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Abstract

The scarcity of labeled data and the problem of model
overfitting have been the challenges in few-shot learning.
Recently, semi-supervised few-shot learning has been de-
veloped to obtain pseudo-labels of unlabeled samples for
expanding the support set. However, the relationship be-
tween unlabeled and labeled data is not well exploited
in generating pseudo labels, the noise of which will di-
rectly harm the model learning. In this paper, we pro-
pose a Clustering-based semi-supervised Few-Shot Learn-
ing (cluster-FSL) method to solve the above problems in
image classification. By using multi-factor collaborative
representation, a novel Multi-Factor Clustering (MFC) is
designed to fuse the information of few-shot data distribu-
tion, which can generate soft and hard pseudo-labels for
unlabeled samples based on labeled data. And we exploit
the pseudo labels of unlabeled samples by MFC to expand
the support set for obtaining more distribution informa-
tion. Furthermore, robust data augmentation is used for
support set in the fine-tuning phase to increase the labeled
samples’ diversity. We verified the validity of the cluster-
FSL by comparing it with other few-shot learning meth-
ods on three popular benchmark datasets, minilmageNet,
tieredlmageNet, and CUB-200-2011. The ablation exper-
iments further demonstrate that our MFC can effectively
fuse distribution information of labeled samples and pro-
vide high-quality pseudo-labels. Our code is available at:
https://gitlab.com/smartllvlab/cluster-fsl

1. Introduction

Deep learning methods based on neural networks [34]
have made great breakthroughs and been widely used in the
field of computer vision [15] [32] [23]. Unfortunately, deep
learning models require a massive amount of labeled data
to learn huge-scale parameters. Moreover, the scenes in
real life are complex and diverse. For instance, in some
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practical problems, there exist objects that are rarely ob-
served, such as the faces of the suspects, rare animal photos,
and so on, which makes it difficult to collect labeled data.
With the inspiration of the human vision system, much at-
tention has been paid to the development of few-shot learn-
ing [29] [38] [27] [7], which can release the strong demand
for data used for training deep models to some extent.

The goal of few-shot learning is to learn a new concept
or behavior from a very small number of samples based
on experience. Due to the particularity of few-shot learn-
ing, how to alleviate the overfitting problem that the model
hardly fits the distribution of the categories caused by the
scarcity of samples, has always been the focus and difficulty
of few-shot learning. With the development of few-shot
learning, methods have been proposed to solve the above
difficulty from three perspectives: model, data, and learn-
ing algorithm. Model-based methods [28] [39] aim to learn
the interactive information between samples by designing
a model that adapts to the few-shot case. As for data, re-
searchers have explored various methods to enrich training
data, such as data augmentation [28] [1] [48], which prepro-
cesses data through flipping, cropping, translation, rotation,
and zooming. However, data augmentation requires expen-
sive labor costs and relies heavily on domain knowledge,
resulting in some data augmentation methods being specific
to datasets. Few-shot image classification based on learn-
ing methods [45] [14] [38] aim to improve the generaliza-
tion of the model by using meta-learning or transfer learn-
ing strategy, which learns meta-knowledge or transferrable
knowledge shared in different subtasks. However, the per-
formance of few-shot learning is still far from satisfactory
because the small set of labeled data cannot provide rich
and essential information for recent model learning.

When the task has few-shot labeled samples and addi-
tional unlabeled data for new categories, a straightforward
approach is to utilize the unlabeled samples to alleviate
the scarcity of labeled samples. Unlabeled data has been
effectively explored by semi-supervised learning methods,
including a combination of weak data augmentation and
strong augmentation [37], consistent regularization [16],
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adversarial perturbation regularization [40], achieving very
exciting performance without using a large number of anno-
tated samples. If unlabeled data can be explored by comb-
ing semi-supervised learning with few-shot learning (e.g.,
mining pseudo-labels of unlabeled samples), problems such
as data scarcity can be solved to some extent. Recent few-
shot image classification combined with semi-supervised
learning [31] [22] [38] focuses on improving the accuracy
of pseudo-label prediction for unlabeled samples and is ex-
pected to obtain more correct pseudo-labels to expand the
training set. However, existing methods cannot obtain com-
pletely correct pseudo-labels. How to avoid the influence
of false pseudo-labels on model training and how to use
sample distribution information to assist the acquisition of
pseudo-labels are still current challenges.

