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Abstract

Egocentric activity anticipation involves identifying the
interacted objects and target action patterns in the near
future. A standard activity anticipation paradigm is re-
currently forecasting future representations to compensate
the missing activity semantics of the unobserved sequence.
However, the limitations of current recursive prediction
models arise from two aspects: (i) The vanilla recurren-
t units are prone to accumulated errors in relatively long
periods of anticipation. (ii) The anticipated representation-
s may be insufficient to reflect the desired semantics of the
target activity, due to lack of contextual clues. To address
these issues, we propose “HRO”, a hybrid framework that
integrates both the memory-augmented recurrent and one-
shot representation forecasting strategies. Specifically, to
solve the limitation (i), we introduce a memory-augmented
contrastive learning paradigm to regulate the process of
the recurrent representation forecasting. Since the exter-
nal memory bank maintains long-term prototypical activity
semantics, it can guarantee that the anticipated represen-
tations are reconstructed from the discriminative activity
prototypes. To further guide the learning of the memory
bank, two auxiliary loss functions are designed, based on
the diversity and sparsity mechanisms, respectively. Fur-
thermore, to resolve the limitation (ii), a one-shot transfer-
ring paradigm is proposed to enrich the forecasted repre-
sentations, by distilling the holistic activity semantics af-
ter the target anticipation moment, in the offline training.
Extensive experimental results on two large-scale data sets
validate the effectiveness of our proposed HRO method.

1. Introduction

With the popularity of wearable cameras, e.g., GoPro, e-
gocentric perception has attracted extensive attention over
the past decade [40, 51]. Among the diverse egocentric vi-
sion tasks [3,28,34,45], anticipating the near future activi-

Figure 1. Illustration of task definition and basic pipeline for ego-
centric activity anticipation.

ties is a crucial high-level task, due to its wide-spread real-
world applications [16, 32], e.g., human-robot interaction,
autonomous driving, abnormal event alerts, etc. However,
anticipating an unseen egocentric-activity before it starts is
non-trivial, because of a number of challenges, such as the
semantics gap between past and future events, the scarci-
ty of useful clues in incomplete observations, and frequent
ego-motion and cluttered backgrounds in egocentric videos.
Therefore, egocentric activity anticipation (EAA) is still a
challenging task.

As illustrated in Fig. 1, following the definition in [8],
the “observation time” to is the temporal length of the ob-
served video clip, and the ”anticipation time” ta indicates
the temporal interval before the target anticipation moment.
Thus, the goal of the EAA task is to anticipate an egocen-
tric activity occurring at moment δs, by merely observing
a video clip in the range of [δs − (to + ta), δs − ta], i.e.,
preceding the target activity beginning at moment δs by a
duration ta. Recurrent forecasting [12, 54] is a commonly
used paradigm for anticipating future activities, as it is flex-
ible to predict results at any moment. Typically, the recur-
sive anticipation model summarizes the past observations,
and then forecasts what will occur in the near future. This
process is continuously conducted until the target anticipa-
tion moment δs arrives. Therefore, the performance of a
recursive anticipation system depends on whether it is able
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to forecast discriminative representations, which cover the
activity semantics in the unseen video sequence. However,
the current recursive-model-based EAA methods still strug-
gle to achieve satisfactory performance.

We argue that the improvement is impeded by two ma-
jor obstacles. First, the vanilla recursive model, based on
recurrent neural networks (RNNs), is prone to accumulated
prediction errors, especially in relatively long-period antic-
ipation. Although some methods [40, 54] attempted to in-
troduce contrastive learning [6, 22, 38] to regulate the rep-
resentation forecasting, the performance still obviously de-
grades when the anticipation interval increases. The under-
lying reason is that the RNN-based model mainly updates
the memory cell states by remembering information from
the previous step, which makes it hard to maintain long-
term dependencies among all the past steps. In addition,
given a short-length observation input with limited dynam-
ics, it is difficult for the RNN-based model to anticipate the
subsequent activities, as the cell states can only reveal the
relations within the current observed short sequence, with-
out any access to external knowledge. Second, the exist-
ing methods merely force the forecasted representations to
compensate the semantics of the anticipation time, which
are likely insufficient to represent the future activity. In oth-
er words, the lack of contextual cues after the target antic-
ipation time-step poses great challenges to the anticipation
model to make correct prediction, especially when the an-
ticipation moment is at the transition boundary of two con-
secutive activities. For example, as shown in Fig. 1, even
if the forecasted representations contain the semantics of
“scoop cheese” covering the anticipation time, directly u-
tilizing these features to infer the subsequent activity, i.e.,
“put down cheese” is still ambiguous. The relations be-
tween the representations before and after the anticipation
time step have not been well studied.

