denote such the deformed template point cloud as an
implicit representation for object 3D rotation, as shown in
Fig. 2(a). Mathematically, the object rotation is thus recov-
ered by solving the classical orthogonal Procrustes prob-
lem [46], which calculates the approximation of alignment
matrix between point clouds of the category-level template
and deformed one. The shape alignment learns to be robust
to intra-class variations of instances.
Symmetric correspondence. Given the fact that many
man-made object categories have the design principle with
a symmetric structure [62], symmetry is an important ge-
ometric cue to help our COPSE task. As in Fig. 1(c), the
underlying symmetry allows for reasoning the reflectional
and rotational symmetry of 3D shape from occluded 2D
images. Note that specific object instances are practically
never perfectly symmetric due to various shape variations
of instances. To this end, we exploit the underlying sym-
metry by point clouds of objects, as our COPSE task does
not demand the exact 3D shape recovery. Furthermore, we
model the point cloud of symmetric objects by an encoder-
decoder structure learned end-to-end with the other compo-
nents of our framework. Thus, this actually facilitates the
whole framework being robust to those objects which have
some parts that are less symmetric as in Fig. 2(b).

Formally, this paper proposes a novel Shape Alignment
and Recovery Network (SAR-Net) to exploit the underlying
object shapes for the COPSE tasks. Specifically, the RGB-
D scene image is utilized as the input. We firstly employ
Mask-RCNN [14] to pre-process the RGB image, and in-
fer the segmentation mask and category label of each object
instance. The points from depth channel are filtered by the
predicted mask and further fed into the 3D segmentation
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Figure 2. (a) Illustration of implicit 3D object rotation. The de-
formed template point cloud posses same 3D rotation with ob-
served instance point cloud. (b) Illustration of weakly symmetric
objects. Such objects usually have global symmetric shapes but
asymmetric local parts.

network 3D-GCN [31] to generate observed point cloud of
the object. Furthermore, taking as inputs the point clouds
of both observed object instance and category-level tem-
plate, our SAR-Net predicts the implicit representation of
deformed template point cloud, and infers symmetric point
cloud. The 3D object rotation is further computed from
the category-level and deformed template point clouds by
Umeyama algorithm [54]. Finally, we concatenate the ob-
served and symmetric point clouds for a coarse object shape
obtainment, which reduces the estimation uncertainty of ob-
ject center (3D translation) and 3D size. Extensive experi-
ments conducted on the category-level NOCS dataset [58]
demonstrate that our synthetic-only approach outperforms
the state-of-the-art methods.
Contributions. Our main contribution is to propose a novel
learning paradigm that efficiently encodes the shape infor-
mation by the shape alignment and symmetric correspon-
dence for the COPSE. We present a novel framework –
SAR-Net to implement this idea. In particular,
1) Based on shape similarities, our SAR-Net has the novel
sub-net component that efficiently infers the implicit ro-
tation representation by shape alignment between point
clouds of the category-level template shape and instance.
2) A novel sub-net component for symmetric correspon-
dence is proposed in this paper. It can predict symmetric
point cloud from partially observed point cloud to obtain a
coarse shape. The coarse shape helps to estimate the object
center and size accurately.
3) Practically, our SAR-Net is a very lightweight model
with only 6.3M parameters. Such a single model is capable
of doing the COPSE of multiple categories, and performs
better than previous approaches of more model parameters.
4) Critically, our SAR-Net is entirely trained on synthetic
data and performs very well generalization on real-world
scenarios. Remarkably, our synthetic-only approach still
outperforms other competitors which typically require both
synthetic and real-world data.