To solve the aforementioned issues, we propose
a Clustering-based semi-supervised Few-Shot Learning
(cluster-FSL) method in image classification. By introduc-
ing labeled samples as factors of a cluster and represent-
ing unlabeled data on a multi-factor dictionary, we pro-
pose Multi-Factor Clustering (MFC) to guide the acquisi-
tion of pseudo-labels of unlabeled samples, which combines
the distribution information of labeled and unlabeled sam-
ples for assisting clustering and obtaining more accurate
pseudo-labels. In the fine-tuning stage, we design robust
data augmentation to augment the support set and adopt the
MEFC module to predict soft labels of query samples, learn-
ing more discriminative feature distribution. In the testing
stage, we use MFC instead of label propagation to assign
more accurate pseudo-labels to unlabeled samples for ex-
panding the test support set. The experimental results have
shown that our cluster-FSL has achieved state-of-the-art
performance (e.g., 2.45% improvement in the 5-way 1-shot
scene of minilmageNet when the backbone is ResNet-12)
on minilmageNet, tiered-ImageNet, and CUB-200-2011.

Our main contributions can be summarized as follows.

1. A novel multiple factor clustering (MFC) algorithm,
which includes factors of labeled and unlabeled samples
and exploits the distribution information among these fac-
tors via a multi-factor dictionary, is proposed, generating
more accurate clustering results.

2. The proposed MFC is integrated into the fine-tuning
stage and testing stage in a new way, with outputting high-
quality pseudo labels for expanding the query and test sup-
port set effectively.

2. Related Works
2.1. Learning-based Few-shot Image Classification

Learning-based few-shot image classification algorithm
aims to design a training and update mode suitable for few-
shot scenarios. Transfer learning and meta-learning meth-
ods have been successfully applied to few-shot classifica-

tion recently.

The transfer-learning-based methods pre-train the model
on a large amount of data from the base class and adapt the
pre-trained model to the few-shot learning task of identify-
ing new categories. Kozerawski et al. [14] learn a transfer
function that maps the embedding features extracted by the
pre-trained model to the classification decision boundary.
In [45], Yoo et al. identify groups of neurons within each
layer of a deep network that shares similar activation pat-
terns, and then use a training set for fine-tuning by group-
by-group backward propagation. Transfer-learning-based
methods can train a feature extractor with a powerful rep-
resentation ability. To take advantage of these methods, We
fine-tune a pre-trained model with the aid of the proposed
MEFC to improve the performance of our method.

Meta-learning-based methods, also known as learning to
learn, aim to learn a paradigm that can be adapted to recog-
nize new categories using few-shot train examples [46]. Re-
searchers improve the meta-learning-based methods from
the following aspects: the embedded module and shared
distance measurement method [41] [36] [39], the initial dis-
tribution of model parameters [4] [25], and update strategies
and rules of model parameters [21] [30]. As a classic and
commonly used and effective method for solving few-shot
classification tasks, although these methods have achieved
rapid development, the problem of sample scarcity is still a
remaining challenge.

Recently, Rodriguez et al. [33] propose the use of
Embedding Propagation (EP) as an unsupervised non-
parametric regularizer for manifold smoothing and apply
EP to a transductive classifier. However, this method has
a limited expansion of the labeled samples, which prevents
further improvement of the performance. To solve the issue
of EPNet [24], we use the proposed MFC module to obtain
pseudo-labels of unlabeled samples, which can alleviate the
scarcity of labeled samples effectively.