To address the aforementioned issues, in this paper, we
propose a hybrid framework in a combination of memory-
augmented recurrent and one-shot representation forecast-
ing, termed as “HRO”, for egocentric activity anticipation.
First, to mitigate the error accumulation issues in conven-
tional recursive models, we introduce a memory bank in-
to the process of recurrent representation forecasting. D-
ifferent from the internal memory cells of the RNN unit-
s, the memory bank externally stores long-term prototypi-
cal activity semantics learned from training data, which are
not limited to the current observation inputs. Our model
is trained to reconstruct future representations by a convex
combination of the memory items, via an attention-based
memory addressing mechanism. To further guide the learn-
ing of the memory bank, we design two loss functions,
based on a diversity scheme and a sparsity scheme, respec-
tively, which can force the memory bank to be equipped
with the desired properties. Second, to maximally incor-

porate contextual clues into the forecasted representation,
we propose a one-shot transferring strategy to explicitly ex-
plore semantics relations between the features before and
after the anticipation time-step. Specifically, in the offline
training, at each target anticipation moment, we adopt a
transition layer to project the features anticipated by the re-
current model, into another space to simulate the activity
semantics extracted from a future video clip. This holistic
transferring process is supervised by a similarity learning
loss, which minimizes the semantics gap between simulat-
ed and future features.

The main contributions of this paper can be summarized
in three ways. 1) We propose a memory-augmented re-
current representation forecasting paradigm, which aims to
guarantee that the anticipated representations always con-
tain the discriminative activity semantics, with the help of
a compressed memory bank. Moreover, two regularization
loss terms, based on the diversity and sparsity mechanisms,
are designed to guide the updating of the memory bank. 2)
A one-shot transferring strategy is presented to further re-
calibrate the forecasted representations, by injecting future
activity semantics, at the target activity anticipation time
step. 3) Extensive experimental results on two challenging
data sets, i.e., EGTEA Gaze+ [32] and EPIC-Kitchens [9],
highlight the performance improvements of our proposed
hybrid framework over other state-of-the-art methods.

2. Related Work
Egocentric Activity Recognition. With the development
of deep-learning-based video recognition methods and the
emergence of large-scale egocentric video data sets [9,43],
a great improvement has been witnessed in egocentric ac-
tivity recognition [13, 33, 50]. In the early stage, a popular
pipeline was used to locate the regions involving human-
object interaction by utilizing diverse frame-level annota-
tions, such as gaze cues [25, 42], hand segmentation [35].
However, these required fine-grained annotations may be i-
naccessible in practice. To alleviate this issue, Ego-RNN
[46] and LSTA [44] incorporated spatial attention mech-
anism into ConvLSTM blocks to localize relevant regions
across frames, in a weakly-supervised manner. SAP [50]
leveraged a detector to generate local object-centric fea-
tures, which were employed as the guidance information
to identify human-object interactions via a symbiotic at-
tention module. Our work builds on the basic concept ex-
plored in egocentric activity recognition, such as the extrac-
tion of spatio-temporal representations, the exploration of
multiple modalities, etc. However, different from the afore-
mentioned works, we address the task of egocentric activity
anticipation, which focuses on compensating the future se-
mantics of the unseen sequence, rather than merely extract-
ing discriminative features from the observed video clips.
Early Activity Recognition. The goal of early activity
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recognition [1, 4, 24, 39] is to predict the category of an
ongoing activity, based on partial observations with incom-
plete executions [10]. Kong et al. [30] proposed a deep
sequential context model to enrich the representations ex-
tracted from partially observed videos, for activity predic-
tion. Wang et al. [49] employed a teacher-student learn-
ing framework, to transfer knowledge gained from an ac-
tivity recognition model to the target early activity predic-
tion model. Considering the similarity between the tasks
of early recognition and anticipation, both need to forecast
the representations or activity semantics in the unseen video
parts. For these two online tasks, the RNN-based units, e.g.,
LSTMs or GRUs, have been widely utilized as the basic ar-
chitecture to process streaming video. However, in the task
of activity anticipation, the model is required to recognize
the activity ahead before it begins, which means that the
target activity cannot even be partially observed in the an-
ticipation time.