2. Related Work

Instance-Level 6D Object Pose Estimation. Most previ-
ous works [3, 17, 27, 32] estimate object pose by matching
image features. Unfortunately, these methods are less effi-
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Figure 3. Architecture overview. The pre-processing stage (left) predicts the category and 2D segmentation mask of the target instance(e.g.,
mug). The points back-projected from depth channel are filtered by instance mask and processed by 3D-GCN to obtain object points Po

which are further normalized as P . Our SAR-Net (right) takes both normalized point cloud P and category-level template point cloud Kc as
inputs to generate deformed template point cloud K̃ and symmetric point cloud P̃ ′, implemented by network ESA and ESC , respectively.
We get points of a coarse shape G by concatenating and centralizing the P and P̃ ′. From G, the network EOCS predicts translation offsets
Ṽ and normalized size s̃. The final 6D object pose {R̃o, t̃o} and size s̃o are recovered by the post-processing stage in Sec. 3.2 and Sec. 3.4.

cient to infer poses of texture-less objects. Recent efforts
are made on directly regressing 6D object pose from RGB
images by CNN-based architectures, e.g., PoseNet [22] and
PoseCNN [63]. DenseFusion [57] introduces a cross-modal
feature fusion manner for better aggregating color and depth
information from RGB-D images, which infers more accu-
rate objects pose than RGB-only methods. Such a fusion
manner is also used in recent COPSE tasks [5,52]. Another
line of works [29,36,38,39,42,50,65] first regress object co-
ordinates or keypoints in 2D images and then recover poses
by Perspective-n-Point algorithm [25], e.g., PVNet [39].
Recent approaches like [15, 16] resort to 3D keypoint vot-
ing for precise pose estimation. In contrast to these keypoint
voting methods [15,16,39], our approach focuses on a more
practical setting without relying on exact object 3D models.

Category-Level 6D Object Pose Estimation. Recent
COPSE approaches [5, 6, 24, 45, 47, 52, 58] vitally alleviate
the limitation of previous instance-level tasks. To handle
the intra-class variations, most previous RGB-D methods
[5, 24, 52, 58] represent instances of a category into a uni-
fied space. Due to significant variations in object appear-
ance, recent methods [6, 30, 47] put more focus on geomet-
ric information of the object. StablePose [47] is a depth-
based method that analyzes geometric stability of object
surface patches for 6D object pose inference. Lin et al. [30]
skillfully enforce the predicted pose consistency between
an implicit pose encoder and an explicit one to supervise
the training of the pose encoders and refine the pose pre-
diction during testing. FS-Net [6] extracts shape-based fea-
tures from point cloud of the target object for pose and size
recovery. FS-Net estimates two perpendicular vectors for

rotation decoupling. Compared to FS-Net, the represen-
tation of shape alignment transfers the rotation estimation
problem into a reconstruction one. This representation has
a more intuitive geometric meaning than FS-Net, as it pro-
vides visualization of aligned shape. Recent 6D pose track-
ers [56,60,61] achieve real-time tracking for category-level
or novel objects with very good performance. Crucially,
these methods have to rely on the good initial object pose
and temporal information for the tracking. In contrast, the
COPSE task addressed in this paper does not assume such a
good initialization existed, and conducts the 6D object pose
and size estimation from the single scene image.
Symmetric Correspondence. Symmetric correspondence
has been widely adopted in recent works [11, 35, 59]. The
reconstruction of symmetric objects has been investigated
in [21,64]. Wu et al. [62] use latent symmetric properties to
disentangle components obtained from a single image. In
the field of 6D pose estimation, HybridPose [48] is the first
work to take the dense symmetric correspondences of an in-
dividual object as the intermediate representation to help the
pose estimation. Differently, we fully utilize the symmetric
correspondences in the same object category and extend 2D
symmetric correspondences onto 3D ones, significantly im-
proving COPSE inference performance.

3. Methodology

Problem Formulation. Given a depth image, segmented
mask, and category of the target object, our goal is to esti-
mate the 6D pose and 3D size of the object from its partially
observed point cloud. We represent the 6D object pose as a
rigid-body homogeneous transformation matrix {Ro, to} ∈
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SE(3), where 3D rotation Ro ∈ SO(3) and 3D translation
to ∈ R3. SE(3) and SO(3) indicate the Lie group of 3D
rigid transformations and 3D rotation, individually. Finally,
the 3D size of the object is formalized as so ∈ R3.
Overview. We give an overview of our SAR-Net, as in
Fig. 3. Our method takes as input an RGB-D image.
While RGB images are utilized by Mask-RCNN [14] in pre-
processing stage to infer the segmentation mask and cate-
gory of each instance, our SAR-Net only processes points
from depth channel to address the COPSE task. Specif-
ically, the points back-projected from depth channel are
filtered by instance mask and processed by 3D segmenta-
tion network 3D-GCN [31] to obtain observed point cloud
which is further normalized. (Sec. 3.1). The network ESA

is learned to deform the category-level template point cloud
to align against the observed point cloud for 3D rotation rep-
resentation (Sec. 3.2). The symmetric correspondence is en-
couraged by the network ESC to help predict the symmetric
point cloud and complete the object shape (Sec. 3.3). Fi-
nally, the object center and size are learned from the coarse
shape by using the network EOCS (Sec. 3.4).

