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Abstract

The canonical approach to video captioning dictates a
caption generation model to learn from offline-extracted
dense video features. These feature extractors usually oper-
ate on video frames sampled at a fixed frame rate and are
often trained on image/video understanding tasks, without
adaption to video captioning data. In this work, we present
SWINBERT, an end-to-end transformer-based model for
video captioning, which takes video frame patches directly
as inputs, and outputs a natural language description.
Instead of leveraging multiple 2D/3D feature extractors,
our method adopts a video transformer to encode spatial-
temporal representations that can adapt to variable lengths
of video input without dedicated design for different frame
rates. Based on this model architecture, we show that video
captioning can benefit significantly from more densely sam-
pled video frames as opposed to previous successes with
sparsely sampled video frames for video-and-language un-
derstanding tasks (e.g., video question answering). More-
over, to avoid the inherent redundancy in consecutive video
frames, we propose adaptively learning a sparse attention
mask and optimizing it for task-specific performance im-
provement through better long-range video sequence mod-
eling. Through extensive experiments on 5 video caption-
ing datasets, we show that SWINBERT achieves across-
the-board performance improvements over previous meth-
ods, often by a large margin. The learned sparse attention
masks in addition push the limit to new state of the arts,
and can be transferred between different video lengths and
between different datasets. Code is available at https:
//github.com/microsoft/SwinBERT.

1. Introduction
Video captioning [1,10,25,28,35,39,44,45,56] is the task

of describing the visual content of a given video in natural

language. As such, it requires an algorithm to understand

* Equal contribution.

Figure 1. Comparison between previous works and SWINBERT.

Different from prior works that use offline-extracted 2D/3D fea-

tures, we propose to adopt the video transformer as our video en-

coder, and present an end-to-end fully Transformer-based model

for video captioning. We further propose to adaptively learn a

sparse attention mask to improve long-range video sequence mod-

eling.

and model the spatial-temporal dynamics in video, as well

as the relationships between visual and textual elements,

and to generate a sequence of output words. This has usu-

ally been tackled with transformer-based models that learn

from offline extracted video representations [21, 25, 31, 45]

(Figure 1 (a)). Specifically, multiple feature extractors,

usually trained on image/video understanding tasks (e.g.,
image classification or action recognition), are employed

to extract 2D appearance features and 3D motion features

from densely sampled video frames. Although achieving

promising results, there exists a discrepancy in both data do-

main and task formulation between these off-the-shelf fea-

ture extractors and downstream video captioning. However,

end-to-end training with multiple feature extractors on such

dense video frames is computationally intensive, or even in-

feasible.
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Method MSVD ↑ YouCook2 ↑ MSRVTT ↑ TVC ↑ VATEX ↑
SOTA 95.2 [57] 53.6 [25] 52.9 [56] 51.0 [25] 58.1 [25]

SWINBERT 160.0 109.0 55.9 56.9 73.0

Table 1. Comparison with state-of-the-art methods across all

video captioning datasets considered on CIDEr [47] metric.

More recently, CLIPBERT [21] points out the repetitive

information presented in consecutive video frames is not

necessary for downstream video-and-language tasks, and

proposes a sparse sampling strategy that enables affordable

end-to-end training to the raw pixel inputs. Although it has

shown great success in video-and-language understanding

tasks, such as video question answering [22] and text-to-

video retrieval [23, 53], it remains unclear whether these

sparsely sampled video frames are sufficient to generate rich

and descriptive captions. Moreover, CLIPBERT leverages

a 2D Convolutional Neural Network together with mean

pooling that operates directly on the raw video frames to

learn video representations, which may lose temporal infor-

mation that is essential to describe visual events in chrono-

logical order.

In this work, we aim to find an end-to-end solution to

the video captioning task. Inspired by the recent successes

of Transformer-based models in computer vision [2, 5, 14,

29], especially for video understanding tasks [6], we pro-

pose SWINBERT (Figure 1 (b)), a pure Transformer-based

model that directly takes raw video frames as inputs for end-

to-end caption generation. Unlike previous methods lever-

aging off-the-shelf 2D/3D feature extractors at a fixed frame

rate, we employ a video Transformer capable of learning

from variable lengths of video frame sequence without ded-

icated design for different frame rates. Based on this spe-

cific model design, we investigate how many video frames
are sufficient for the video captioning task?. Our experi-