Egocentric Activity Anticipation. Starting with the com-
petition proposed in [8], in the past few years, various
methods and frameworks [14, 15, 41] have been investigat-
ed on activity anticipation in egocentric videos. Girdhar et
al. [18] devised an attention-based video modeling archi-
tecture, i.e., Anticipative Video Transformer (AVT), for e-
gocentric activity anticipation. Ke et al. [29] proposed a
time-conditioned prediction framework, by explicitly mod-
eling the anticipation time interval as a parameter. RU-
LSTM [16] leveraged multimodal data, including RGB, op-
tical flow and object features, as inputs, and employed both
rolling and unrolling LSTM blocks to improve the anticipa-
tion performance. To further tackle the error-accumulation
issues of vanilla RNN-based anticipation models, SRL [40]
and LAI [54] introduced contrastive learning to regularize
the forecasting of future representations. Fernando et al. et
al. [14] designed a series of Jaccard similarity measures
to build the relations between past observations and future
sequences. However, different from the above-mentioned
works, we improve the recursive representation forecasting
framework by introducing a memory bank, which can main-
tain prototypical activity semantics learned from the train-
ing data. Moreover, we build a hybrid anticipation frame-
work by incorporating a one-shot transferring paradigm, to
further recalibrate the forecasted representations by explor-
ing future semantics, at the target anticipation moment.

Memory Networks. In the deep-learning domain, the
memory network can be categorized into two branches. One
is the internal memory, which implicitly updates in a re-
current fashion, e.g., LSTM [23], GRU [7]. The other is
the external memory [19, 21, 31, 53], which can be read or
written, via an attention-based scheme. According to the
characteristics of the stored data, the external memory can
be categorized into episodic and non-episodic types. The
episodic memory [20, 52] is limited to the current observa-

tions, while the non-episodic methods [27,37] aim to learn a
persistent memory. In our work, we choose the RNN-based
recursive model to forecast the representations in the antic-
ipation time interval, as the internal memory is flexible to
give the anticipation results at any time-step, and is well-
suited for online tasks. In addition, we also maintain an ex-
ternal memory bank, which can augment the recursive an-
ticipation model to reconstruct future representations from
the discriminative activity prototypes.

3. Methodology
3.1. Problem Formulation

The objective of egocentric activity anticipation is to
predict the label of the target activity in ta time steps a-
head of when it occurs, by observing a video clip with a
length of to time-steps. Thus, the anticipation task can
be formulated as follows. Given an observed video clip
Vo = {v1, v2, ..., vto} containing to segments, after antic-
ipating the next content involving ta time-steps, the model
is required to predict the category of the activity at the cur-
rent time-step. Here, each time-step spans a unit segment of
τ seconds. As shown in Fig. 2, the proposed method con-
sists of three key parts, i.e., observation summary, recurrent
representation forecasting with memory bank, and activity
anticipation with one-shot transferring, which will be intro-
duced in detail in the following subsections.

3.2. Observation Summary

For egocentric activity anticipation, summarizing useful
visual information from the observed video clip is crucial
for the subsequent representation forecasting. Specifically,
for each time-step i (i = 1, 2, ..., to), we employ a shared
feature extractor ϕ(·), e.g., the I3D [5] or TSN [48] net-
works, to obtain the segment embeddings ei ∈ Rd, as fol-
lows:

ei = ϕ (vi) . (1)

Then, we further leverage a recursive aggregator ψ(·), e.g.,
the GRU model, to sequentially integrate the segment em-
beddings ei into a context feature fto ∈ Rd at the last ob-
served time-step, as follows:

fto = ψ (e1, e2, ..., eto) . (2)

3.3. Recurrent Representation Forecasting with
Memory Bank

Memory-augmented Representation Forecasting. In or-
der to maintain prototypical activity semantics and explore
the multi-hypotheses nature of the anticipation task, we in-
troduce an external memory bank into the process of re-
current representation forecasting. Concretely, the memory
bank is represented as a matrix M ∈ RK×d, where each
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Figure 2. Overview of the proposed HRO method, which integrates memory-augmented recurrent and one-shot representation forecasting
into a unified framework.

row is a memory item Mk (k = 1, 2, ,K) with feature di-
mension of d, and K is the memory size. In the recurrent
representation forecasting stage, given the context feature
fj ∈ Rd (i.e., a query) at time-step j (j ≥ to), the repre-
sentation at the next time-step is predicted by an attention-
based memory addressing mechanism, as follows:

êj+1 = wj+1M =

K∑
k=1

wk
j+1mk, (3)

wk
j+1 =

exp (d (fj ,mk))∑K
l=1 exp (d (fj ,ml))

