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Abstract

Human-Object Interaction (HOI) detection plays a core
role in activity understanding. Though recent two/one-
stage methods have achieved impressive results, as an es-
sential step, discovering interactive human-object pairs re-
mains challenging. Both one/two-stage methods fail to ef-
fectively extract interactive pairs instead of generating re-
dundant negative pairs. In this work, we introduce a pre-
viously overlooked interactiveness bimodal prior: given
an object in an image, after pairing it with the humans,
the generated pairs are either mostly non-interactive, or
mostly interactive, with the former more frequent than the
latter. Based on this interactiveness bimodal prior we pro-
pose the “interactiveness field”. To make the learned field
compatible with real HOI image considerations, we pro-
pose new energy constraints based on the cardinality and
difference in the inherent “interactiveness field” underly-
ing interactive versus non-interactive pairs. Consequently,
our method can detect more precise pairs and thus signifi-
cantly boost HOI detection performance, which is validated
on widely-used benchmarks where we achieve decent im-
provements over state-of-the-arts. Our code is available at
https://github.com/Foruck/Interactiveness-Field.

1. Introduction

Human-Object Interaction (HOI) detection consists of
distinguishing human-object (H-O) pairs that have interac-
tions from still images and classifying the interactions into
various verbs. In practice, an HOI instance is represented as
a triplet: ⟨human, verb, object⟩. Considering its important
role in recent advances in robot manipulation [14], surveil-
lance event detection [1, 30], and so on, HOI detection has
been attracting continuous attention in computer vision.

Overall, HOI detection can be divided into H/O local-
ization, interactive H-O pairing, i.e., localizing the inter-
active humans and objects and pairing them correctly, and
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Figure 1. Distribution of interactive ratio between interactive and
non-interactive H-O pairs in HICO-DET [4], where two represen-
tative samples are shown. For the pairs containing a given ob-
ject (yellow), either non-interactive pairs or interactive pairs dom-
inates, with the former much more frequent.

verb classification. The most conventional approach is the
two-stage paradigm [10, 13, 22, 26, 37] proposed in HO-
RCNN [5], where an object detector is first adopted to detect
all the human/object instances in a given image, followed by
exhaustive pairing and verb classification. The major issue
of this straightforward approach is that, in practice, only
a small portion of human/object instances are involved in
HOI relationships, making the exhaustive object detection
and pairing excessive and seemingly unnecessary.

The other approach consists of one-stage methods [18,
35] represented by PPDM [27]. One-stage approach adopts
an end-to-end manner following the one-stage object detec-
tion [21, 44], where the object boxes are replaced by H-O
pair boxes and the object category by HOI category. This
circumvents the exhaustive instance detection and explicit
pairing while achieving the same goal. However, given that
a typical image, e.g., HICO-DET [4] contains 2.47 HOIs on
average, it is still unsatisfactory that a recent state-of-the-art
one-stage method QPIC [35] still needs 100 output pairs per
image to achieve a recall of 70%.

Though significant progress has been made, the two
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paradigms are still bottle-necked by H-O pairing: they fail
to effectively extract interactive pairs but generate exces-
sively redundant and negative pairs. One of the early studies
to address this problem is TIN [23, 26], where the pairing
problem is addressed by interactiveness learning. A pair-
wise interactiveness binary classifier is inserted to discrim-
inate whether a human and an object should be paired (i.e.,
interactive or otherwise). Despite its simple design, the im-
provement is rather decent, indicating the great potential of
such proper pairing strategies.

Given this early promise, here, we aim at improving HOI
detection by studying the interactiveness problem from a
global and distribution point of view. Specifically, we pro-
pose a previously overlooked but powerful prior: the bi-
modal property of interactiveness. In Figure 1, the domi-
nating proportion of H-O pairs given the same object in an
image are either interactive or non-interactive, while most
of the time they are non-interactive. This phenomenon
of interactiveness distribution is closely related to Zipf’s
Law [2]: informative events are rarer than non-informative
events. To exploit this prior, we pursue a verb-agnostic mea-
surement of interactiveness. In line with the notion of field
and its global measurement [8] as such, we introduce the
“interactiveness field” to model the global interactiveness
distribution of HOI images. Specifically, we encode the H-
O pairs in a complex scene as a field. Each pair is encoded
as a point with an “energy” value, indicating its difference
from other pairs. The field is expected to obey the bimodal
prior, i.e., the high-energy pairs should be rare. Based on
this, we analyze the change of the field with the modifica-
tion on a single pair and impose energy constraints on the
field modeling: modification on high-energy pairs should
bring more salient influence. Then, the interactiveness la-
bels are bounded with the modeled field following the prior.