ments show that the captioning performance (i.e., CIDEr

score) can be greatly lifted by more densely sampled frames

(e.g., Ours: 64 frames, vs. CLIPBERT: 16 frames), in con-

trast to previous success with sparsely sampled frames for

video-and-language understanding tasks. Lastly, to avoid

the redundancy that comes naturally in consecutive video

frames, we further introduce a learnable Sparse Attention

Mask as a regularizer that allows the model to focus more

on video frame patches that contain more spatial-temporal

movements (e.g., the main moving objects) than those stay-

ing unchanged for the entire video duration (e.g., the back-

ground). In contrast to prior models [21,25,31] with prede-

fined attention structures, our model can learn adaptive at-

tention maps to optimize for task-specific performance im-

provements through better video sequence modeling.

Our extensive experimental results on 5 video captioning

datasets demonstrate that our proposed model is effective

in learning sparse attention patterns to improve long-range

video sequence modeling, and consequently outperforms

previous state-of-the-art approaches by a large margin. To

the best of our knowledge, SWINBERT is the first end-to-

end pure Transformer-based architecture for video caption-

ing. Additionally, the proposed Sparse Attention Mask ef-

fectively regularizes model training and brings further per-

formance improvements across all 5 datasets, which opens

a new direction in removing redundancy in video inputs for

video-and-language modeling.

In summary, our contributions are three-fold.

• We present SWINBERT, the first end-to-end fully

Transformer-based model for video captioning.

• We introduce the Sparse Attention Mask as a regular-

izer for improving long-range video sequence model-

ing, and quantitatively validate the effectiveness of the

learnable sparse attention mask in caption generation.

• Our method outperforms previous state-of-the-art

methods by a large margin on 5 popular video caption-

ing benchmarks. As shown in Table 1, SWINBERT

achieves an absolute CIDEr improvement of +64.8 on

MSVD, +55.4 on YouCook2, +3.0 on MSRVTT, +5.9

on TVC and +14.9 on VATEX.

2. Related Work

Video Captioning. Recent researches [1, 31, 35, 39,

44] mainly focus on modeling the relationship between

fixed video representations and the output textual descrip-

tions via an encoder-decoder framework for video cap-

tioning. Specifically, these methods [10, 25, 28, 31, 56]

employ an encoder to refine video representations from

a set of fixed video frame features, and a language de-

coder operates on top of these refined video representa-

tions to learn visual-textual alignment for caption gener-

ation. Researchers [1, 25, 35] have focused on exploring

different 2D/3D video representations, including IncepRes-

NetV2 [46], ResNet [17], CLIP-ViT [14,40], SlowFast [15],

C3D [16] and S3D [33, 52], for improving video caption-

ing. In addition, object-level representations [20, 55, 57]

have been explored to enrich captions with fine-grained ob-

jects and actions. Prior works [11] also studied frame selec-

tion schemes to capture informative visual inputs. Unlike

previous studies that learn from multiple offline-extracted

2D/3D features with a fixed sampling rate, we introduce

Video Swin Transformer [29] as the video encoder in our

framework to encode spatial-temporal representations from

raw video frames. Benefiting from the flexibility of the

transformer architecture, our model can learn with variable

number of video tokens and can be trained end-to-end.

Video transformers. Dosovitskiy et al. [14] demon-

strate that a pure-transformer based architecture can outper-

form its convolutional counterparts in ImageNet classifica-

tion task [42]. Since then, there has been a growing interest
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Figure 2. Overview of the proposed framework. Our model takes a sequence of video frames as inputs, and extracts a set of video tokens

using a Video Swin Transformer (VidSwin). Given the word tokens and video tokens, we perform self-attention through multiple layers

of a multimodal transformer encoder, and predict the word tokens via masked language modeling. As shown on the right, we propose

a learnable Sparse Attention Mask as a regularizer for multimodal transformer encoder to reduce redundancy among the video tokens.

During inference, the model takes a testing video sample (single-modality) to generate natural language descriptions.

in applying vision transformer (ViT) to the video domain.

For example, ViViT [2] and TimeSformer [5] propose a new

transformer architecture that can leverage spatial-temporal

attention for improving representation learning. Video Swin

Transformer (VidSwin) [29] further introduces locality in-

ductive bias into the transformer self-attention, and achieves

state-of-the-art performance on action recognition bench-

mark [6]. While recent studies [2, 5, 29] mainly focus on

developing video transformer architecture for action recog-

nition, video captioning has not been explored along this

research direction, which is the focus of this work.