3.1. Pre-processing of Point Cloud

Processing observed point cloud. Given predicting seg-
mented mask, we obtain the point cloud by back-projecting
the masked depth. However, such a point cloud may still
contain object and background points given by the imper-
fect segmentation. Thus, we further send this point cloud
into the 3D-GCN [31] to purify the object points Po ∈
R3×No , where No is the number of points in Po. The 3D
segmentation step makes our synthetically-trained model
robust against the error from the 2D segmentation pipeline.
Furthermore, we have to normalize the original observed
point cloud Po. Particularly, we first calculate the centroid
ro =

∑
Po/No of point cloud and maximum Euclidean

distance do = max{∥Po − ro∥2 } (scalar factor) relative to
its centroid. We then normalize the Po to obtain the point
cloud P by P = (Po − ro)/do.
Processing category-level template point cloud. Given
the 3D template dataset – ShapeNetCore [4], we randomly2

select one template per category as the category-level tem-
plate shape, which is normalized by scale, translation, and
rotation as in [58]. Intuitively, instances of the same cat-
egory should, at least in principle, have similar shapes as
their category-level template shapes [23]. We further sam-
ple the category-level template shape into a sparse 3D point
cloud Kc ∈ R3×Nk by using Farthest Point Sampling (FPS)
algorithm [39], where Nk is the number of points.

3.2. Shape Alignment

Given the normalized point cloud P , our model learns
the shape similarities among instances of the same cate-

2SAR-Net is robust to random selection as in Appendix.

Observed point cloud

Symmetric point cloud

Axis of symmetry

Symmetric plane

Rotational SymmetryReflectional Symmetry

mug laptop bowl bottle

Figure 4. Illustration of symmetric point cloud. We generate the
ground-truth symmetric point cloud from observed point cloud of
objects which have reflectional symmetry or rotational symmetry.

gory, deforming the category-level template point cloud Kc

to align with the observed point cloud P visually, as demon-
strated in Fig. 2 (a). This module always reconstructs the 3D
points in space of template point cloud but does not gener-
ate 3D points on the surface of observed point cloud, i.e.,
only transferring the rotational state of the observed point
cloud P to deform the category-level template point cloud
Kc. Overall, it requires establishing a parametric encoder-
decoder ESA such that K̃ = ESA(Kc,FP). Then the task
of rotation recovery R̃o is formulated by the well-known
orthogonal Procrustes problem [46] of alignment for two
ordered sets of point clouds Kc and K̃.

Concretely, our network uses a PointNet-like struc-
ture [20, 41] as illustrated in Fig. 3. The normalized point
cloud P and the category-level template point cloud Kc are
fed into ESA to extract shape-dependent features FP and
FK, respectively. We then concatenate FP and FK with
each point in Kc to generate per-point feature embedding,
thus performing shape-guided reconstruction of K̃ under the
clues of geometric properties from observed point cloud P .
The reconstructed shape K̃ implicitly encodes the 3D ro-
tation of the observed point cloud P , as K̃ and P are en-
forced aligned by the network. We practivally obtain the
ground-truth deformed template point cloud K by applying
actual object rotation to the category-level template point
cloud Kc. Finally, the object 3D rotation is derived from
Umeyama algorithm [54] by solving registration of point
clouds K̃ and Kc .