, (4)

where wj+1 ∈ R1×K is an attention weight vector normal-
ized by a softmax operation, and the k-th entry of wj+1,
i.e., wk

j+1, indicates the contribution of the k-th memory
item for forecasting representation at time-step j+1. d (·, ·)
is a cosine similarity function, defined as follows:

d (fj ,mk) =
mkfj

∥mk∥ ∥fj∥
. (5)

Discussion on Memory Bank. Since the memory bank is
sharable for the whole data sets during the training stage, it
can summarize and store long-term prototypical activity se-
mantics. Thus, at each time-step, the query context feature
fj can recall compact prototypical activity patterns from the
memory bank to forecast discriminative future representa-
tion. In addition, from the multi-hypotheses modeling per-
spective, each memory item mk can be regarded as a kind
of potential hypothesis. Considering the uncertain nature of
future anticipation, a distribution, i.e., wj+1, is derived to
reflect the probability of each hypothesis being future.

Contrastive Learning. To further regularize the learning
process of recurrent representation forecasting, motivated
by the works in [40, 54], we employ a contrastive learn-
ing paradigm, which improves the representational ability
by distinguishing the positive pairs among those negatives.
Specially, at each forecasting time-step j, given the target
positive sample ej and negative sample set S =

{
snj
}N

n=1
with N samples, the contrastive loss function is defined as
follows:

Lcon
j = −log

exp (φ (êj , ej))

exp (φ (êj , ej)) +
∑

snj ∈S exp
(
φ
(
êj , snj

)) ,
(6)

where φ (·) is a dot product function and êj is the anticipat-
ed representation. The target positive sample ej is generat-
ed by extracting features using the shared feature extractor
ϕ(·) at the current forecasting time-step, i.e., ej = ϕ (vj).
To guarantee the diversity of the negative sample set, we
randomly sample features from the video clips, which have
different activity labels from the target positive sample.
Minimizing this contrastive loss forces the model to be
aware of semantic differences between different egocentric
activities, which is beneficial to anticipating discriminative
future representations.
Memory Bank Learning. Empirically, we find that it is
insufficient to learn a compact yet discriminative memory
bank, by merely relying on the classification loss for the
activity anticipation task. Therefore, we devise two new
loss terms, based on the diversity and sparsity schemes, to
regulate the learning of the memory bank. First, the diver-
sity scheme implies that each memory item corresponds to
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a unique activity prototype, which should be distinguished
from other items. Thus, the diversity loss is formulated
based on the orthogonality constraint, as follows:

Ld =
∥∥MMT − I

∥∥
F
, (7)

where I ∈ RK×K is an identity matrix, and ∥·∥F denotes
the Frobenius norm. Second, it is reasonable to predict the
future representation at a specific time-step, by recalling a
small portion of items from the memory bank, rather than
densely sampling prototypical activity patterns from all of
the memory items. Therefore, to avoid assigning a uniform
probability distribution over the K hypotheses (i.e., mem-
ory items), we formulate a sparsity regularization loss to
impose a constraint on the weight vector wj , at each fore-
casting time-step, as follows:

Ls
j = ∥wj∥1 . (8)

3.4. Activity Anticipation with Oneshot Transfer
ring

One-shot Transferring. Since the egocentric activity an-
ticipation is essentially an online task, most of the current
methods mainly rely on the observed information and fore-
casted representations before the target anticipation time-
step. However, even though the forecasted representations
contain correct activity semantics, we observe that it is stil-
l difficult to achieve satisfactory anticipation performance,
due to the lack of contextual features after the anticipation
time-step. Thus, to mitigate this issue, we propose to explic-
itly explore the relations between the representations before
and after the anticipation time-step in an offline manner,
during the training phase. To avoid long period of recurrent
forecasting, we leverage a one-shot transferring paradigm,
by introducing a representation transition layer, to bridge
the gap between the semantics before and after the target
anticipation time-step.

Specifically, in the offline training, given the
video clip after the anticipation time-step denoted
as Vf =

{
vto+ta+1, ..., vtf

}
, we first summarize

its content by extracting context feature ftf , i.e.,
ftf = ψ

(
ϕ (vto+ta+1) , ..., ϕ

(
vtf

))
. Then, we intro-

duce a transition layer ρ (·), which projects the anticipated
context feature fto+ta into another space to simulate the
representations containing the future activity semantics of
Vf , in a one-shot transferring manner. To achieve this goal,
we define a feature similarity learning loss, as follows:

LT = exp
(
−d

(
ρ (fto+ta) , ftf

))
. (9)

where d (·, ·) is a cosine similarity measurement function,
and the transition layer ρ (·) is implemented as a multi-layer
perceptron (MLP).
Training Objective. The representation generated by
the one-shot transfer is directly utilized for egocentric

activity anticipation at the target time-step, i.e., ŷf =
P (ρ (fto+ta)), where P (·) denotes a linear classifier and ŷf
is the anticipated activity category. To facilitate the learn-
ing of the basic feature extractor and aggregator, we also
impose an activity classification task on the observed video
clip, using the shared classifier, i.e., ŷo = P (fto). In ad-
dition, considering that two consecutive activities in a long
period of an event usually involve latent semantic relation-
s, we mine this prior knowledge by explicitly exploring the
score-level transition. Thus, we employ another linear pro-
jectorG (·) to predict the next activity, based on the predict-
ed activity score of the observed clip, i.e., ŷo→f = G (ŷo).
Thus, the classification-level loss function is designed by
integrating these three parts, as follows:

LC = LCE (ŷf , yf ) + LCE (ŷo, yo) + LCE (ŷo→f , yf ) ,
(10)

where LCE (·, ·) denotes the cross-entropy loss function, yf
and yo are the ground-truth label of target future activity
and observed activity, respectively. By incorporating other
learning criteria in Eq. (6), Eq. (7), Eq. (8) and Eq. (9), the
overall training objective function is defined as follows:

L = LC + α

ta∑
j=1

Lcon
j + βLd + γ

ta∑
j=1

Ls
j + λLT , (11)

where the parameters α, β, γ and λ are used to balance the
contribution of the corresponding loss terms.
Inference. In the inference stage, we emphasize that our
proposed framework only has access to the observed video
clip (i.e., with a length of to time-steps), which follows the
online manner for the egocentric activity anticipation task.
Specifically, after extracting context features from the ob-
served video clip, we first recursively forecast the represen-
tations using the memory bank, for ta time-steps. Then, at
the target anticipation time-step, the anticipated features are
fed into the transition layer to obtain the future-semantics-
enhanced representations, which are further utilized for pre-
dicting the target activity category score ŷf . On the other
hand, we can predict the observed activity category score
ŷo, based on the observed video clip. Then, we directly pre-
dict the category score of the next activity, ŷo→f , using the
score-level transition. Thus, the final category score of the
target activity is obtained by averaging the scores of both ŷf
and ŷo→f , i.e., ŷfinal =

ŷf+ŷo→f

2 .

4. Experiments
4.1. Experimental Setup

Data Sets. We evaluate our proposed method on two large-
scale egocentric activity data sets, including EPIC-Kitchens
[9] and EGTEA Gaze+ [32]. The EPIC-Kitchens data set is
constructed by collecting activities performed by 32 partic-
ipants in diverse kitchen environments. It involves 125 verb
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Table 1. Egocentric activity anticipation results of different methods on the EPIC-Kitchens validation set.

Methods Top-5 Activity Accuracy (%) @ different ta (s) Top-5 Acc. (%) @1s M. Top-5 Rec. (%) @ 1s
2 1.75 1.5 1.25 1 0.75 0.5 0.25 Verb Noun Act. Verb Noun Act.

DMR [47] / / / / 16.86 / / / 73.66 29.99 16.86 24.50 20.89 03.23
ATSN [8] / / / / 16.29 / / / 77.30 39.93 16.29 33.08 32.77 07.60
MCE [15] / / / / 26.11 / / / 73.35 38.86 26.11 34.62 32.59 06.50
SVM-TOP3 [2] / / / / 25.42 / / / 72.70 38.41 25.42 41.90 34.69 05.32
ED [17] 21.53 22.22 23.20 24.78 25.75 26.69 27.66 29.74 75.46 42.96 25.75 41.77 42.59 10.97
FN [11] 23.47 24.07 24.68 25.66 26.27 26.87 27.88 28.96 74.84 40.87 26.27 35.30 37.77 06.64
RL [36] 25.95 26.49 27.15 28.48 29.61 30.81 31.86 32.84 76.79 44.53 29.61 40.80 40.87 10.64
EL [26] 24.68 25.68 26.41 27.35 28.56 30.27 31.50 33.55 75.66 43.72 28.56 38.70 40.32 08.62
RU-LSTM [16] 29.44 30.71 32.33 33.41 35.32 36.34 37.37 38.98 79.55 51.79 35.32 43.72 49.90 15.10
SRL [40] 30.15 31.28 32.36 34.05 35.52 36.77 38.60 40.49 / / 35.52 / / /
LAI [54] / / 32.50 33.60 35.60 36.70 38.50 39.40 / / 35.60 / / /
ActionBanks [41] / / / / / / / / 80.00 52.80 35.60 / / /
AVT [18] / / / / / / / / 79.90 54.00 37.60 / / /
HRO (Ours) 31.30 32.67 34.26 35.87 37.42 38.36 39.89 42.36 81.53 54.51 37.42 45.16 51.78 17.50