Video and language. Recent studies [21, 25, 32–34, 54]

have shown great success on multimodal representation

learning for video-and-language understanding. Popular

downstream tasks include video question answering [22],

text-video retrieval [23, 53] and video captioning [50].

Among the literature, Frozen-in-time [3] is a relevant study

that explores pure transformer-based model design, but they

focus on text-video retrieval. Specifically, they employ two

independent transformer encoders for visual and textual in-

puts, respectively. Retrieval is conducted by estimating the

similarity between the outputs of their visual and textual en-

coders. With a similar spirit, CLIP4Clip [32] studied using

the pre-trained CLIP [40] as a feature extractor for video re-

trieval. While existing architectures [3, 32] are effective for

video retrieval, it cannot be directly applied to video cap-

tioning, which is the focus of this work.

3. Method

In this section, we present SWINBERT, a new video-

based pure-Transformer architecture for caption generation.

We first detail the model architecture in Section 3.1, then

introduce Sparse Attention Mask in Section 3.2.

3.1. Model Architecture

Figure 2 shows the overview of the proposed model.

SWINBERT takes a sequence of raw video frames as in-

puts, and then outputs a natural language description de-

scribing the input video. SWINBERT consists of two mod-

ules: Video Swin Transformer (VidSwin), and Multimodal
Transformer Encoder. First, we leverage VidSwin to extract

spatial-temporal video representations from the raw video

frames. Then, our Multimodal Transformer Encoder takes

as inputs the video representations and outputs a natural lan-

guage sentence via sequence-to-sequence (seq2seq) gener-

ation. We describe each module in detail as below.

Video Swin Transformer. As discussed in [13, 49], video

understanding benefits from long-range temporal modeling.

A simple way is to stack a large number of frames to capture

long-range structures. However, it would greatly increase

the computational cost. Recently, VidSwin [29] is designed

to leverage the spatial-temporal locality inherent in videos,

and achieves a favorable speed-accuracy trade-off. In the

first module of our framework, we propose to use VidSwin

as our visual encoder to encode the raw video frames as

video feature tokens. VidSwin is pre-trained on the Kinetics

action recognition task [6].

Given the raw video frames which are of size T ×H ×
W × 3, consisting of T frames and each has H × W × 3
pixels. We feed them to VidSwin, and extract grid features

from the last encoder block of VidSwin. The grid features

of VidSwin is defined to be of size T
2 × H

32 × W
32 × 8C,

where C is the channel dimension. We then tokenize the

grid features along the channel dimension, resulting in a to-

tal of T
2 × H

32 × W
32 video tokens. Each token is a 8C−dim

feature vector. After that, we input the video tokens to the

multimodal transformer encoder for caption generation.
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With our generic design, it enables end-to-end training

for video captioning from the raw video frames. Moreover,

benefiting from the flexibility of the transformer architec-

ture, our model is able to process variable lengths of video

sequences. As we will show in experiments, the caption per-

formance (i.e., CIDEr scores) can be improved with longer

video sequence inputs (i.e., densely-sampled video frames).

Multimodal Transformer Encoder. In our second mod-

ule, we use a transformer encoder to generate natural lan-

guage description. To be specific, it has textual and visual

modality inputs, including the tokenized caption descrip-

tion and the video tokens computed from VidSwin. We

then perform seq2seq generation to form a natural language

sentence. In the same spirit as in image captioning litera-

ture [19, 26], we use a causal self-attention mask where a

caption token can only attend to the existing output tokens.

This effectively simulates a uni-directional seq2seq gener-

ation process. In addition, all the textual tokens have full

attentions to the video tokens.

3.2. Learning with Sparse Attention Mask

In general, longer inputs across multiple video segments

contain more information. However, the computational de-

mand of attention are proportional to input length, which

limits the number of input frames. On the other hand,

considering the essence of the video properties, the dense-

sampling scheme with consecutive video frames contains

redundant and perhaps irrelevant information, which may

compromise performance. Hence, how to effectively model

a long sequence of video tokens is a unique challenge in our

proposed framework. We address it by introducing a learn-

able Sparse Attention Mask as a regularizer to our multi-

modal transformer encoder.