To use the interactiveness field, we propose a novel
paradigm. First, instead of exhaustive human/object detec-
tion, a DETR [3] structure detector is adopted to directly
detect initial H-O pairs organized in an object-centric man-
ner. Subsequently, based on the interactiveness field sub-
jecting to the bimodal prior, we design an interactiveness
field module to further filter out non-interactive pairs. Fi-
nally, the filtered pairs are fed into a verb classifier for HOI
classification. On HICO-DET [4] and V-COCO [12], we
achieve state-of-the-art and significant improvements.

Our contribution includes: 1) the interactiveness bimodal
prior of HOI is identified as a key to improve the H-O pair
filtering and boost the HOI detection, based on which an in-
teractiveness field model is introduced; 2) we achieve state-
of-the-art performance on widely-used HOI benchmarks.

2. Related Works
Rapid progress has recently been made in HOI learn-

ing. Many large datasets [4, 12, 20, 25] and deep learning

based methods [9–11,13,15,16,19,22,24–26,32,33,35,37]
have been proposed. For example, Chao et al. [4] proposed
the widely-used multi-stream framework, while GPNN [33]
and Wang et al. [38] adopted graphs to model the HOI
relationship. iCAN [10] and PMFNet [37] adopted the
self-attention mechanism to correlate the human, object,
and context from different levels. TIN [26] introduced in-
teractiveness to filter out non-interactive pairs. Besides,
some works [19,32,42] focused on the relationship between
HOIs. In terms of information utilization, DJ-RN [22] in-
troduced 3D information for better inference. PaStaNet [25]
introduced part states as an intermediate semantic hierar-
chy for further HOI reasoning. DRG [9] considered HOI
from both human-centric and object-centric point of view,
while VCL [15] exploited the compositional characteristic
of HOI. IDN [24] analyzed how HOI is integrated and com-
posed from a transformation-based perspective.

Recently, several one-stage methods have been pro-
posed [7, 27, 35, 39], where parallel HOI detectors di-
rectly detect HOIs triplets, in contrast to the conven-
tional two-stage method [10, 26] for interaction prediction.
PPDM [27], UnionDet [7], and IP-Net [39] adopted a vari-
ant of one-stage object detector [21, 44] for HOI detection.

While based on the recently proposed transformer detec-
tor DETR [3], QPIC [35] managed to achieve impressive
performance. By capitalizing on the powerful transformer,
DETR [3] achieved impressive performance without many
hand-designed components. A fixed-size set of predictions
is produced in a single pass through the decoder. The main
loss is calculated by matching the predicted and ground-
truth predictions via an optimal bipartite matching, fol-
lowed by imposing the specific losses. QPIC [35] adapted
the paradigm by regressing both the human and object box
with the addition of a verb classifier to detect HOI triplets.

3. Methods
Our goal is to address the pairing problem in HOI detec-

tion, by exploiting the underlying distributional information
of H-O pairs subject to the interactiveness bimodal prior.
Section 3.1 first presents the preliminaries of our method
and a formal definition of interactiveness field. Then, in
Section 3.2, we introduce how interactiveness field is mod-
eled with the pair distributional characteristics. In Sec-
tion 3.3, we demonstrate how to design the practical system.

3.1. Preliminaries

Given an image I, we define interactiveness field F as

F = (A×A, E(·) : A×A → [0, 1]), (1)

where A denotes arbitrary areas in I, E(·) is the energy
function for each area pair, indicating the relative difference
of each pair against other pairs. Given the interactiveness
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Figure 2. Interactiveness field illustration.

bimodal prior, the energy function is closely related to the
interactiveness: when the pairs are mostly non-interactive,
interactive pairs would possess high energy and vice versa.

Since we focus on HOI detection, where only hu-
man/object instances are considered to be potentially inter-
active, the definition in Eq. 1 is simplified as

F = (P = H×O, E(·) : P → [0, 1]), (2)

where H,O are the human and object instance proposals in
I respectively, as illustrated in Figure 2.