classes, 331 noun classes, and 2,513 unique activity classes,
in total. We follow the same experimental setting in [16],
where the 28,472 activity segments in the public training
set are further split into 23,493 segments and 4,979 seg-
ments for training and validation, respectively. The EGTEA
Gaze+ data set consists of 10,325 activity segments, involv-
ing 19 verb classes, 51 noun classes and 106 unique activity
classes. We report the average performance over the three
splits by following the evaluation setup in [32].

Implementation Details. For both the EPIC-Kitchens and
EGTEA Gaze+ data sets, each time-step occupies a tempo-
ral field with 0.25 seconds, i.e., τ = 0.25. Following the
settings in [16, 40], the length of the basic observed time-
steps is set to 6, i.e., to = 6, and the maximum length of
the anticipated time-steps is set to 8, i.e., ta = 8. Thus,
the egocentric activity anticipation task is specified as fol-
lows. Based on the observation of a video clip with 1.5s, the
model is required to output the anticipation results at nex-
t eight time-steps, i.e., 0.25s, 0.5s, 0.75s, 1s, 1.25s, 1.5s,
1.75s and 2s. For a fair comparison with other state-of-the-
art methods, we directly utilize the features extracted from
each time-step provided by [16]. The recursive aggregator
ψ (·) is implemented with a GRU block, and the dimension
of the hidden state is set to 1024, i.e., d = 1024. The memo-
ry bank sizes K for EPIC-Kitchens and EGTEA Gaze+ are
set to 500 and 100, respectively. During the training stage,
the length of the sampled video clip after the target antici-
pation time-step is 3s, i.e., 12 time-steps. In the contrastive
learning, at each time-step, we sample 128 negative samples
to form the negative training set, i.e., N = 128. The weight
parameters α, β, γ and λ in Eq. (11) are set as 0.7, 0.01,
0.02 and 0.01, respectively. Our proposed model is trained
using the SGD optimization algorithm for 150 epochs, with
an initial learning rate of 0.1 and a momentum of 0.9. The
batch size is 128. For the multimodal evaluation setting, we
first train three independent branches by individually taking
RGB, optical-flow and object features as inputs. Then, the
final anticipation results are obtained by a late fusion of the
predictions from these three branches. For fair comparison,

Table 2. Egocentric activity anticipation results of different meth-
ods on the EGTEA Gaze+ data set.

Methods Top-5 Activity Accuracy (%) @ different ta (s)
2 1.75 1.5 1.25 1 0.75 0.5 0.25

DMR [47] / / / / 55.70 / / /
ATSN [8] / / / / 40.53 / / /
MCE [15] / / / / 56.29 / / /
ED [17] 45.03 46.22 46.86 48.36 50.22 51.86 49.99 49.17
FN [11] 54.06 54.94 56.75 58.34 60.12 62.03 63.96 66.45
RL [36] 55.18 56.31 58.22 60.35 62.56 64.65 67.35 70.42
EL [26] 55.62 57.56 59.77 61.58 64.62 66.89 69.60 72.38
RU-LSTM [16] 56.82 59.13 61.42 63.53 66.40 68.41 71.84 74.28
LAI [54] / / / / 66.71 68.54 72.32 74.59
SRL [40] 59.69 61.79 64.93 66.45 70.67 73.49 78.02 82.61
HRO (Ours) 60.12 62.32 65.53 67.18 71.46 74.05 79.24 83.92

in the subsequent experiments, the results under the multi-
modal setting are reported, if not specified.

4.2. Comparison with Stateoftheart Methods

Results on EPIC-Kitchens. Table 1 tabulates the compari-
son results of our proposed method with other state-of-the-
art approaches on the EPIC-Kitchens validation set. We can
find that the proposed method consistently outperforms oth-
er competitors at all evaluated anticipation times. Our pro-
posed HRO framework achieves the Top-5 activity accuracy
of 37.42%, which outperforms ActionBanks [41] by 1.82%
and is comparable to the performance of Transformer-based
model AVT [18] (37.6%). Both ATSN [8] and MCE [15]
directly generalize the classical activity recognition frame-
work, i.e., TSN [48], for the anticipation task, which is
insufficient to achieve satisfactory performance. The meth-
ods, which anticipate future activity without forecasting the
unobserved content, e.g., FN [11], RL [36] and EL [26],
perform worse than the recursive-anticipation-based frame-
works, e.g., RU-LSTM [16], SRL [40] and LAI [54].
This suggests that compensating the missing semantics of
the unobserved video parts is necessary. RU-LSTM em-
ploys rolling and unrolling LSTM blocks, which accoun-
t for summarizing observations and predicting future ac-
tivities, respectively. However, the vanilla recurrent-unit-
based anticipation strategy is prone to accumulated errors in
forecasting intermediate representation. To mitigate this is-
sue, SRL and LAI introduce contrastive learning to regulate
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Table 3. Ablation experimental results under different configura-
tions with respect to memory bank learning on the EPIC-Kitchens
validation set.