As shown to the right of Figure 2, the input to the Trans-

former is split into two parts: N word tokens and M video

tokens. The entire attention mask can be defined of size

(N+M)×(N+M), where N is 50 and M = T
2 × H

32×W
32

in our experiments. We denote V as the learnable attention

mask of size M × M governing the attentions among the

video tokens. For more accurate video captioning, we al-

low the text tokens with unrestricted attention so they can

take advantage of visual details. To address the redundancy

among the video tokens, we impose the sparsity constraint

overlay on top of V by:

LSPARSE = λ×
M∑

i=1

M∑

j=1

|Vi,j | , (1)

where λ is the regularization hyperparameter, and Vi,j are

the activation values of the learnable attention mask V .

During learning, the sparsity constraint will regularize

model training to discover the underlying structure of the

video sequences. Through sparse attention, the model

learns to strengthen the most important relationships among

different tokens by reducing the likelihood of meaningless

connections, while focusing more on the active video tokens

that contain rich spatial-temporal information. In this way,

the model can produce more expressive and descriptive nat-

ural language sentences.

In our implementation, we apply the sigmoid activation

function on the sparse attention mask. Therefore, the sparse

attention mask consists of continuous activation between 0
and 1. As we will show in our experiments, we can realize

a binary mask by simply using a threshold of 0.5.

Training. We train SWINBERT in an end-to-end manner

by applying Masked Language Modeling (LMLM) [12] on

top of our multimodal transformer encoder. We mask a

percentage of word tokens by replacing them with a pre-

defined special token [MASK]. We then ask the multimodal

transformer to predict the masked ones. In order to predict

a masked word token, the model will have to resort to the

video tokens and other word tokens. This facilitates cross-

modality representation learning to help ground the caption

descriptions in the video context. Moreover, we apply the

proposed sparsity constraint on the learnable attention mask

to enhance the modeling of the video token sequence.

In summary, our loss function includes LMLM [12] and

LSPARSE, and we train SWINBERT by simply minimizing

the sum of them.

Inference. During inference, our model takes a video se-

quence as input (single visual modality), and outputs a nat-

ural language sentence. We generate the output sentence in

an auto-regressive manner. In other words, our model gen-

erates one word token at a time, consuming the previously

generated tokens as the inputs of the multimodal trans-

former encoder. We perform generation until our model

outputs a pre-defined ending token [EOS] or reaches the

maximum output length.

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments on 5 video captioning

datasets, detailed below.

• MSVD [7] is a collection of 2K open-domain video

clips downloaded from YouTube. Each video clip has 35
ground-truth captions written by human. We use the stan-

dard split which contains 1.2K training videos and 670
test videos.

• YouCookII [59] is a cooking domain dataset covering

89 recipes. There are 15.4K video clips, and each

has 1 ground-truth caption. We use the standard train-

ing/validation split in the experiments.

• MSRVTT [53] consists of 10K open-domain video clips.

Each video clip has 20 ground-truth captions. We use the
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Features MSVD MSRVTT

Method 2D Appearance 3D Motion Object Detection B4 M R C B4 M R C

PickNet [11] ResNet152 - - 52.3 33.3 69.6 76.5 41.3 27.7 59.8 44.1

SibNet [28] GoogleNet - - 54.2 34.8 71.7 88.2 40.9 27.5 60.2 47.5

OA-BTG [55] ResNet200 - MaskRCNN 56.9 36.2 - 90.6 41.4 28.2 - 46.9

GRU-EVE [1] IncepResnetV2 C3D YOLO 47.9 35.0 71.5 78.1 38.3 28.4 60.7 48.1

MGSA [9] IncepResnetV2 C3D - 53.4 35.0 - 86.7 42.4 27.6 - 47.5

POS+CG [48] IncepResnetV2 OpticalFlow - 52.5 34.1 71.3 88.7 42.0 28.2 61.6 48.7

POS+VCT [18] IncepResnetV2 C3D - 52.8 36.1 71.8 87.8 42.3 29.7 62.8 49.1

SAAT [58] IncepResnetV2 C3D - 46.5 33.5 69.4 81.0 39.9 27.7 61.2 51.0

STG-KD [35] ResNet101 I3D FasterRCNN 52.2 36.9 73.9 93.0 40.5 28.3 60.9 47.1

PMI-CAP [8] IncepResnetV2 C3D - 54.6 36.4 - 95.1 42.1 28.7 - 49.4

ORG-TRL [57] IncepResnetV2 C3D FasterRCNN 54.3 36.4 73.9 95.2 43.6 28.8 62.1 50.9

OpenBook [56] IncepResnetV2 C3D - - - - - 33.9 23.7 50.2 52.9

SWINBERT VidSwin - 66.3 42.4 80.9 149.4 45.4 30.6 64.1 55.9

Table 2. Comparison with state-of-the-art methods on MSVD and MSRVTT.