3.3. Symmetric Correspondence

As most manufactured object categories have a symmet-
ric structure, we thus employ the reflectional and rotational
symmetry as an essential geometric cue for the COPSE task.
Such the underlying symmetry allows for reasoning the cor-
respondence of potential symmetric point cloud from the
observed point cloud. We learn an encoder-decoder struc-
ture ESC as the mapping function, to predict symmetric
point cloud P̃ ′ = ESC(P,FK) from observed point cloud
P . P̃ ′ ∈ R3×No and P have the same number of points.
Concretely, We concatenate FP and FK with each point in
P to generate point-wise feature embedding, and ESC thus
predicts corresponding symmetric point cloud P̃ ′ from P .
Reflectional symmetry. As for object categories of reflec-
tional symmetry like mug and laptop, they are usually sym-
metric around a fixed plane as shown in Fig. 4. We treat this
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symmetry as a constraint of the prior symmetric plane to
help complete object shape modeling. Thus, given observed
points P , we generate ground-truth symmetric points P ′ by
flipping P along the symmetric plane. Thus, we present an
encoder-decoder structure ESC and learn to infer the corre-
sponding symmetric points P̃ ′ to be symmetric with P .
Rotational symmetry. Categories of rotational symmetry
like bottle and bowl poss infinite symmetric planes around
the axis of symmetry as in Fig. 4, which hinders the net-
work to get converged. One solution is to rotate observed
points P by 180◦ around its axis of symmetry in the object
frame for generating ground-truth symmetric points P ′, in
which case recovers the relatively complete object shape.
Thus, the rotational symmetry is simplified as reflectional
symmetry. It also enables our network ESC to infer the oc-
cluded part from the observed point cloud to obtain a coarse
shape for object center and size estimation. More examples
of ground-truth symmetric points refer to Appendix.
Remark. It is noteworthy that specific object instances are
never fully symmetric due to shape variations. Thus, ex-
ploiting the underlying symmetry by point clouds of objects
is applicable to objects which have the global symmetric
shapes but asymmetric local parts, as our framework does
not demand the exact 3D shape recovery.

3.4. Calculation of Object Center and Size

Furthermore, we concatenate the predicted symmetric
point cloud P̃ ′ and observed point cloud P as in Fig 3.
This concatenation step generates a coarse 3D object shape
G′ ∈ R3×2No for object center and size estimation. We
then centralize points G′ by using the calculated centroid
r to get points G, where r =

∑
G′/2No. We use an

encoder-decoder EOCS to infer the translation offsets Ṽ
and normalized size s̃ from points in G, i.e., (Ṽ, s̃) =
EOCS(G,FK). Notably, we incorporate ground-truth sym-
metric point cloud P ′ and the partial points P to prevent the
unstable gradient propagation in the early training stage.
Translation offset learning. Inspired by previous 2D [39,
63] and 3D [15, 16, 40] keypoint voting methods, we treat
the object center as a specific keypoint. The encoder-
decoder EOCS infers 3D translation offsets Ṽ = {ṽi}2No

i=1 ,
where ṽi denotes predicted translation offset from each
point of G to the object center. The point cloud of coarse
shape G, together with predicted translation offsets Ṽ votes
for potential object center t̃. Finally, the voted object center
t̃o of the observed point cloud Po is given as below,{

t̃ =
∑

(G + Ṽ)/2No

t̃o = (t̃+ r) · do + ro
(1)

where do and ro are scalar factor and centroid of observed
point cloud Po as computed in Sec. 3.1.
Size estimation. Obtained concatenated points G, the net-
work EOCS regresses the normalized size s̃. Then the ac-

tual size s̃o of the original point cloud Po is recovered by the
calculated scalar factor do (Sec. 3.1), i.e., s̃o = do · s̃. Com-
pared to regressing size from partially observed point cloud
P , the concatenated point cloud G provides a coarse shape
for more accurate size estimation as discussed in Sec. 4.2.

3.5. Loss Function

We define the loss function L as follows,

L = Ldef + Lsym + Lcen + Lsize (2)

Deformed point reconstruction loss. Our SAR-Net per-
forms shape-guided reconstruction from observed points.
Given ground-truth deformed template points K = {ki}Nk

i=1

with Nk points, SAR-Net reconstructs K̃ = {k̃i}Nk
i=1 as:

Ldef =
1

Nk

Nk∑
i=1

∥∥∥ki − k̃i

∥∥∥
1

(3)

For object with rotational symmetry, we adopt the strategy
as in [58]. Refer to Appendix for details.
Symmetric point reconstruction loss. The symmetric
correspondence component predicts point-wise symmetric
points P̃ ′ = {p̃′

i}
No
i=1 based on the input observed points P .