2.2. Semi-supervised Few-shot Methods Based on
Pseudo-label Acquisition

The few-shot image classification methods combined
with semi-supervised learning expand the labeled data by
obtaining the pseudo-labels of the unlabeled data and alle-
viates the problem of sample scarcity, such as introducing
class prototypes into the distribution of unlabeled samples
to predict pseudo-labels in [31], using label propagation to
obtain pseudo-labels in [22], using a pre-trained classifier
to predict pseudo-labels in [46], and leveraging the mani-
fold structure of labeled and unlabeled data distribution to
predict pseudo-labels in [17]. After obtaining the pseudo-
labels, these methods directly use them as labeled sam-
ples for model fine-tuning and training. However, they ig-
nore the impact of incorrectly pseudo-labeled data on model
training.
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To reduce the impact of incorrect pseudo labels, Wu et
al. [44] set a priority to select informative unlabeled samples
to be used in the subsequent training process, while Sun et
al. [20] proposed to limit the number of unlabeled samples
selected in each round of optimization and preferentially se-
lect pseudo-labeled samples with high confidence. Huang et
al. [11] presented a pseudo-loss confidence metric (PLCM),
which maps pseudo-labeled data of different tasks to a uni-
fied metric space and estimates the confidence of pseudo-
labeled according to the distribution component confidence
of its pseudo-loss. However, the method of using a trained
classifier to predict unlabeled samples one by one individ-
ually ignores the information at the data distribution level.
The influence of the intra-class and inter-class relationship
between unlabeled samples and the distribution information
of unlabeled samples and labeled samples on the acquisition
of pseudo-labels is not considered.

Recently, Huang et al. proposed Poisson Transfer Net-
work (PTN) [10], which is a transfer-learning-based semi-
supervised few-shot method. PTN model improves the ca-
pacity of mining the relations between the labeled and un-
labeled data for graph-based few-shot learning, and our
cluster-FSL is similarly dedicated to enhancing such ca-
pacity. However, our proposed MFC utilizes multiple fac-
tors to build a feature dictionary, which allows the overall
clustering to effectively strengthen the relationship between
labeled and unlabeled data, making the clustering being
more concise and more interpretable. Wang et al. [42] pro-
posed that the model iteratively selects the pseudo-labeled
instances according to its credibility measured by Instance
Credibility Inference (ICI) for classifier training. However,
if the quality of pseudo-labels is not directly improved, the
impact of incorrectly pseudo-labels on the model cannot be
reduced. In addition, ICI focuses on solving a linear regres-
sion hypothesis by increasing the sparsity of the incidental
parameters and ranking the pseudo-labeled instances with
their sparsity degree, while our MFC constructs a dictio-
nary by fusing the distribution of the labeled data, and uses
the reconstruction error to calculate the distance when clus-
tering.

3. Clustering-based semi-supervised Few-Shot
Learning

Obtaining pseudo-labels of unlabeled samples with high
confidence is a major challenge that the semi-supervised
few-shot learning model needs to solve. To effectively
solve the above challenge, we propose a novel model of
clustered-based semi-supervised few-shot learning (cluster-
FSL), which uses multi-factor clustering to obtain the high-
quality pseudo labels of unlabeled data. Furthermore, our
proposed cluster-FSL utilizes robust data augmentation and
MEFC modules to learn more discriminative features for im-
proving performance. Here we first present a multi-factor

clustering and then introduce three stages (e.g., pre-training,
fine-tuning, and testing) of cluster-FSL in detail.

3.1. Problem Definition

In the few-shot classification task, the dataset is divided
into training set, validation set, and test set, namely D =
{Dtrain, vaal, Dtest}. where Dtrain — {Xtrain’ Ytrain}
contains all training data and corresponding labels, and
Dtest = [Xtest ytesty contains all test data and corre-
sponding labels. All categories in the training set and test
set are denoted by C*"'™ and C*®*!, respectively, such that
Ctrain n Ctest = @, The categories in the validation set do
not overlap with C!"%" and C'¢%!, Referring to episodic
learning, we constructs n independent few-shot tasks to
form episodic set I' = {T}", T!*s*}"_,. For each training
task 7", we randomly select N categories from the train-
ing set, and randomly select K samples from each category
to form a training support set S = {z%, y?}V X% where
xi € X' and yi € Y™ From the same N cate-
gories, we select ¢ non-repeated samples to form the train-
ing query set Q" = {27, y?} %% where z¢ € X% and
y! € Y'rain_ The validation set DV is used to determine
the best model, and the model with the highest accuracy
on the validation set will be selected. For each testing task
Ttest, the model also randomly selects N categories from
the test set, and randomly select K samples from each cat-
egory to obtain the test support set S*** = {x%, y? ;V:X1K ,
and select ¢ non-repeated samples from each category to
form the test query set Q***" = {z7, y‘?};‘vleq. In addition,
we randomly select u samples from the unselected samples
under the N categories included in the test set, and remove

the labels to form an unlabeled set U**s* = {4} 5"

meAfll@® A Multiple Factors OOA Unlabeled Samples

Figure 1. The clustering process of MFC. Among them, black dots
represent the cluster centers after the update, and gray-black dots
represent the cluster center before the update.