VATEX

Method Mod. B4 R M C

VATEX [50] V 28.4 47.0 21.7 45.1

ORG-TRL [57] V 32.1 48.9 22.2 49.7

Support-set [38] V 32.8 49.1 24.4 51.2

Support-set [38] V 32.5 48.9 24.1 50.5

OpenBook [56] V+T 33.9 50.2 23.7 57.5

VALUE [25] V+T - - - 58.1

SWINBERT V 38.7 53.2 26.2 73.0

(a) VATEX.

TVC

Method Mod. B4 R M C

MMT [23] V 9.9 30.4 15.2 36.0

MMT [23] T 6.3 7.7 13.9 33.7

MMT [23] V+T 10.8 32.8 16.9 45.3

HERO [24] V+T 12.3 34.1 17.6 49.9

VALUE [25] V+T 11.6 33.9 17.6 50.5

SWINBERT V 14.5 36.1 18.5 55.4

(b) TVC.

YouCook2

Method Mod. B3 B4 M R C

Masked Trans. [60] V 7.5 3.8 10.6 - 37.9

DPC [43] V - 2.2 17.6 - -

DPC [43] V+T - 2.8 18.1 - -

VideoBERT [45] V 7.5 4.3 11.9 - 55.0

ActBERT [61] V 8.6 5.4 13.3 - 65.0

AT [43] T - 8.5 16.9 - 106.0

AT+Video [43] V+T - 9.0 17.7 - 112.0

VALUE [25] V - - - - 53.6

VALUE [25] V+T - 12.4 18.8 40.4 130.3
SWINBERT V 13.8 9.0 15.6 37.3 109.0

(c) YouCook2.

Table 3. Comparison with state-of-the-art methods on YouCook2, TVC, and VATEX. We gray out models that adopt vision-and-language

pre-training on large-scale datasets for a fair comparison.

standard captioning split [31], which has 6.5K training

videos and 2.9K testing videos.

• TVC [23] is a TV domain dataset. There is a total of

262K caption descriptions paired with 108K video seg-

ments. The captions in TVC not only describe the video

contents, but it may also describe the subtitles.

• VATEX [50] is a relative large open-domain dataset,

which contains 41.3K videos. Each video clip has 20
ground-truth captions. We use the official training set for

training, and evaluate the results using the public test set.

Implementation Details. We implement our model using

Pytorch [37], Huggingface transformer [51], and Deep-

Speed library [41]. The VidSwin is initialized with

Kinetics-600 pre-trained weights [29], and the multimodal

transformer encoder is randomly initialized. In order to en-

sure that the video tokens have the same embedding size as

that of the word tokens, we transform the video tokens us-

ing a learnable MLP. Following [25], we employ AdamW

optimizer [30] and use a learning rate warm-up during the

early 10% training steps followed by linear decay. Addi-

tional details can be found in the supplementary material.

4.2. Main Results

We compare SWINBERT with previous state-of-the-

art methods on 5 public benchmark datasets. Following

the literature [25, 50, 56, 57], we provide detailed com-

parisons using a diverse set of performance metrics, in-

cluding BLEU4 [36], METEOR [4], ROUGE-L [27] and

CIDEr [47].

Table 2 shows detailed comparisons on MSVD and

MSRVTT datasets. SWINBERT outperforms previous

state-of-the-art methods in terms of all metrics by a large

margin. Specifically, SWINBERT brings significant CIDEr

improvements on MSVD (i.e., +54.2 higher than the prior

arts). SWINBERT also achieves strong improvements

across all metrics on MSRVTT.

In Table 3a, we report detailed comparisons on the VA-

TEX dataset. SWINBERT achieves better performance

than the prior works, especially on CIDEr metric. It

should be noted that previous state-of-the-art methods (i.e.,
VALUE [25] and Support-set [38]) perform vision-and-

language (VL) pre-training on large-scale datasets for im-

proving multimodal representations, whereas the results
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T MSRVTT VATEX

2 36.6 47.4

4 43.7 58.2

8 47.6 65.2

16 49.5 68.4

32 52.3 71.1

64 55.3 72.7

(a) Impact of #Video Frames (T).