We optimize the objective as:

Lsym =
1

No

No∑
i=1

∥p′
i − p̃′

i∥1 (4)

where No is the number of points in P; p′
i and p̃′

i are the
ground-truth and predicted symmetric points, respectively.
As we simplify the rotational symmetry as a particular case
of the reflectional symmetry (Sec. 3.3). Thus, this loss func-
tion is also helpful to tackle the case of rotational symmetry.
Translation offset loss. The network learns translation off-
sets {ṽi}2No

i=1 from concatenated points to object center. The
learning of vi is supervised by minimizing the loss as:

Lcen =
1

2No

2No∑
i=1

∥vi − ṽi∥1 (5)

where 2No is the number of concatenated points. The vi

and ṽi are the ground-truth and predicted translation offsets.
Size loss. For better size recovery, we regress the size from
the point cloud of a coarse shape G as discussed in Sec. 3.4.
We supervise the size regression as:

Lsize = ∥s̃− s∥1 (6)

where s and s̃ represent the ground-truth and predicted size
of the normalized point cloud P , respectively.

4. Experiments
Datasets. (1) NOCS Dataset [58]. It contains six ob-
ject categories including bottle, bowl, camera, can, lap-
top, and mug. The NOCS has two parts, i.e., the synthetic
part and the real-world one. For the synthetic part, there
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are 300K composite images, where 25K are set aside for
evaluation(CAMERA25). For the real-world part, it con-
tains 2.75K real-scene images for evaluation(REAL275).
(2) LINEMOD Dataset [17]. It is a widely used dataset for
instance-level object pose estimation. It provides a scanned
CAD model for each object. (3) Additional Real-world
Scenes. Our model is tested on additional 6 different real
scenes with 25 unseen instances from categories including
bowl, mug, bottle, and laptop. The images are captured by a
RealSense D435 camera and not manually pose-annotated.
Evaluation Metrics. (1) Category-level pose and size es-
timation. As [52], we compute average precision of 3D
Intersection-Over-Union(IoU) at threshold values of 25%,
50% and 75% for 3D object detection. The average pre-
cision at m◦ncm is calculated for evaluating 6D pose re-
covery, i.e., the percentage of poses where the translational
error is below ncm and the angular error is below m◦. Here
we choose threshold values of 5◦2cm, 5◦5cm, 10◦2cm,
and 10◦5cm, respectively. (2) Instance-level pose estima-
tion. We use average distance metric ADD [18] for non-
symmetric objects and ADD-S [63] for symmetric objects
(e.g., eggbox and glue). The accuracy of average distance
less than 10% of the object diameters is reported.
Implementation Details. The architecture of SAR-Net and
training details of 3D-GCN are presented in Appendix. We
pick object models of six categories from ShapNetCore [4]
and utilize the Blender software [1] to render depth images
to train our model, denoted as SAR-Net(small). Addition-
ally, we use 275K images from CAMERA dataset to train
our model, denoted as SAR-Net. The training data rendered
by Blender (∼60K instances) is 10 times less than that of
CAMERA dataset (∼600K instances). The back-projected
points of instances from synthetic depth images are disor-
derly sampled into 1024 points. Our SAR-Net is trained for
100 epochs with a batch size of 32 on a single RTX 2080Ti
GPU. We initially set the learning rate as 0.0004 and multi-
ply it by a factor of 0.75 every four epoch. We use the seg-
mentation results of Mask-RCNN provided by [30] for fair
comparisons. In robotic experiments, our SAR-Net is im-
plemented on the desktop with an NVIDIA RTX2070 GPU,
and pose and size estimation takes about 100ms. The model
will be released on the repository of Baidu PaddlePaddle.