Here, we focus on the pairs concerning the same given
object oi. Each pair ⟨hi, oi⟩ is represented by the extracted
feature f i

P ∈ fP , and E(·) is implemented by specially
designed neural networks. Thus, the interactiveness field
F could be generally formulated as

F = (fP , E(·)), fs = g(fP), (3)

where fs denotes the summary of the field extracted from
the pairs with summary function g(·), the energy function
E(·) takes the sample feature f i

P , producing the energy of
the input sample. Intuitively, the binary pair-wise classi-
fier introduced in TIN [26] could be a simple implementa-
tion of E(·), lacking the consideration of global interactive-
ness distribution and pair difference. However, in Section 4,
we show that without the interactiveness bimodal prior, the
simple TIN-style classifier outputs a biased interactiveness
score thus performs unsatisfactorily on interactiveness dis-
crimination. That is, for almost all the pairs in an image in-
volving the same object, near-zero interactiveness score is
produced due to the extreme imbalance in data distribution.
Rather than resorting to simple modeling using a pair-wise
classifier, we propose to model the interactiveness field reg-
ulated by the interactiveness bimodal prior, considering the
underlying global-distribution properties.

3.2. Interactiveness Field Modeling

In the following, we first delve into how interactiveness
field is modeled in Section 3.2.1 subject to the interactive-
ness bimodal prior. Notably, two main constraints are de-
rived in Section 3.2.2 to regulate the field, where the global
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Figure 3. Interactiveness field modeling subject to the interactive-
ness bimodal prior.

change in F upon removing or modifying a single local pair
will be analyzed. The modeling formulation detailed in Sec-
tions 3.2.1–3.2.2 only requires the interactiveness bimodal
prior. In Section 3.2.3, we describe how the interactiveness
labels can then be incorporated into the formulation to en-
hance the proposed field modeling.

3.2.1 Cardinality Constraint

As illustrated in Figure 1, candidate pairs involving the
same object can be divided into two clusters: the rare, high-
energy cluster and the frequent, low-energy cluster. Cor-
respondingly, we argue that the interactiveness field should
possess the following property: candidate pairs set P should
consist of two diverse sets PS and PL with salient differ-
ences in cardinality. This property is formulated as

P = PL ∪ PS ,

s.t. PL ∩ PS = Ø, |PS | ≪ |PL|,
(4)

where | · | denotes cardinality. The interactiveness field is

F = (fP , E(·)), E(f i
P) = Prob(Pi ∈ PS),

s.t. |PS | ≪ |PL|.
(5)

Thus, given the extracted pair feature fP ∈ RN×C , the
summary function g(·) first extracts the two clusters PS and
PL, denoted by centroids cs, cl ∈ RC and assignment vec-
tors As, Al ∈ RN , where Ai

s, A
i
l respectively mean the

probability that pair i belongs to cluster PS ,PL, subject-
ing to

∑
i A

i
s ≪

∑
i A

i
l . fs = (cs, cl) is then adopted as

the summary representation of the interactiveness field F .
The energy function E(Pi) = Ai

s for each pair Pi is given
by the probability that the pair belongs to PS . Figure 3 il-
lustrates the formulation:

cs, cl, As, Al = g(fP), s.t.
∑
i

Ai
s ≪

∑
i

Ai
l. (6)
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Figure 4. Field change against pair removal. Removal rare pairs
(usually also interactive) brings more salient change.

To regulate the field to satisfy the interactiveness bi-
modal prior, a cardinality loss Lcard is formulated as

Lcard =
∑
i

Ai
s −

∑
i

Ai
l. (7)

The loss corresponds to the constraint
∑

i A
i
s ≪

∑
i A

i
l ,

which encourages more pronounced cardinality difference.
Noticeably, here we do not need the binary interactiveness
labels [26] in modeling. Thus, the above modeling can
be regarded as an unsupervised process using our bimodal
prior. In Section 3.2.3, we introduce how to further enhance
the interactiveness discrimination with the binary labels.

3.2.2 Field Change Constraints

The cardinality constraint introduced above focuses on the
static status of the interactiveness field. We now investigate
how to model the field by observing how F should change
upon modifying local pairs with different energy level.
Field Change against Pair Removal. We first explore how
the global field representation changes when a certain sam-
ple is removed. Starting from the interactiveness field F in
Section 3.2.1, we can tell the removal of a high-energy point
would affect the overall representation of F more than the
removal of a low-energy point (Figure 4). So we adopt a
difference indicator Dr to encode the global field change
when a certain sample is removed, which is formulated as

Di
r = D(F ,F−i),

F = (fP , E(·)), F−i = (f−i
P , E(·)),

(8)

where D(·, ·) denotes the difference between the two fields,
and f−i

P = fP/f
i
P denotes the pair features minus f i

P .
Based on this, given the pair feature fP , g(·) (defined in

Section 3.2.1) first extracts the field summary representation
fs = (cs, cl) for F . Then, each pair i is removed, and the
rest pair features f−i

P are fed to g(·), which produces the
modified field representation f−i

s . The L2 distance between
fs and f−i

s is then defined as the difference indicator Di
r.