3.2. Multi-Factor Clustering

Given a labeled set L and an unlabeled set U, we propose
a clustering method called multi-factor clustering (MFC) to
predict the pseudo-labels of samples in U by using the dis-
tance between samples and factors (e.g. cluster center and
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labeled samples). By utilizing multiple factors to construct
a feature dictionary and using reconstruction error as a dis-
tance measurement, our MFC is suitable for the few-shot
scenario to obtain pseudo-labels of unlabeled samples.

Pseudo-label Acquisition There are a small number of
labeled samples in the few-shot learning task, and the num-
ber of categories is known. Under the setting of N-way K-
shot, the clusters in MFC are expressed as C' = {C;}¥ ;,
where NN is the number of clusters. The center of each clus-
ter is initialized to the within-class mean of the labeled sam-
ples by

1<
cf:?Zlé (1)
j=1

where l; € Lis the j**
category labeled sample and ¢} represents the center of i"
cluster.

Traditional clustering method [31] only considers the
distance between an unlabeled sample and each cluster cen-
ter, while ignoring data distribution information and the fea-
ture information of the K labeled samples belonging to the
same category. We regard the factor of a cluster as an em-
bedded representation that can represent the cluster (e.g. the
cluster center and a labeled sample) and then propose multi-
factor clustering (MFC), which sets up multiple factors for
each cluster and improves the calculation method of the dis-
tance from the unlabeled sample to each cluster.

The factors F' of the i*" cluster in MFC are defined as
F; =[l}, - ,l%,ct], which includes a cluster center and
the samples belonglng to i cluster in the labeled set L.

To release the small-sample-size problem, the proposed
MEC adopts all class-specific factors as a dictionary to col-
laboratively represent an unlabeled sample u; € U:

FBi|l5 + €18:3 )

embedding representation of the i‘"

B; = arg min ||u; —

i

where € is a constant of 0.01 to regularize the representa-
tion, /6 - [ﬂzl?ﬁz?f" 7/61N] ﬁz]eR(K+1)X1 is the
sub-coefficient vector associated to the j*" cluster. We refer
to the solution in collaborative representation [47] to solve
the 3, in Eq. 2. Then we use the reconstruction errors asso-
ciated with each cluster as the distance from the unlabeled
sample to the cluster as shown in Fig.1. The reconstruction
error is defined as:
dij = |Ju; — Fjﬁi,j”% 3)
Calculating this reconstruction error takes into account the
factors of all categories, which make different cluster fac-
tors competitively represent the unlabeled data, outputting
a more robust clustering.
According to the minimum reconstruction error from the
unlabeled data u; to each cluster, the clustering result is

Algorithm 1 Process description of Multi-Factor Clustering

Input: Labeled set L = {I;,y;}; N XK , unlabeled set U =
{ui} "

Output: Pseudo-labels of samples in unlabeled set P =
{pi, 7 Yig; qu

1: while True do

2:  for Each unlabeled sample u; € U do

3: Compute the reconstruction error d; ; by Eq.(3)

4: Obtain the clustering result

arg minlSjSN di,j

(07 =

5: Update the clusters and the cluster centers by
Eq.(4)

6:  end for

7. if The cluster centers remain unchanged then

8: Calculate the soft pseudo label p, and hard pseudo
label g; by Eq.(5).

9: Break

10:  end if

11: end while

a; = argmin, ;< v d; j. And each cluster is updated by,
C’aq = OO/? U{u;}
Z 2L v] - 17 27 7 (4)

zkEC

where ¢} is the ;"
the cluster factor.

Multiple factors can make the clustering more accurate
compared to only one factor because they can better rep-
resent the embedding manifold of the cluster. After sev-
eral iterations, when the clusters and cluster centers do not
change, the cluster is denoted as C' = {C1,C5, -+ ,Cn}.
We take the clustering result of the last iteration to obtain
soft labels and hard labels for unlabeled data The soft label
P; = [pi1,Pi2, - ,pin]| of the unlabeled sample u; are
defined as:

cluster center, which is used to update

—log(ds,;/T) s
Pij = Zk —log(d; k/T) ©)

where 7 is a temperature parameter and p; ; denotes the
probability that the unlabeled sample u; is predicted to be
the j** class. Thus, the hard label is §; = arg max; p; ;.
The procedure details of MFC are shown in Algorithm. 1.