T Learnable Att. Mask LSPARSE MSRVTT VATEX

32 � � 52.3 71.1

32 � � 53.3 70.7

32 � � 55.1 71.6

(b) Learning of Sparse Attention Mask.

Att. Mask MSRVTT VATEX

Full Attention 52.3 71.1

Spatial Window 51.9 71.0

Temporal Window 51.0 70.2

Ours (Learnable, Sparse) 55.1 71.6

(c) Heuristic vs. Learnable Attention Mask

Table 4. Results on SWINBERT with (a) varying number of video frames (without learnable sparse attention mask), (b) ablation study on

learnable attention mask and sparse attention loss, and (c) comparisons between heuristic and learnable attention masks. All experiments

are conducted with 32 frames unless specified otherwise. All results are reported on CIDEr metric.

with SWINBERT are not based on VL pre-training. We be-

lieve that further integration of VL pre-training will provide

additional improvements. This, from another point of view,

demonstrates the superior performance of SWINBERT.

We further conduct analysis on the challenging TVC

dataset, and the results are shown in Table 3b. Note that

captions in TVC are designed to describe not only the visual

events but also supplementary information presented in the

subtitle sentences. VALUE [25], HERO [24] and MMT [23]

are three prior works, that leverage multimodal video in-

puts, including 2D/3D visual frame features and subtitle

sentences from the original TV show scripts. With video

frame inputs alone, SWINBERT is able to achieve better

performance than all three of them. This superior perfor-

mance suggests that SWINBERT is effective in exploiting

visual representations for video captioning.

Table 3c shows the detailed comparisons on YouCook2.

We list the prior works that take visual and/or textual

modality signals as inputs. Compared with visual-only ap-

proaches, SWINBERT brings significant CIDEr improve-

ments on YouCook2. To be specific, SWINBERT achieves

109.0 CIDEr score, which is +55.4 higher than that of

VALUE [25], and +44.0 higher than that of ActBERT [61].

We believe that SWINBERT can be further enhanced with

multimodal video inputs by leveraging additional modali-

ties such as subtitle and audio, which is worth exploring in

future study.

4.3. Ablation Study

We conduct comprehensive ablation study on multiple

datasets to investigate the capability of the proposed model.

Following [25], we use CIDEr metric [47] as our primary

evaluation metric for video captioning.

Impact of video frames. We first investigate the impact

of the sampling rate of the video frames on the task of

video captioning. Specifically, we uniformly sample T =
{2, 4, 8, 16, 32, 64} frames from the given video clip to train

and test our SWINBERT. For clarity, we disable the sparse

attention mask in this experiment. Table 4a shows the

model performance with varying number of video frames

on MSRVTT and VATEX. As we increase the number of

T Attn. Mask MSVD YouCook2 MSRVTT TVC VATEX

32 Full 127.9 104.2 52.3 53.0 71.1

32 Sparse (soft) 147.6 104.8 55.1 53.8 71.6
32 Sparse (binary) 141.0 101.4 55.3 52.8 71.6

48 Full 144.2 103.1 53.9 53.9 71.7

48 Sparse (soft) 147.8 105.0 54.6 55.2 71.9

48 Sparse (binary) 148.1 103.8 54.9 52.6 72.0

64 Full 144.7 106.1 55.3 54.3 72.7

64 Sparse (soft) 149.4 109.0 55.9 55.4 73.0
64 Sparse (binary) 146.3 106.6 55.0 53.1 71.9

Table 5. Effectiveness of soft/binary sparse attention mask on

longer video sequences. T indicates number of video frames. All

results are reported on CIDEr metric.

frames, we observe consistent improvements on the CIDEr

metric. These results suggest that the performance of video

captioning can be greatly lifted by using more densely sam-

pled frames.

Effectiveness of sparse attention mask. One important

question is whether adding sparse attention mask to the

transformer is helpful. To understand the effect of the sparse

attention mask, Table 4b shows the ablation study. First of

all, we present a baseline that does not have any learnable

attention mask, shown in the first row of Table 4b. In the

second row, we show another baseline which uses a learn-

able attention mask but no sparsity constraints are added.

This is equivalent to a random attention mask. Finally,

the bottom row shows our proposed method. We observe

that the proposed sparsity constraint is helpful in improving

video captioning in terms of CIDEr scores (i.e., +2.8 on

MSRVTT and +0.5 on VATEX).