Larger Di
r indicates that the pertinent pair is more likely to

have higher energy level (or more different from the other

Interactiveness Field ℱ
Replacing a

Replacing a

: Interactive

: Non-interactive

: Average

Changed interactiveness field ℱ×

𝐷(ℱ, ℱ×) ≪ 𝐷(ℱ, ℱ⊙)

Changed interactiveness field ℱ⊙

Figure 5. Field change against pair modification. Modification on
rare pairs (usually also interactive) brings more change.

pairs). The above process can be summarized as

fs = (cs, cl) = g(fP),

f−i
s = (c−i

s , c−i
l ) = g(f−i

P ),

Di
r = ∥fs, f−i

s ∥2.
(9)

Since the removal of a pair will definitely change the
field, instead of enforcing Dr to be zero for frequent low-
energy pairs, a rank loss Lr

rank is imposed as

Lr
rank =

∑
i∈PS

∑
j∈PL

Dj
r −Di

r,

PS = {i : Ai
s > Ai

l}, PL = {i : Ai
l > Ai

s},
(10)

where Al, As are the assignment vectors produced by
g(fP). Lr

rank only encourages the assumed high-energy
pairs to cause more field change with their removal than
the low-energy pairs.
Field Change against Pair Modification. Another worth-
while constraint to explore is how the field changes when
a pair is modified, in our case, replaced by the mean pair
representation. Still referring to the interactiveness field F
in Section 3.2.1, given a field with most areas possessing
low energy, we could tell that the mean representation of
this field should also carry low energy. Thus, if we replace
a high-energy pair with the mean, the overall field represen-
tation should change significantly. On the other hand, the
overall field representation should not change much when
a low-energy pair is replaced by the mean. Thus, we can
obtain another difference indicator Dm as

Di
m = D(F , F̂ i),

F = (fP , E(·)), F̂ i = (f̂ i
P , E(·)).

(11)

f̂ i
P denotes fP replacing f i

P with mean representation f̄P .
To implement the above, the field representation fs is

first extracted by g(·) in Section 3.2.1. Then we obtain
the modified field f̂ i

s by feeding f̂ i
P to g(·). The differ-

ence between fs and f̂ i
s is defined as the difference indi-

cator Di
m = ∥fs − f̂ i

s∥. Again, larger difference indicates

20116



the sample is more likely to be a high-energy pair. The rank
loss Lm

rank with the same formulation as Eq. 10 is computed.

3.2.3 Binding with Interactiveness Labels

The previous modeling formulation only adopts the interac-
tiveness bimodal prior, functioning in an unsupervised man-
ner. For further enhancement, we can bind the field with the
interactive semantics via specially designed losses to con-
nect interactiveness labels transferred from HOI labels, fol-
lowing TIN [26]. This encourages the modeled field to si-
multaneously approach the ground truth distribution while
following the prior when applicable.

Following the set-based training procedure in QPIC [35],
the interactiveness labels are assigned to the candidate pairs.
Given the assigned labels, we obtain the correspondence
between {PS ,PL} and {interactive pairs, non-interactive
pairs}. In the following, we assume PS is interactive for
ease of description, which is most of the cases. Analogous
descriptions apply when PL is interactive. A simple cross
entropy loss Lce is imposed on As, Al. Then, the cardinality
loss in Section 3.2.1 is enriched with an additional term:

Lcard =
∑
i

Ai
s −

∑
i

Ai
l + ∥nT −

∑
i

Ai
s∥, (12)

where nT is the number of interactive pairs for this object in
this image. This added term regulates the cardinality of PS

to be the same as the number of interactive pairs. Moreover,
a clustering loss Lclus inspired by [34] is formulated as

pij = Ai
sA

j
s +Ai

lA
j
l ,

Lclus =
∑
i,j

((αij − 1) log(1− pij)− αij log pij) ,
(13)

where αij = 1 if pair i, j are both interactive or non-
interactive, otherwise αij = 0. This loss encourages pairs
with the same interactiveness label to be clustered together.

With these losses, we force the field F to simultaneously
follow the interactiveness bimodal prior while approaching
the ground-truth interactiveness distribution. More discus-
sions on the generalization of our interactiveness bi-modal
prior would be included in the supplementary material.