3.3. Training procedure

To train a model with good generalization ability, we
firstly use D" to train a pre-trained model by fully-
supervised learning and self-supervised learning. Then we
use the episode set I to fine-tune the pre-trained model by
multi-factor clustering and label propagation [12].
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Figure 2. The framework of the fine-tuning phase. At first, we use more robust data augmentation to augment the support set. The samples
from the augmented support set and the query set undergo feature extraction and embedding propagation to obtain features z. Then based
on the support set, the MFC module and the label propagation module obtain the soft labels of the query set samples.

3.3.1 Pre-training phase

We use the cross-entropy loss to fit the model’s classi-
fication predictions to the ground-truth labels. For self-
supervised learning, another classifier that predicts image
rotations is added to this model which is same as [33]. In
this case, the pre-trained model can extract representative
embedding from an image for few-shot tasks.

3.3.2 Fine-tuning with data augmentation and MFC

In this phase as shown in Fig.2, we introduce data aug-
mentation for support set and a cross-entropy loss based
on MFC to learn an encoder with good generalization that
can extract powerful embeddings. We retain the encoder
of the pre-trained model and discard its classifiers to fine-
tune the encoder by episodic learning. For a training task
T;, it contains a support set S and a query set Q. We
use Randaugment [3] for support set to avoid over-fitting.
Because the size of the support set is too small in few-
shot learning, the model can easily overfit a small amount
of data. However, Randaugment can dramatically change
the image to increase the difficulty of the model to fit data
distribution. The augmented support set is ag(S'") =
{ag(x$),ys }X3% . After the model extracts embeddings
for all samples of the augmented support set and the query
set, we use embedding propagation [33] to process these
features:

z,=ep(zi, Z) 6)

where Z = {z1,22, -+ ,ZNx(K+q) ) denotes the embed-
ding set of the images from ag(S™) and Q*". ep(.,.) is the
embedding propagation which can increase the smoothness

of the embedding manifold by the Euclidean distances be-
tween embeddings.

We construct two cross-entropy losses based on multi-
factor clustering and label propagation [12], respectively:

lye =XNvre + (1 =N ip (N

where A is a hyperparameter, [y;pc is the cross-entropy
loss based on multi-factor clustering, and [, p is the cross-
entropy loss based on label propagation.

For multi-factor clustering, ag(S!") can be considered
as labeled set and Q" can be considered as unlabeled set in
a training task 7;. We can obtain the soft pseudo-labels of
training query samples by MFC, and then use ground-truth
labels to calculate the cross-entropy loss:

q
Imrc = L > logp; ®)
1= '
where Piy? denotes the probability that the i*” query sam-
ple is predicted to be the y;! category in the MFC. The prob-
ability p; ; is defined in Eq.(5).
Similarly, the cross-entropy loss based on label propaga-
tion is defined as:

1< N
lp == > log iy ©)
i=1

where p; o is the predicted probability obtained by label
propagation [12].

3.3.3 Expanding support set by MFC in testing phase

In this phase as shown in Fig.3, we exploit the samples in
the test support set $*¢5* and the unlabeled set U**** to infer
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Figure 3. The framework of the testing phase. After features ex-
traction of unlabeled samples and supporting samples, the MFC
module is used to obtain pseudo-labels of unlabeled samples to
expand the support set. The expanded support set is used for la-
bel propagation with the query set, and the labels of the query set
samples are obtained.

the categories of samples in the test query set Q*¢s?, Differ-
ent from EPNet [33], we use MFC to assign pseudo-labels
to unlabeled data and expand the test support set. And then
the categories of samples in test query set Q4¢*? are obtained
by label propagation using the expanded support set. The
advantage of using MFC is that MFC can generate high-
quality pseudo-labels for unlabeled data in few-shot tasks.