Comparison between heuristic and learnable attention
masks. We also study the design of attention patterns for

constructing our sparse attention mask. To be specific, we

explore two heuristic designs including (i) Spatial Window:

A sliding window attention pattern that attends to its neigh-

bor tokens along the spatial dimension; (ii) Temporal Win-
dow: A sliding window attention pattern, which attends

along the temporal dimension. We use a fixed window

size w for both Spatial Window and Temporal Window,
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#Video Frames (T) VATEX MSVD YouCook2 MSRVTT TVC

32 71.6 147.6 104.8 55.1 53.8

64 73.0 149.4 109.0 55.9 55.4

32 → 64

(attn. mask only)
73.0 150.0 108.2 55.9 56.9

32 → 64

(entire model)
72.4 152.3 106.8 55.6 56.0

(a) Transfer between different frame rates within a dataset

Dataset CIDEr

VATEX 71.6

MSVD 147.6

VATEX → MSVD

(att. mask only)
148.1

VATEX → MSVD

(entire model)
160.3

Dataset CIDEr

VATEX 71.6

MSRVTT 55.1

VATEX → MSRVTT

(att. mask only)
55.8

VATEX → MSRVTT

(entire model)
54.5

(b) Transfer across datasets

Table 6. Transferability of SWINBERT (a) between different frame rates within a dataset and (b) across datasets. We experiment with

two settings: (i) transfer the learned sparse attention masks only (attn. mask only) and (ii) transfer the learned model weights along with

sparse attention masks (entire model). All results are reported on CIDEr metric.

and we have explored w = {10, 20, 50, 100} in our experi-

ments. Table 4c presents results with different sparse atten-

tion masks along with a Full Attention baseline, that is the

original attention mask allowing full attentions among all

video tokens. Results show that both Spatial Window and

Temporal Window brings performance degradation, com-

pared to the Full Attention baseline. In contrast, our learn-

able sparse attention mask improves over Full Attention

and heuristic sparse attention masks. We conjecture that

our sparsity constraint enforces the model to identify more

salient video frame patches along both spatial and tempo-

ral dimensions for caption generation. Visualizations of the

learned sparse attention masks shown later in this section

further corroborates our hypothesis.

Longer video sequences. We further examine the capa-

bility of the proposed sparse attention mask using longer

video sequences. We apply the learnable sparse attention

masks to T = {32, 48, 64} frames uniformly sampled from

the video clips, and the results are shown in Table 5 (Full
vs. Sparse (soft)). We observe that adding sparse atten-

tion mask to SWINBERT consistently improves the CIDEr

scores across different video sequence length, and push the

limit to new state-of-the-arts on all the 5 benchmarks. These

results suggest that the sparse attention mask is effective in

regularizing model training for long-range video sequence

modeling.

Binary sparse attention mask. Our learnable sparse at-

tention mask can be seen as a soft attention mask, which

consists of continuous values between 0 and 1. An interest-

ing question we aim to answer is: can we enforce it into a
binary mask? We test this hypothesis by simply threshhold-

ing the learned sparse attention mask with a fixed threshold

0.5. In addition, we fine-tune the model for a few training

steps to adapt it to the binarized mask. In Table 5, we ob-

serve that converting the mask to a binary one may have a

slight performance drop on the CIDEr metric, which is ex-

pected as we reduce the capacity of the attention mask. It

is worth noting that, with the binarized mask, the caption

performance is comparable or better than the Full Atten-

tion (Full) baseline. In future, we plan to leverage custom

CUDA implementations to construct this binary sparse at-

tention mask to improve runtime speed.

Generalization capability. Since our sparse attention mask

is optimized for task-specific performance improvements,

one may wonder its generalizabilty to different frame rates

and different datasets. We study the generalization capa-

bility under two configurations: (i) Across frame rates: we

first train SWINBERT at a slow frame rate, and then move

to a faster frame rate for further training. To achieve this,

we expand the learned sparse attention mask by linear inter-

polation along the temporal dimension; (ii) Across datasets:

we first train SWINBERT on one dataset, and then fine-tune

it on another dataset. The experiments are conducted in two

settings, transferring the whole model weights or only the

sparse attention mask.