3.3. Practical System Design

Next, we introduce how the interactive field is incorpo-
rated into a practical HOI detection system. Such system
contains four components: visual feature extractor, pair de-
coder, interactiveness field module defined in Section 3.2,
and verb classifier. Figure 6 shows the overall pipeline.

3.3.1 Visual Feature Extractor

Our feature extractor is a combination of a CNN and a trans-
former encoder. In detail, given an image I ∈ RH×W×3,

the CNN encodes it into feature map fC ∈ RH′×W ′×CC ,
which is linearly projected to a lower dimension of CT ,
flattened into R(H′W ′)×CT , which is then fed into the
transformer encoder with sinusoidal positional embedding
E ∈ R(H′W ′)×CT to output the final visual feature f ∈
R(H′W ′)×CT . The CNN encoder aggregates the local in-
formation into patch tokens, while the transformer encoder,
leveraging the power of multi-head self-attention, generates
a feature map with rich global contextual information.

3.3.2 Pair Decoder

A transformer decoder is adopted as the pair decoder. With
visual feature f as K,V , a learned query embedding Q ∈
RM×CT is utilized to decode the candidate pairs P along
with feature fP . A fully-connected layer is imposed on
fP to classify the corresponding object class o, and two
two-layer MLPs regress the human and object box coor-
dinates bh, bo. Following previous set-based training pro-
cess [3, 35], with the Hungarian bipartite matching algo-
rithm, ground truth labels are assigned to the pair predic-
tions. Multiple loss items are computed, including gener-
alized IoU (Intersection over Union) loss Lh

giou, L
o
giou, box

regression L1 loss Lh
reg, L

o
reg, and object class cross-energy

loss Lo. The pair decoder is first trained along with the vi-
sual feature extractor with target loss

Lpair = λ1(L
h
giou +Lo

giou) + λ2(L
h
reg +Lo

reg) + λ3Lo, (14)

where λ1, λ2, λ3 are weighting coefficients.

3.3.3 Implementation of Interactiveness Field Module

To implement the interactiveness field module, multiple
choices for E(·) and g(·) are proposed. A toy design is first
used, where E(·) and g(·) are implemented as a hierarchical
cluster followed by a soft two-means cluster with the hierar-
chical centroids as the initial centroids. For both clustering
procedures, Euclidean distance is adopted. By “soft”, we
mean the distance vectors Ds, Dl ∈ RN are respectively
processed by a softmax function along each column to ob-
tain the assignment vectors As, Al.

For a more advanced version, the two-means clustering
is replaced by a modified multi-head attention layer. In de-
tail, it takes fP as K,V , and the two hierarchical cluster
centroids as Q to extract C. To obtain the assignment ma-
trix, the original softmax function used to generate attention
from logits is replaced by sigmoid function following aver-
aging, where the attention value before averaging is adopted
as assignment matrix A. In this way, the multi-head at-
tention module is adapted for clustering by regarding the
attention mechanism as a soft assignment procedure, thus
acquiring a more powerful mean field representation. The
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Figure 6. Our pipeline for HOI detection with interactiveness field modeling which is composed of four components. Visual feature
extractor generates visual feature map f , based on which pair decoder decodes the candidate pairs P along with feature fP . Our proposed
interactiveness field module models the interactiveness field and assigns interactiveness score Sb for each pair. The verb decoder infers the
verb score Sv for generating the final score as S = Sv · Sb.

target loss is formulated as

Lfield = λ4Lcard+λ5Lce+λ6Lclus+λr(L
r
rank+Lm

rank), (15)

where λ4, λ5, λ6, λr are weighting coefficients, and the dif-
ferent loss terms have already been defined in Section 3.2.

3.3.4 Verb Decoder

Another transformer decoder takes f (whole image feature)
as K,V , fP as Q, followed by a fully-connected verb clas-
sifier, which is used to produce the verb score Sv . The verb
classifier is attached with verb label cross-energy loss Lverb.

3.3.5 Training and Inference on HOI Datasets

The training is divided into three stages. First, we train the
pair decoder along with the visual feature extractor using
Lpair. Then, the interactiveness field module is introduced
and the three components are fine-tuned together with loss
L = Lpair+Lfield. Finally, the verb classifier is included, and
the whole system is trained with L = Lpair + Lfield + Lverb.