4.1. Main Results

Category-level NOCS Dataset. We compare our SAR-Net
with NOCS [58], CASS [5], SPD [52], FS-Net [6], Sta-
blePose [47] and DualPose [30] on the CAMERA25 and
REAL275 datasets in Tab. 1. For the synthetic CAMERA25
dataset, our SAR-Net achieves comparable performance to
the state-of-the-art method DualPose and shows better per-
formance under the more strict metric 5◦2cm. For the real-
world REAL275 dataset, NOCS, CASS, SPD and DualPose
use both synthetic data (CAMERA) and real-world data for

training; FS-Net and StablePose only use real-world data.
In contrast, our method only uses synthetic data. Surpris-
ingly, even in such a comparison, our SAR-Net outperforms
all other baseline methods at all but IoU metric, as FS-Net
uses the pre-calculated mean size per category. The results
validate the good generalization of SAR-Net in real-world
applications. Although SAR-Net(small) is trained by using
10 times less synthetic training data than CAMERA, and
it already outperforms all other methods but the DualPose
on the REAL275 dataset. It could save memory footprint
and reduce the training time in practice. Moreover, for the
pose and size estimation part of the model, our SAR-Net
has less parameters than other methods. We also qualita-
tively show some results of our SAR-Net and DualPose [30]
in Fig. 5. Our method generates more accurate rotation es-
timation than DualPose, especially for the camera category.
More comparison results are shown in Appendix.
Instance-level LINEMOD Dataset. Our COPSE model
could be easily employed in the instance-level task by using
the exact object model as the template shape. We then gen-
erate 30K synthetic depth images for each instance for the
model training. Compared with RGB(-D) methods [15, 39]
or depth-only method [12, 13], our SAR-Net achieves com-
parable results in terms of ADD(-S) metric as in Tab. 2. Tak-
ing weakly symmetric objects (e.g., cat) as symmetric ones,
our model still gains desirable performance, which provides
evidence to support the utilization of symmetric correspon-
dence to handle those objects which have some parts that
are less symmetric.
Additional Real-world Scenarios. For additional real
scenes with multiple objects, visualization results are shown
in Fig. 6 (top row). Our model generates accurate esti-
mation, as the objects are tightly located within predicted
bounding boxes. The results indicate the generalization ca-
pability of our SAR-Net in real-world applications, in terms
of different depth sensors (i.e., Structure Sensor [2] used by
NOCS dataset, and RealSense D435 of ours) and different
novel instances (18 novel instances from REAL275 and 25
novel ones of ours). See Appendix for more results.

4.2. Ablation Studies

We verify the efficacy of the key components of our
SAR-Net on the REAL275 dataset in Tab. 3.
Symmetric Correspondence. We first check the impor-
tance of utilizing symmetric correspondence. We start from
a basic network, which directly outputs the deformed tem-
plate point cloud from shape alignment component (SA),
translation offsets, and normalized size based on the par-
tially observed point cloud, as in row 1. The symmetric cor-
respondence component (SC) is then added as shown in row
2. The comparison results between rows 1 and 2 illustrate
that exploring underlying symmetric correspondence is a vi-
tal part of producing overall great results. With symmetry
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Table 1. Results on REAL275 and CAMERA25 [58]: comparisons with other COPSE methods.(↑): higher better, (↓): lower better.

mAP (↑) Accuracy (↑) Parameters (↓)Dataset Method
IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦5cm (M)

NOCS [58] 78.0 30.1 7.2 10.0 13.8 25.2 18.2 -
CASS [5] 77.7 - - 23.5 - 58.0 - 47.2
SPD [52] 77.3 53.2 19.3 21.4 43.2 54.1 30.4 18.3

FS-Net [6] 92.2 63.5 - 28.2 - 60.8 - 41.2
StablePose [47] - - - - - - 38.8 -
DualPose [30] 79.8 62.2 29.3 35.9 50.0 66.8 50.1 67.9

SAR-Net(small) 80.4 63.7 24.1 34.8 45.3 67.4 49.1 6.3

REAL275

SAR-Net 79.3 62.4 31.6 42.3 50.3 68.3 54.9 6.3

NOCS [58] 83.9 69.5 32.3 40.9 48.2 64.6 49.4 -
SPD [52] 93.2 83.1 54.3 59.0 73.3 81.5 71.5 18.3

DualPose [30] 92.4 86.4 64.7 70.7 77.2 84.7 79.9 67.9

SAR-Net(small) 88.1 71.1 44.0 49.4 56.1 65.6 61.7 6.3
CAMERA25

SAR-Net 86.8 79.0 66.7 70.9 75.3 80.3 81.4 6.3

SAR-Net

(Ours)

DualPose

Figure 5. Qualitative comparisons between our SAR-Net and DualPose [30] on REAL275 dataset [58]. We visualize the estimated 6D
pose and size as the tight-oriented bounding box around the target instances.