Table 6a shows the results of transferring from 32 frames

to 64 frames. We observe that it yields a comparable or

better CIDEr score compared to using 64 frames directly. It

should be noted that, transferring only the sparse attention

mask is able to achieve reasonable CIDEr scores on the 5

datasets. The results suggest that linear interpolation along

the temporal dimension is effective for transferring between

different frame rates.

Table 6b shows the results of transferring across datasets.

In this experiment, we first train our model on VATEX

dataset, and then fine-tune it on MSRVTT and MSVD

datasets, respectively. We observe that such transfer learn-

ing scheme improves CIDEr scores for both datasets. As

the data domain between VATEX and MSVD is similar,

fine-tuning the entire model is more effective for improving

CIDEr scores on MSVD. The success in transfer learning

suggests that the performance of SWINBERT can be further

improved with pre-training on even larger-scale video-text

datasets, which we leave as future study.

Visualization of sparse attention mask. We visualize

the learned sparse attention pattern in Figure 3. Note that

the values are obtained from the soft attention mask with-

out thresholding. On the left, we show an example video

clip which is randomly sampled from MSVD dataset. Ad-

ditionally, we denote the patch regions and the correspond-
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Figure 3. Visualization of sparse attention mask along the temporal dimension. Our sparse attention mask discovers possible principle

in the video sequences. We observe that boundary-region tokens can be sparsely sampled along the temporal dimension. This is probably

due to similar background in a video clip. On the other hand, as the center-region tokens may contain more pixel variations (such as

movements, actions, or scene changes), they thus require denser sampling along the temporal dimension.

(a) Sparsity of the attention mask (b) CIDEr score

Figure 4. Training behavior of SWINBERT. (a) During training,

the proposed sparsity constraint effectively reduces the percentage

of non-zero elements in the attention mask. (b) Sparsity constraint

does not interfere captioning as CIDEr score keeps increasing.

ing token IDs at the first frame. On the right, for each to-

ken, we visualize the weights of the learned sparse atten-

tion mask along the temporal dimension using a horizontal

bar, where yellow color indicates stronger attention activity.

We briefly summarize our findings: (i) Many of the tokens

at the boundary are attending to some starting and ending

frames. This is possibly because the background does not

change much, and therefore for those tokens, the tempo-

ral information can be sparsely sampled with respect to the

attention mask; (ii) The center-region tokens may contain

more movements or scene changes, therefore require denser

sampling along the temporal dimension.

Training behavior. In Figure 4, we investigate the learning

behavior of our sparse attention mask. In Figure 4a, our pro-

posed sparsity constraint is effective in reducing the number

of non-zero elements in the attention mask, and more than

95% of the elements are set to zero in the end. This veri-

fies the sparsity of the attention mask. In addition, as shown

in Figure 4b, we find that our sparsity constraint does not

interfere the learning of video captioning, as CIDEr scores

keep increasing during the learning process.

Qualitative results. Figure 5 shows the qualitative exam-

ples of SWINBERT. We find that SWINBERT is capable of

recognizing the visual contents (e.g., dog and watermelon),

and correctly describes the actions and events (e.g., eating)

in the given video. We also note that, while our model gen-

Generated caption: A boy is jumping on a trampoline
GT1: A boy jumps on a trampoline 
GT2: Boy jumping on trampoline

M
SR

VT
T 

VA
TE

X 

Generated caption: A woman is lifting a large weight and then she is squatting
GT1: A women is doing a workout and squatting and lifting bags that are weighted
GT2: A woman bends and lifts a heavy weight bag several times in the gym

Generated caption: A dog is eating a watermelon
GT1: A dog is eating a watermelon 
GT2: A dog eats watermelon

M
SV

D

Generated caption: Season the meat with salt and pepper
GT: Sprinkle salt and pepper on top of the meatYo

uC
oo

k2

Figure 5. Qualitative examples generated by SWINBERT. The

generated captions are semantically reasonable and describe the

video contents correctly.

erates semantically reasonable captions, the predicted word

sequences may not always equal to the ground truth.

5. Conclusion

We present SWINBERT, a new end-to-end fully

Transformer-based architecture for video captioning. We

further propose to adaptively learn a sparse attention mask

for better video sequence modeling. Extensive experimental

results on 5 popular benchmark datasets show that SWIN-

BERT achieves better performance than the previous state-

of-the-art methods by a large margin. In future, we plan to

investigate large-scale video-language pre-training to fur-

ther enhance the captioning performance.
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