In some cases interactive pairs dominate, e.g., in a
restaurant, several humans are sitting beside the dinner table
except for the waiter. We consider this special situation in
training. Since these cases only account for less than 10%
in HICO-DET [4], we assume that the interactive pairs are
always minorities in inference. Thus, the energy and differ-
ence indicators can be directly adopted to compute interac-
tiveness binary score Sb. The difference indicators are ag-
gregated and normalized to [0, 1], and then combined with
As, producing Sb = (As + (σ(Dr) + σ(Dm) − 1))/2 ∈
[0, 1], where σ(·) is sigmoid function. The final prediction
is constructed as (bh, bo, o, S) ∈ Pr, where S = Sv · Sb.

Our experimental results show even with this compromised
strategy, the improvement is still substantial.

Notwithstanding, a possible problem is that though the
interactiveness bimodal prior is statistically reasonable,
there still exist exceptions, e.g., an image contains only one
person. For the practical system here, we cover the situa-
tion with sparse scene in two ways. First, the human pro-
posals H generated by the model are abundant most of the
time, making the prior still applicable. Second, pairs with
the same object category are aggregated and modeled by the
same field, as they share similar interactiveness patterns.

4. Experiments

4.1. Dataset and Metric

We adopt two large-scale HOI detection benchmarks:
HICO-DET [4] and V-COCO [12] for evaluation. HICO-
DET [4] consists of 38,118 training images, 9,658 testing
images, 600 HOI categories (comprising of 80 COCO [28]
objects and 117 verbs), and more than 150 K annotated HOI
pairs. We use mAP for evaluation: true positive is required
to contain accurate human and object locations (box IoU
with reference to GT box is larger than 0.5) and accurate in-
teraction classification. Following [4], mAP for three sets:
Full (600 HOIs), Rare (138 HOIs), Non-Rare (462 HOIs)
under both Default and Known Object modes are reported.
V-COCO [12] contains 10,346 images (2,533 in train set,
2,867 in validation set, and 4,946 in test set), and covers 29
verb categories (25 HOIs and 4 body motions) and 80 ob-
jects from COCO [28]. We use role mean average precision
under both scenario 1 and scenario 2 as evaluation metrics,
where only the 25 HOIs are taken into consideration.
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mAP Default ↑ mAP Known Object ↑
Method Full Rare Non-Rare Full Rare Non-Rare
iCAN [10] 14.84 10.45 16.15 16.26 11.33 17.73
TIN [26] 17.03 13.42 18.11 19.17 15.51 20.26
PMFNet [37] 17.46 15.65 18.00 20.34 17.47 21.20
DJ-RN [22] 21.34 18.53 22.18 23.69 20.64 24.60
PPDM [27] 21.73 13.78 24.10 24.58 16.65 26.84
VCL [15] 23.63 17.21 25.55 25.98 19.12 28.03
DRG [9] 24.53 19.47 26.04 27.98 23.11 29.43
IDN [24] 26.29 22.61 27.39 28.24 24.47 29.37
Zou et al. [45] 26.61 19.15 28.84 29.13 20.98 31.57
ATL [16] 28.53 21.64 30.59 31.18 24.15 33.29
AS-Net [6] 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [35] 29.07 21.85 31.23 31.68 24.14 33.93
FCL [17] 29.12 23.67 30.75 31.31 25.62 33.02
GGNet [43] 29.17 22.13 30.84 33.50 26.67 34.89
SCG [41] 31.33 24.72 33.31 34.37 27.18 36.52
CDN [40] 31.78 27.55 33.05 34.53 29.73 35.96
Ours 33.51 30.30 34.46 36.28 33.16 37.21

Table 1. Results on HICO-DET [4]. The first part adopted COCO
pre-trained detector. HICO-DET fine-tuned or one-stage detector
is used in the second part. All the results are with ResNet-50.

Method AProle(Scenario 1) AProle(Scenario 2)
iCAN [10] 45.3 52.4
TIN [26] 47.8 54.2
VSGNet [36] 51.8 57.0
IDN [24] 53.3 60.3
HOTR [18] 55.2 64.4
QPIC [35] 58.8 61.0
CDN [40] 62.3 64.4
Ours 63.0 65.2

Table 2. Results with ResNet-50 on V-COCO [12].