Exp. Lcon Ld Ls MB Top-5 Activity Accuracy (%) @ different ta (s)
2 1.25 1 0.75 0.25

1 X - - - 29.02 33.39 34.81 35.88 38.48
2 X - - X 29.42 33.63 35.18 36.14 38.92
3 X - X X 29.65 33.77 35.36 36.36 39.34
4 X X - X 29.97 33.93 35.52 36.67 40.26
5 X X X X 30.23 34.35 35.64 37.02 40.87

Table 4. Ablation experimental results under different configu-
rations with respect to contextual semantics exploration on the
EPIC-Kitchens validation set.

Config. Top-5 Activity Accuracy (%) @ different ta (s)
2 1.75 1.5 1.25 1 0.75 0.5 0.25

w/o FS 30.23 31.52 32.76 34.35 35.64 37.02 38.93 40.87
w/ FS (RF) 30.62 32.04 33.47 34.92 36.53 37.68 39.36 41.40
w/ FS (OT) 31.30 32.67 34.26 35.87 37.42 38.36 39.89 42.36

the process of future-representation forecasting in a self-
supervised manner. Different from these existing recursive
anticipation methods, our proposed framework learns an ex-
ternal memory bank, which helps to forecast discriminative
representations, by maintaining long-term prototypical ac-
tivity semantics. The averaged improvement over 1.5% on
Top-5 activity accuracy for all anticipation times validates
the effectiveness of the proposed hybrid recursive and one-
shot representation forecasting framework. Moreover, in
terms of the class-aware metric, i.e., Mean Top-5 Recall,
our proposed HRO model outperforms the reported second-
best results (RU-LSTM) by 1.44%, 1.88% and 2.4%, when
anticipating the future verb classes, noun classes and activ-
ity classes, respectively.
Results on EGTEA Gaze+. Table 2 presents the Top-5 ac-
tivity accuracy results of different methods on the EGTEA
Gaze+ data set, at eight evaluated anticipation time-steps.
The proposed HRO method outperforms other state-of-the-
art approaches at all evaluated anticipation times. Com-
pared with the reported second best (SRL), our results are
more than 0.77% higher, on average, with respect to the
eight anticipation times. This, once again, reveals the ro-
bust performance of our proposed framework.

4.3. Ablation Study

Effect of the Memory Bank Learning. We conduct ab-
lation experiments to explore the influence of the memory
bank and two auxiliary loss terms (i.e., Ld and Ls). The
results are summarized in Table 3. For comparison, we im-
plement a baseline model (Exp. 1), which employs vanilla
GRU blocks to recursively forecast future representations,
supervised by the contrastive learning. Based on the abla-
tion results, we have the following observations: (1) Intro-
ducing the memory bank into recurrent representation fore-
casting can bring a consistent performance improvement
at all activity anticipation times. Since the memory bank
maintains long-term prototypical activity semantics, it can
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Figure 3. Comparison results in terms of Top-5 activity accuracy
(%) at 1s under different memory bank sizes.