We extract the embedding representations by the trained
encoder from {S%st Qt¢st Utest} and apply embedding
propagation on these embedding representations. S%5! is
viewed as the labeled set to cluster unlabeled data in U5t
by MFC. We select the unlabeled data with high-confidence
pseudo-labels to form a subset by:

et = {(at, gi)l=} € U} (10)

where g, is the hard pseudo-label obtained by MFC for = .
The test support set is updated by:

S' — Stest U 0test (11)

At last, we predict the labels of the data in Q***! by label
propagation based on expanded test support set S .

4. Experiment
4.1. Datasets

The minilmageNet dataset is a subset extracted from the
ImageNet [34] dataset by Vinyals et al. [41]. Our experi-
ment uses all 60,000 images in the dataset, and according
to the standard of the traditional few-shot learning meth-
ods [41] [39] [5] [13], the 100 categories are divided into
64 training categories, 16 verification categories and 20 test
categories.

The tieredImageNet is proposed by Ren et al. [31] for
few-shot learning, and is a subset extracted from the Ima-
geNet [34] dataset. It contains 34 superclasses which can be
divided into 608 categories, with a total of 779,165 images.
Our experiments use all the image data in this dataset and
divide these superclasses into 20 training superclasses (351
categories), 6 validation superclasses (97 categories) and 8
test superclasses (160 categories), following the traditional
few-shot learning methods [6] [35].

The CUB [2] [8] dataset is a fine-grained dataset based
on CUB200 [43], which contains 200 classes and 11,788
images split in 100 base, 50 validation and 50 novel classes.

4.2. Model Settings

In the pre-training phase, the cluster-FSL model is
trained on 200 epochs with a batch size of 128, using all
training categories and data. The dropout rate is 0.1, the
weight decay is 0.0005, and the momentum is 0.9. The
pre-trained network is updated using the stochastic gradi-
ent descent algorithm, with an initial learning rate of 0.1.
The learning rate is multiplied by 0.1 when the model
reaches a plateau that the validation loss had not improved
for 10 epochs. When the structure of the feature extrac-
tor is ResNet-12, the output feature dimension n is 512.
When the structure is WRN-28-10, the output feature di-
mension 7 is 640. In the fine-tuning phase, the cluster-FSL
model is trained on 200 epochs, the number of iterations is
600, the weight decay is 0.0005, and the momentum is 0.9.
The model is updated using the stochastic gradient descent
method. The learning rate is 0.001, and it is multiplied by
0.1 when the model reaches a plateau. In the testing phase,
the cluster-FSL model is tested on 1000 epochs, and the av-
erage of the accuracy of the model classification results is
used as the evaluation result. The number of categories in
each few-shot task IV is 5. For each category, the number
of supported samples K is 1 and 5, the number of query
samples g is 15, and the number of unlabeled samples u is
100. The hyperparameter A is 0.8, the temperature param-
eter 7 is 0.1 and the hyperparameter € is 0.01. The number
of iterations of the clustering process is 10.

4.3. Comparative Experiment

The baseline models for comparative experiment are
EPNet [33], ICI [42] and some classic or state-of-the-
art few-shot learning methods, which are TADAM [26],
MTL [38], MetaOpt-SVM [18], CAN [9], LST [39] and
LEO [35]; semi-supervised few-shot learning methods,
which are TPN [22], TransMatch [46] and PLAIN [19]; and
graph-network-based method, wDAE-GNN [6]. In addi-
tion, comparative experiments were conducted for PTN [10]
and for clustering methods proposed by Ren et al. [31], such
as Soft K-Means, Soft K-Means+Cluster, Masked Soft K-
Means. We use quantitative analysis and comparison meth-
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Table 1. The average classification accuracy of 1000 few-shot
tasks in the 5-way 1-shot and 5-way 5-shot scenarios of the cluster-
FSL model on the minilmageNet dataset.

Table 2. The average classification accuracy of 1000 few-shot
tasks in the 5-way 1-shot and 5-way 5-shot scenarios of the cluster-
FSL model on the tieredImageNet dataset.