4.2. Implementation Details

We adopt ResNet-50 followed by a six-layer transformer
encoder as our visual feature extractor. The pair decoder
and the verb decoder are both implemented as a six-layer
transformer decoder. During training, AdamW [29] with
the weight decay of 1e-4 is used. The visual feature ex-
tractor and pair decoder are initialized from COCO [3] pre-
trained DETR [3]. The query size is set as 64 for HICO-
DET [4] and 100 for V-COCO [12] following CDN [40].
The loss weight coefficients λ1, λ2, λ3 are respectively set
as 1, 2.5, 1, exactly the same as QPIC [35]. The visual fea-
ture extractor and pair decoder are fine-tuned for 90 epochs
with a learning rate of 1e-4 which is decreased by 10 times
at the 60th epoch. Then, the interactiveness field module is
introduced and fine-tuned for another 9 epochs with learn-
ing rate of 1e-4. Finally, the verb decoder is added and the
whole model is trained for 30 epochs. All experiments are
conducted on four NVIDIA GeForce RTX 3090 GPUs with
batch size of 16. In inference, a pair-wise NMS with thresh-
old of 0.6 is conducted. That is, low-score predictions with
both human and object IoU > 0.6 compared to the same
category high-score pair is suppressed.

4.3. Results

Results on HOI Detection Benchmarks We first report
the results on HICO-DET [4]. Table 1 compares our
methods with previous state-of-the-art methods. We out-

perform all of them with Default Full mAP of 33.51. Even
compared with methods like ATL [16] which adopted ad-
ditional object attribute information, we achieve an im-
pressive advantage of 4.98 mAP. When comparing to other
transformer-based methods such as HOTR [18], [45], AS-
Net [6], QPIC [35], and CDN [40] our method manages
to attain relative improvements of 30.2%, 16.1%, 15.3%,
and 5.4%, respectively. To fully verify the effectiveness of
our method, we also adopt the very recent CDN [40] and
outperform it significantly. Note that even compared with
CDN-L [40] (Default Full mAP 32.07) with more parame-
ters, our model still maintains a significant advantage.

Table 2 compares our result on V-COCO [12] with
those of previous state-of-the-arts, which indicates that our
method achieves impressive advantage over previous meth-
ods with 63.0 and 65.2 mAP under Scenario 1 and 2.
Results on Interactiveness Detection To better demon-
strate our contribution to the H-O pair filtering, we evaluate
our interactiveness detection [26] on HICO-DET [4].

First, following the interactiveness AP proposed in [26],
we evaluate our interactiveness detection, comparing with
open-source state-of-the-arts [26, 27, 35, 40]. In detail, we
adopt Sb as the interactiveness score for our model. For
TIN [26], the inherent interactiveness score is adopted. For
PPDM [27], QPIC [35], and CDN [40], the mean of 520
HOI scores is used as an approximation.Table 3 tabulates
the results, which shows the interactiveness AP of TIN is
significantly lower, echoing our analysis that it suffers from
the mass of exhaustively generated negative H-O pairs even
with the non-interaction suppression [26]. In terms of the
one-stage PPDM [27] directly detecting H-O pairs, the per-
formances are better since the avoid of exhaustive pairing.
Surprisingly, the interactiveness performance gap between
QPIC [35] and CDN [40] is negligible, while our method
demonstrates to be considerably better than previous meth-
ods with interactiveness AP of 37.39.

To verify that our method is superior on pair filtering, we
select previous open-source state-of-the-arts and compare
the Default Full mAP in a Top-k manner [27] in Table 4.
That is, we only select the predictions with top-k confidence
for each image. Even with only 5 predictions per image, the
advantage is still impressive over other methods.

Furthermore, we explore how our pair filtering can
boost the performance of two-stage methods. Following
CDN [40], we feed the representative two-stage method
iCAN [10] (using exhaustive pairing without pair filtering)
with our detected pairs, and compare the result produced by
feeding exhaustive pairs as input. In addition, the results
using CDN [40] and QPIC [35] pairs as input are also com-
pared. Here, mAP under Default mode for the three sets
(Full, Rare, Non-Rare) are reported. Table 5 shows that the
performance of iCAN is significantly boosted with the pairs
of high-quality, especially of the ones from our method.
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TIN [26] PPDM [27] QPIC [35] CDN [40] ours
AP 14.35 27.34 32.96 33.55 37.39
Table 3. Interactiveness detection on HICO-DET [4].

Methods Top-5 Top-10 All
PPDM [27] 18.92 20.35 21.10
QPIC [35] 29.07 29.29 29.07
CDN [40] 30.19 30.40 31.78

Ours 32.65 33.07 33.51
Table 4. Top-K result on HICO-DET [4]. “All” indicates Top-100
for PPDM [27] and QPIC [35], and Top-64 for CDN [40] and ours.