help the recurrent prediction model to reconstruct the most
discriminative patterns at each anticipation time-step thus
alleviating error accumulation issues, to some extent. (2)
The sparsity regularization loss Ls is designed to force the
anticipation model to concentrate on the most likely hypoth-
esis from the memory bank. We can find that this results in
an averaged performance gain of 0.24% on Top-5 activity
accuracy, which demonstrate the necessity of the sparsity
loss Ls. (3) The diversity loss Ld aims to guarantee that
each learned item in the memory bank is unique. Without
the regularization of Ld, some memory items may be redun-
dant, which degrades the discriminative ability of the mem-
ory bank. It can be observed that an averaged performance
improvement of 0.61% is obtained when using the diversity
loss Ld to guide the memory bank learning. (4) These two
loss terms, i.e., Ls and Ld, make complementary contribu-
tions to the learning of the memory bank. By combining
them together, the Top-5 activity accuracy is 35.64% at an-
ticipation time of 1s, which is higher than applying them
individually (35.36% and 35.52%).
Influence of the Memory Bank Size. The number of mem-
ory items is a crucial hyper-parameter, which may influence
the representational capacity of the memory bank. Thus, we
conduct ablation experiments using different memory bank
sizes, and report the Top-5 activity accuracy at anticipation
time of 1s in Fig. 3. Generally, when the memory bank size
is small (e.g., K = 50), it is unable to score sufficient ac-
tivity prototypes, which leads to an inferior performance.
The performance can be improved by increasing the memo-
ry size. When the memory size continuously increases, the
performance tends to be stable, as the memory bank has al-
ready learned sufficient prototypical activity semantics for
future representation forecasting.
Effectiveness of the One-shot Transferring. As intro-
duced in Sec. 3.4, in the offline training, we leverage con-
textual semantics to enhance the forecasted representations
at the target anticipation time-step, via a one-shot transfer-
ring paradigm. To evaluate its contribution, as shown in
Fig. 4, we conduct experiments by utilizing two baseline
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Figure 4. Structure comparison in terms of using different future-semantics exploration strategies. (a) Baseline model w/o FS. (b) Baseline
model w/ FS (RF). (c) Our proposed method w/ FS (OT).

models, i.e., w/o FS (Fig. 4 (a)) and w/ FS (RF) (Fig. 4 (b)).
The former baseline merely forecasts representations recur-
sively until the target anticipation time-step, without explor-
ing future semantics (FS). The latter baseline leverages the
future semantics by recursively forecasting (RF) represen-
tations continuously after the anticipation time-step. The
comparison results are tabulated in Table 4. We can find
that exploiting contextual information, based on the single
recursive anticipation model (w/ FS (RF)), can still bring an
averaged improvement of 0.59% on Top-5 activity accura-
cy, which shows the benefits of exploring future semantics
in the offline training. The proposed one-shot transferring
strategy, i.e., w/ FS (OT) (Fig. 4 (c)), further improves the
utilization efficiency of future semantics, which results in
an averaged performance gain of 0.76% over all evaluat-
ed anticipation times. The underlying reason is that the er-
ror accumulation is the inherent limitation of the recurrent
forecasting strategy when applied to long-period anticipa-
tion. In contrast, our proposed one-shot transfer can alle-
viate this issue by modeling the relations between past and
future representations, via the holistic similarity learning,
which enriches the forecasted features by injecting future
activity semantics at the target anticipation time-step.

4.4. Qualitative Results

Figure 5 illustrates three examples of the activity antic-
ipation results at four evaluated times, predicted by the s-
ingle recursive (SR) baseline and our proposed HRO mod-
el. In the first (top) and third (bottom) examples, the SR
baseline fails to detect the activity changes after 1.5s, as
it is prone to accumulated errors in relatively long period-
s of anticipation. In contrast, the proposed HRO method
can mitigate this issue with the help of memory-augmented
contrastive learning and future-semantics-guided one-shot
transferring. In the second example (middle), the SR base-
line may be misled by the inactive object, i.e., “plate”, in the
field of view, thus resulting in anticipating the wrong activ-
ity class of “take plate”. The moment at 1.5s in the third
example is at the transition boundary of two consecutive e-
gocentric activities, which makes our HRO model ambigu-
ous by predicting either “cut sauce” or “put down sauce”.
However, the proposed HRO method can still predict the

Figure 5. Visualization of the activity anticipation results, predict-
ed by the single recursive (SR) baseline and our proposed HRO
model, on the EPIC-Kitchens data set. The correct and incorrect
results are indicated by green and red colors, respectively.

correct activity class of “put down sauce” at 2s, as the fore-
casted representations are recalibrated at each anticipation
time-step via a transition layer.

5. Conclusion

In this paper, we propose a hybrid egocentric activity an-
ticipation framework by incorporating both recurrent and
one-shot representation forecasting strategies, which are re-
sponsible for compensating the unseen activity semantics of
the anticipation interval and after the anticipation moment,
respectively. Specifically, a memory-augmented contrastive
learning paradigm is presented to regularize the process of
the recurrent representation forecasting, by penalizing the
inaccurate anticipated features deviated from the prototyp-
ical activity semantics. Moreover, we propose a one-shot
transferring paradigm to further recalibrate the forecasted
representations at the anticipated moment, by distilling fu-
ture semantics, via similarity learning in the offline training.
Experimental results on two large-scale data sets demon-
strate the superior performance of the proposed method.
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