Table 2. Results on LINEMOD [17]: comparisons with other
instance-level methods. ‘S’ is synthetic data and ‘R’ is real data.

Training data Methods ape can cat driller eggbox glue

RGB(S+R) PVNet [39] 43.6 95.5 79.3 96.4 99.1 95.7
RGBD(S+R) FFB6D [15] 98.4 99.8 99.9 100.0 100.0 100.0

D(S) CP(ICP) [13] 58.3 84.7 84.6 43.2 99.5 98.8
D(S) CAAE [12] 74.5 90.2 90.7 97.3 99.7 93.5

D(S) SAR-Net 64.5 83.6 91.4 84.0 99.4 100.0

inference, the network learns to captures more useful shape
characteristics for symmetric points reconstruction and also
enhances the performance of other components.
Partial or coarse shape. We then study the performance
difference between using point cloud of a coarse shape and
the partially observed point cloud. We analyze it from two
aspects: (1) We concatenate the observed point cloud and
symmetric one to obtain a coarse shape (Concat) for object
center and size estimation, as in row 3. Comparing results
in rows 2 and 3, estimation based on a coarse shape gains
overall improved performance versus that relying on par-
tially observed point cloud. (2) We then explore the impor-
tance of centralization operation (Centralize) as in row 4,
i.e., the concatenated point cloud is further centralized. The
comparison results of rows 3 and 4 indicate the necessity of
the centralizing operation, yielding the further improvement
of 1.1% at IoU75 and 3.6% at 5◦2cm, respectively.
Voting or regression for 3D center estimation. We re-
place the translation offset learning (Sec. 3.4) by regressing
the object center (RegressT) as in row 5. The performance

in row 5 consistently drop under all metrics, comparing the
results in row 4. Therefore, the translation offset learning
and voting for object center help to locate a more accurate
object center than RegressT.
Symmetry-based or direct shape completion. Also, we
replace the SC component with direct object shape comple-
tion by using the same network (DSComp), supervised by
the Chamfer loss [10]. Compared to results in row 4, per-
formance of all metrics in row 6 drop consistently. This
is probably because the shape completion focuses on de-
tailed reconstruction, which relies on a more complicated
network, but inferring a symmetric point cloud is easier.
Poor reconstruction results from a direct object completion
network further degrade the performance of the object cen-
ter and size estimation.
Point number of template point cloud. In addition,
We also explore the impact of the varied number of the
category-level template point cloud Kc by using the full
COPSE model. It is observed from rows 4, 7, and 8 that
36 points are a good trade-off for our network to learn.
The choice of 128 points degrades the performance due to
the larger output space, while the 16 points are too sparse
to represent the geometric structure of object, which nega-
tively influences the final performance.

We also conduct ablation studies of various rotation rep-
resentation on the REAL275 dataset in Tab. 4.
Shape alignment for 3D rotation. We replace the shape
alignment (SA) of SAR-Net by other 3D rotation repre-
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Table 3. Ablation studies of key components tested on REAL275. ‘SA’ means shape alignment (Sec 3.2). ‘SC’ means symmetric
correspondence (Sec 3.3). ‘Concat’ indicates concatenating observed point cloud and symmetric one, and ‘Centralize’ is the centralization

operation (Sec. 3.4). ‘RegressT’ means directly regressing object center versus predicting translation offsets in Sec. 3.4. ‘DSComp’ is
direct shape completion. ’Point Number’ is the number of points in category-level template point cloud. (Sec. 3.1). (↑): higher better.