Methods 5-way l-shot  5-way 5-shot Methods 5-way 1l-shot  5-way 5-shot
ResNet-12 ResNet-12
TADAM 58.50+0.30%  76.70+0.30% MetaOpt-SVM 65.994+0.72%  81.56+0.53%
MTL 61.20£1.80%  75.504+0.80% CAN 73.21£0.58%  84.934+0.38%
MetaOpt-SVM 62.64+0.61%  78.601+0.46% LST 77.70£1.60%  85.20%0.80%
CAN 67.19+£0.55%  80.64+0.35% EPNet 76.53£0.87%  87.32+0.64%
LST 70.10£1.90%  78.70+0.80% PLAIN 82.914+2.09%  88.29+1.25%
EPNet 66.50+0.89%  81.06+0.60% EPNet-SSL 81.794+0.97%  88.45+0.61%
TPN 59.46% 75.65% cluster-FSL(our) 83.89+0.81% 89.94+0.46 %
PLAIN 74.38£2.06%  82.02+1.08% WRN-28-10
EPNet-SSL 75.36£1.01%  84.07+0.60% Soft K-Means 51.524+0.36%  70.2540.31%
cluster-FSL(our) 77.81£0.81% 85.55+0.41% Soft K-Means+Cluster  51.85£0.25%  69.42+0.17%
WRN-28-10 Masked Soft K-Means  52.394+0.44%  69.88+0.20%
Soft K-Means 50.09+£0.45%  64.59+0.28% LEO 66.33+0.05%  81.4440.09%
Soft K-Means+Cluster  49.03+0.24%  63.08+0.18% wDAE-GNN 68.16+0.16%  83.09+0.12%
Masked Soft K-Means  50.414+0.31%  64.39+0.24% EPNet 78.50+0.91%  88.36+0.57%
LEO 61.76+£0.08%  77.594+0.12% ICI 85.44% 89.12%
wDAE-GNN 62.96+0.62%  78.85+0.10% EPNet-SSL 83.68+0.99%  89.34+0.59%
EPNet 70.74£0.85%  84.34+0.53% PTN 84.70+1.14%  89.14+0.71%
TransMatch 62.93+1.11% 82.24+0.59% cluster-FSL(our) 85.74+0.76% 90.18+0.43%
ICI 71.41% 81.12%
EPNet-SSL 79.22+0.92%  88.05+0.51% Table 3. The average classification accuracy of 1000 few-shot
PTN 81.57+£0.94%  87.17£0.58% tasks in the 5-way I-shot and 5-way 5-shot scenarios of the
cluster-FSL(our) 82.63+0.79% 89.161+0.35% cluster-FSL model on the CUB-200-2011 dataset. (-)tdenotes this

ods to test the classification accuracy of the cluster-FSL
model and evaluate the performance of the model. And we
conduct experiments in two scenarios, 5-way 1-shot and 5-
way 5-shot, which are two common scenarios in the field
of few-shot learning. Using ResNet-12 and WRN-28-10 as
the backbone, we get the comparative experimental results
on minilmageNet, tieredImage and CUB-200-2011 datasets
as shown in Table 1, Table 2 and Table 3.

In Table 1, compared with the best performance EPNet-
SSL [33] on the minilmageNet dataset, when the backbone
1s ResNet-12, the cluster-FSL model achieves 2.45% and
1.48% improvement in the 1-shot and 5-shot scenes respec-
tively. When the backbone is WRN-28-10, our cluster-FSL
achieves 1.06% and 0.73% improvement at 1-shot and 5-
shot scenes, respectively. Table 2 shows the comparative
experimental results on the tieredImageNet dataset. Our
cluster-FSL achieves 2.10% and 1.46% imporvement at the
1-shot and 5-shot when the backbone is ResNet-12, which
is the state-of-the-art performances. When the backbone
is WRN-28-10, our cluster-FSL also shows a 1.04% and
1.04% improvement under 1-shot and 5-shot,respectively.
On CUB-200-2011 dataset, Table 3 shows the improvement
of our cluster-FSL compared to EPNet [33] and ICI [42].

The results of comparative experiments illustrate that our

method uses ResNet-12 as the backbone, while (-)¥denotes this
method uses WRN-28-10 as the backbone.

Methods 5-way l-shot  5-way 5-shot
EPNett 82.85+0.81% 91.32+0.41%
cluster-FSL(our)t 87.36£0.71% 92.17+0.31%
ICI 91.11% 92.98%
EPNet# 87.75+£0.70%  94.03+0.33%
cluster-FSL(our)f 91.804+0.58% 95.07+0.23%

Table 4. In 5-way 5-shot setting, the impact of different methods
of obtaining pseudo-labels based on cluseter-FSL.

