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Abstract

We propose to forecast future hand-object interactions given
an egocentric video. Instead of predicting action labels or pixels,
we directly predict the hand motion trajectory and the future
contact points on the next active object (i.e., interaction hotspots).
This relatively low-dimensional representation provides a con-
crete description of future interactions. To tackle this task, we
first provide an automatic way to collect trajectory and hotspots
labels on large-scale data. We then use this data to train an
Object-Centric Transformer (OCT) model for prediction. Our
model performs hand and object interaction reasoning via the
self-attention mechanism in Transformers. OCT also provides
a probabilistic framework to sample the future trajectory and
hotspots to handle uncertainty in prediction. We perform experi-
ments on the Epic-Kitchens-55, Epic-Kitchens-100 and EGTEA
Gaze+ datasets, and show that OCT significantly outperforms
state-of-the-art approaches by a large margin. Project page is
available at https://stevenlsw.github.io/hoi-forecast.

1. Introduction
Achieving the ability to predict a person’s intent, preference

and future activities is one of the fundamental goals for AI sys-
tems. This is particularly useful when it comes to egocentric video
data for applications such as augmented reality (AR) and robotics.
Imagining with an egocentric view inside the kitchen (e.g., Fig-
ure 1), if an AI system can forecast what the human would do next,
an AR headset could provide useful and timely guidance, and a
robot can react and collaborate with the human more smoothly.

What space should the model predict on? Recent ap-
proaches [25,26,28,72] have been proposed to predict the discrete
future action category given a sequence of frames as inputs,
namely action anticipation. However, predicting a semantic label
does not reveal how the human moves and what the human
will interact with in the future. On the other hand, predicting
pixels for future frames [9, 44, 53, 84] is very challenging due
to its high dimension outputs with large uncertainties. Instead
of adopting these two representations, our work is inspired by
recent work on human motion trajectory prediction [11] which
takes images as inputs and outputs the coordinates of future pose
joints. Trajectory not only provides a concrete description of
motion, but also is a much smaller space to predict compared

*Work partially done during an internship at Intel Labs.

Figure 1. Going beyond predicting a single action label in the future,
we propose to jointly predict the future hand motion trajectories (blue
and red lines) and interaction hotspots (heatmaps) on the next-active
object in egocentric videos.

to pixel prediction. However, unlike previous works, prediction
in egocentric videos also involves dense interactions with objects,
which cannot be modeled by trajectory alone.

In this paper, we propose to jointly predict the future hand
motion trajectory and the interaction hotspots (affordance) of
the next-active object, given a sequence of input frames from
an egocentric video. Starting from the final frame of the input
video, we will predict the trajectories for both hands by sampling
from a probabilistic distribution inferred by the model. Instead
of learning a deterministic model, we tackle the uncertainty
of future in a probabilistic manner. At the same time, we will
predict the contact points on the next-active object interacted by
the future hands. These contact points are also represented via
probabilistic distributions in the form of interaction hotspots [61]
and conditioned on the predicted hand trajectory. To perform
joint predictions, we introduce a Transformer-based model and
an automatic way to generate a large-scale dataset for training.

Instead of collecting annotations for hand trajectories and
interaction hotspots with high-cost human labor, we propose
an automatic manner to collect the data in a large-scale. Given
a video, we call the input frames to our model the observation
frames and the predicted ones are called future frames. We first
utilize off-the-shelf hand detectors [73] to locate hands in all the
future frames. Since the camera is usually moving in egocentric
videos, we leverage homography in nearby frames and project
the detected future hands’ locations back to the last observation
frame. In this way, all the detections are aligned in the same
coordinate system. Similarly, we also detect the locations where
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the hand interacts with the object in future frames, and project
them back to the last observation frame. This process prepares
the data for training our prediction model, and we generate labels
for Epic-Kitchens-55, Epic-Kitchens-100 and EGTEA Gaze+
datasets without any human labor.

With the collected data, we propose to learn a novel Object-
Centric Transformer (OCT) model which captures the hand-object
relations from videos for hand trajectory and interaction hotspots
prediction. Given the observation frames as inputs, we first extract
their visual representations with a ConvNet. We perform hand and
object detection and adopt RoI Align [34] to extract their features.
We take both hand and object features as object-centric tokens,
and the average-pooled frame feature as image context tokens.
We forward all tokens from all input frames to a Transformer
encoder, which performs hand, object and environment context
interaction reasoning using self-attention. Instead of decoding in
a deterministic manner, we adopt the Conditional Variational Au-
toencoders (C-VAE) as network head in the Transformer decoder
to model the uncertainty in prediction. Specifically, we compute
cross-attention between the output tokens from the Transformer
encoder and predicted future hand locations in the Transformer
decoder. The obtained tokens are taken as conditional variables
for the C-VAE. The decoder will predict both the hand trajectories
and interaction hotspots jointly, and the training is supervised
by a reconstruction loss corresponding to the ground-truths.