Component Point mAP (↑) Accuracy (↑)Row SA SC Concat Centralize RegressT DSComp Number IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦5cm

1 ✓ 36 81.1 55.3 15.9 23.6 34.9 59.1 39.4
2 ✓ ✓ 36 81.2 60.1 17.8 27.7 38.8 63.3 44.1
3 ✓ ✓ ✓ 36 80.6 62.6 20.5 31.7 39.8 65.3 46.4
4 ✓ ✓ ✓ ✓ 36 80.4 63.7 24.1 34.8 45.3 67.4 49.1

5 ✓ ✓ ✓ ✓ ✓ 36 81.0 63.5 21.1 30.4 44.9 67.2 46.7
6 ✓ ✓ ✓ 36 80.6 59.5 19.2 28.9 41.6 65.2 45.0

7 ✓ ✓ ✓ ✓ 16 79.6 62.9 22.8 33.0 46.1 67.6 47.9
8 ✓ ✓ ✓ ✓ 128 79.5 59.5 21.5 32.1 43.7 66.3 47.5

Table 4. Ablation studies of using different 3D rotation
representations tested on the REAL275 dataset. (↑): higher better.

mAP (↑) Accuracy (↑)Method
IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦5cm

quaternion 80.6 62.9 20.8 29.7 43.6 64.6 46.3
SVD [26] 82.2 61.8 17.8 24.3 39.6 58.6 40.0
R6d [66] 81.6 64.1 21.7 30.5 42.6 64.2 46.6
Vector [6] 81.2 62.5 21.1 31.5 45.1 67.1 47.6

SAR-Net 80.4 63.7 24.1 34.8 45.3 67.4 49.1

sentation in the form of quaternion, SVD [26], continuity
6D [66] (R6d), and Vector [6], respectively. The compari-
son results are summarized in Tab. 4. Compared to quater-
nion, SVD, and R6d, enforced shape alignment enables bet-
ter generalization, as the point reconstruction search space
is smaller than the rotation space, which is easier for the
network to learn. The representation of Vector and SA both
have geometric meaning, but our SA performs better than
Vector, especially under strict metrics of 5◦2cm and 5◦5cm.

4.3. Robotic Experiments

Physic Baxter Robot. The robotic experiments compare
the real-world performance of deploying COPSE models
on a real Baxter robot executing different tasks, including
object grasping, handover, and pouring as in Fig. 6 (bot-
tom row). Baxter is a dual-arm robot mounted with a Re-
alSense D435 Camera on the base. More configurations of
the robotic experiment are detailed in the Appendix.
Grasping Task. Particularly, we use 12 unseen instances
from 3 classes, i.e., 4 mugs, 4 bottles, and 4 bowls. De-
ployed the COPSE models, the robot is programmed to at-
tempt 10 grasps for each object. In this experiment, our
SAR-Net is compared against DualPose [30] and SPD [52]
with success rates of 88.3%, 80.8% and 65.8%, respectively.
The baseline methods often fail due to imprecise rotation es-
timation or bigger estimated bounding boxes than the exact
ones of target instances. See video demo for details.
Object Handover Task. The robot interacts with the actor
in this task, trying to grasp the objects in human hands. We
choose the testing instance bottle. The Baxter successes on

Figure 6. Estimated results given by our SAR-Net in various real
clutter environments (top row). We perform tasks on a physical
Baxter robot integrated with our SAR-Net (bottom row).

80% using our SAR-Net in 15 trials of the handover task,
compared against that of 73.3% of DualPose and 66.7% of
SPD, validating the accurate estimation of our SAR-Net.
Pouring Task. Using our COPSE model, we conduct the
task of actor moving the bowl, while the robot follows the
actor and executes pouring action. We choose each testing
instance from bowl and mug, respectively. The robot is pro-
grammed to attempt 15 trials. Our SAR-Net is compared
against DualPose and SPD with success rates of 73.3%,
60.0%, and 53.3%, respectively. The results show the ef-
ficacy of our COPSE model in robotic experiments.

5. Conclusion
We propose a lightweight geometry-based model for the

COPSE task. Our network uses shape alignment to facilitate
3D rotation calculation. The symmetry correspondence of
objects is utilized to complete its shape for better object cen-
ter and 3D size estimation. Our method achieves state-of-
the-art performance without real-world training data. Fur-
thermore, a physical Baxter robot integrated with our frame-
work validates the utility in practical robotic applications.
However, under the inherent limitation of the depth-based
method, the sensor noise and lacked discriminative details
may result in ambiguities in pose recovery. Future work
will consider fusing additional color information from RGB
channels for more accurate pose and size recovery.
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