Methods Full Rare Non-Rare
iCAN [10] 14.16 12.26 14.73

iCAN [10]QPIC 21.78 13.18 24.35
iCAN [10]CDN 24.05 18.32 25.76
iCAN [10]Ours 26.07 21.03 27.58

Table 5. Performance of iCAN [10] on HICO-DET [4] with dif-
ferent pair detection. Superscripts indicate the source of pair de-
tection, where no superscript indicates the exhaustive pairing [10].
a b

Figure 7. Field change visualization. fs (orange) is the field sum-
mary feature, while f−i

s of non-interactive pairs (purple) are in
majority in the left; f−i

s of interactive pairs (red) are in majority
in the right. As shown, f−i

s of minority pairs locates far from fs.
Full Rare Non-Rare

Ours 33.51 30.30 34.46
w/o IFM 30.54 26.04 31.88
w/o Sb 33.30 29.76 34.35

g(·) via FC 30.70 25.68 32.20
g(·) via clustering 30.97 26.86 32.20
cardinality only 32.38 27.99 33.69

field change only 32.76 28.82 33.94
Unsup-IFM 31.62 27.38 32.88

Table 6. Ablation studies on HICO-DET [4].

4.4. Visualization

Figure 7 visualizes the field change under the constraints
(Section 3.2.2). The field summary feature fs and the
changed summary feature f−i

s of different pairs are visual-
ized with t-SNE [31], where f−i

s corresponding to minority
pairs follow the constraints well, validating our design.

4.5. Ablation Studies

We conduct ablation studies on HICO-DET [4] under the
Default mode, with the results in Table 6.

First, we show how the model is influenced if the interac-
tiveness field module (IFM) is removed. The considerable
mAP drop of 2.97 validates the key role of IFM. We then
reveal the influence of interactive score Sb on performance.
We find that removing Sb only results in a minor drop. This
demonstrates that the IFM functions more than merely in
results fusion: it also contributes to feature learning.

Dataset #inter
#no−inter ≪ 1 #inter

#no−inter ≈ 1 #inter
#no−inter ≫ 1

w/o IFM 0.38 0.55 2.34
g(·) via FC 0.32 0.57 2.12

g(·) via clustering 0.28 0.51 2.09
Ours 0.19 0.42 1.88

Table 7. Error of #interactive pairs between prediction and GT.

Second, different implementations of IFM are compared.
Replacing IFM with a fully-connected layer as done in
TIN [26], we obtain 30.70 mAP (g(·) via fully-connected in
Table 6), which is slightly better than removing IFM while
still insignificant. By implementing g(·) via clustering as
proposed in Section 3.3, we achieve a marginal improve-
ment compared to a model w/o IFM, far below the advanced
version of g(·), showing the efficacy of our design. This
experiment on the other hand shows the importance of the
bimodal prior even with a straightforward g(·) implementa-
tion. Moreover, we evaluate the influence of different con-
straints. With only cardinality constraint (Section 3.2.1), we
suffer 1.13 mAP drop (cardinality only in Table 6). While
the mAP drop is 0.75 if only field change constraints (Sec-
tion 3.2.2) are preserved (field change only in Table 6).

Third, we demonstrate the performance of IFM operat-
ing in the unsupervised mode, referred to as Unsup-IFM.
That is, we zero out the loss items proposed in Section 3.2.3.
Then, IFM is only restrained by the bimodal prior. Even
without supervision using interactiveness labels, we can
achieve good improvement with only the bimodal prior.

Moreover, we validate IFM by the error between the
number of predicted and GT interactive pairs per image of
different implementation of g(·). The predicted interactive
pair number is calculated by summing the predicted inter-
active probability of each pair. The results in Table 7 show
the advanced implementation does exploit the prior. The
impressive gap with and w/o IFM proves that the raw data-
driven methods fail to model the bimodal distribution well.

Finally, we demonstrate the performance under differ-
ent interactive ratios. The IFM brings relative improve-
ment as 9.23% (30.68 to 33.52), 0.11% (52.98 to 53.04),
3.04% (51.42 to 52.98), respectively with interactive ratio
≪ 1,≈ 1,≫ 1. These show our impressive improvement
upon valid cases and ignorable harm on invalid cases. For
more limitation and social impact discussion, please refer
to the supplementary.

5. Conclusion
This paper focuses on previously overlooked interactive-

ness bimodal prior in HOI learning. To utilize this prior,
the interactiveness field is proposed and modeled. Multi-
ple properties of the proposed field are explored to match
the learned field and realistic HOI scenes. Our method ef-
fectively discriminates interactive human-object pairs and
achieves significant improvements, validated on widely-
used benchmarks. Though interactiveness field prompts H-
O pairing and boosts HOI detection, we believe the room
for H-O pairing is still large and needs more explorations.
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