Methods minilmageNet tieredlmageNet
Label propagation  87.99+0.37%  89.454+0.45%
Kmeans 88.05+0.40%  88.48+0.53%
MFC(our) 89.16+0.35%  90.18+0.43%

cluster-FSL has excellent performance under both 1-shot
and 5-shot. Moreover, our MFC has stronger ability to
strengthen the relationship between multiple factors.

4.4. Ablation Studies

In this section, we have done a series of complete abla-
tion experiments for the role of each module at each stage,
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Table 5. In 5-way 1-shot setting, the impact of MFC and label
propagation (LP) on fine-tuning and testing phase of cluseter-FSL.

Settings Fine-tune
LP MFEC MEFEC + LP
Test LP 78.71% | 79.32% 79.81%
MFC + LP | 80.88% | 82.56% 82.70%

Table 6. In 5-way 1-shot setting, the impact of MFC and data
augmentation on fine-tuning phase of cluseter-FSL.

Data Augmentation MFC ACC

X 79.87£1.10%
X 80.88+1.07%
v 81.73+1.09%
v 82.70+1.03%

N X N X

which are unified with WRN-28-10 as the backbone and
evaluate the accuracy under 5-way 1-shot or 5-way 5-shot.
To verify that MFC is effective in obtaining pseudo-labels
with higher correctness, we compared different methods
of obtaining pseudo-labels, such as label-propagation [33]
and Kmeans, on the minilmageNet and tieredlmageNet un-
der the cluster-FSL, as shown in Table 4. The experimen-
tal results show that compared with label propagation and
Kmeans clustering, the MFC module has improvements
on the minilmageNet and tieredlmageNet datasets, which
shows that multiple factors contain more sample distribu-
tion information and improve classification accuracy.

In order to verify that the MFC and label propagation
modules included in the cluster-FSL play a crucial role in
the experimental results, a full-scale ablation experiment is
conducted for each component of the fine-tuning and test-
ing phases, as shown in Table 5. For the fine-tuning stage,
we compared the model with only label propagation, only
MFC module, and both. For the three situations of the fine-
tuning stage, we explored the impact of different settings
in the testing stage on performance. For testing stage, the
"MFC+LP” in Table 5 means that the testing model uses the
MEC to obtain the expanded support set and then uses the
label propagation to predict the labels of the query set. And
the ”LP” means that we only use label propagation to infer
the labels of the query set. The results show that the MFC
plays a important role in the model, and it can improve the
performance of the model.

During the fine-tuning phase of the model, the support
set was extended with data augmentation and the query
samples were predicted by MFC module. Therefore, we
carry out ablation experiments for both parts and the results
are shown in Table 6, which shows the effect of both data
augmentation and MFC.

82.7

82
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% %
® o =) =
=] w —_ wn

N
hd
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Figure 4. The impact of different A on the minilmageNet dataset
in 5-way 1-shot setting.

4.5. Parameters Analysis

Our cluster-FSL model has one hyperparameter, A,
where ) in Eq.(7) is used to control the proportion of MFC
and label propagation during the fine-tuning phase. The pa-
rameter analysis experiment is done on the minilmageNet
dataset with WRN-28-10 as the backbone, and the 5-way
1-shot setting is adopted. As shown in Fig.4, the best accu-
racy is obtained at 0.8, which can achieve 82.70%. When
the value of A is 0 or 1, it corresponds to not considering
the effect of MFC or label propagation in Eq.(7) during the
fine-tuning phase of the model.

5. Conclusion

We proposed a novel clustering-based semi-supervised
few-shot learning (cluster-FSL) image classification
method, which has effectively alleviated the problem of
sample scarcity. In cluster-FSL, we presented a multi-
factor clustering (MFC) algorithm by integrating factors
of labeled and unlabeled data, which effectively improve
the quality of pseudo-labels. Furthermore, in the model
fine-tuning stage, we used more robust data augmentation
to further augment the dataset and learned the model
with the joint supervision of multi-factor clustering and
label propagation. On the three benchmark datasets, our
cluster-FSL has state-of-the-art performances than other
few-shot learning methods.

Limitations: our proposed cluster-FSL needs to intro-
duce extra unlabeled data and make an assumption that un-
labeled data and labeled data are implicitly embedded in a
manifold to ensure the generation of pseudo-labels.
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