We perform evaluation on Epic-Kitchens-55 [15], Epic-
Kitchens-100 [16] and EGTEA Gaze+ [46] datasets. We manually
annotate the validation sets with trajectory and hotspots labels
using the Amazon Mechanical Turk platform. Our OCT model
significantly outperforms the baselines on both hand trajectory and
interaction hotspots prediction tasks. Interestingly, we find that
trajectory estimation helps interaction hotspots prediction and with
more automatic annotated training data we can get better results.
Finally, we experiment with fine-tuning the trained model on the
action anticipation task, and find that predicting hand trajectory
and interaction hotspots can benefit classifying future actions.

Our contributions are the following:
• We propose to jointly predict hand trajectory and interaction

hotspots from egocentric videos, and collect new training and
test annotations.

• A novel Object-Centric Transformer which models the hand
and object interactions for predicting future trajectory and
affordance.

• We not only achieve state-of-the-art performance on both
prediction tasks on Epic-Kitchens and EGTEA Gaze+ datasets,
but also show our model can help the action anticipation task.

2. Related Work
Video anticipation. Video anticipation aims to forecast future

events in videos, including future frames prediction [9,36,44,53,
80,84,89], action anticipation [25,26,28,58,72,87], and dynamics
learning [23,29,67]. However, most of these works either relied
on anticipating high-dimensional visual representations of the
future, which is extremely challenging in dynamic scenes with
appearance changes and moving agents, or focused on predicting

a semantic label of future actions. The labels could neither tell us
where the person intends to move nor the object the person would
like to interact with. On the contrary, we predict the future hand
motion trajectory and the interaction hotspots, both reflecting
human intention and future interactions in low dimensions.

Human motion forecasting. Predicting future human
motions [11,33,47,66,82] or trajectories [1,17,48,49,55–57] has
been a long-standing research topic. Many of them operate on
third-person vision or fixed bird’s eye view settings. Given that the
first-person vision could better capture people’s intention and inter-
actions, as well as its applicability to AR and robotics [39,43,68],
estimating human motions in egocentric videos [49,64,88] worth
more attention. As hands are central means for humans to explore
and manipulate in egocentric videos, forecasting where human
hands move could reveal future activity and understand a person’s
intention. Liu et al. [49] also studied future hand trajectory
estimation in egocentric videos, but their method is limited by
manual annotation and single hand prediction. In contrast, we
design an automatic way to collect the data on a large scale and
can learn future trajectories for both hands from the data.

Grounded affordance prediction. Object affordance ground-
ing [19,21,42,60,69,74] refers to locating where the interaction
occurs on an object. Given the video input, the affordance
prediction task is to estimate the future active regions on an object
that the human would interact. In general, there are two main cat-
egories of prediction, next-active object [5,18,24] and interaction
hotspots [49, 54, 61]. The former one segments the object that
will next come into contact with the hand holistically, neglecting
the fine-grained spatial regions on the object’s surface. The latter
one outputs a heatmap to indicate salient regions on the object.
Nagarajan et al. [61] proposed a weakly-supervised method to
ground interaction hotspots on inactive images. Going one step
further, we consider predicting interaction hotspots in egocentric
videos. The task is more challenging since it needs to localize
the next-active-object in a cluttered scene before grounding the
hotspots. In our work, instead of using heatmap representation,
we directly predict the contact locations more compactly.

Transformers for video forecasting. Following the im-
mense success of Transformer [79] in natural language process-
ing, recent studies showed its effectiveness in solving vision
tasks [12,14,20,50,78]. The long-range reasoning and sequence
modeling capability make Transformers suitable for video under-
standing [6,27,51,86]. The TimeSformer [6] viewed the video as
a sequence of patches and adopted divided space-time attention
to capture spatial-temporal relations in videos. Transformers have
also been widely used in video forecasting problems like action
anticipation [28], trajectory estimation [30,90] and human motion
prediction [45,66]. Recent works show promising results by incor-
porating VAE [41] into Transformers for generative modeling [22,
37,66]. In our work, we propose an Object-Centric Transformer
(OCT) that takes the RoIAlign [34] hand, object, and environment
feature vectors extracted from a pre-trained ConvNet [83] as input
tokens. The Transformer encoder adopts self-attention across
all input tokens while the Transformer decoder computes cross-
attention between output tokens from the encoder and predicted
future hand locations. We also introduce the C-VAE [41] head in
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Figure 2. Given T observation frames as input (left), the goal is to forecast F steps future hand trajectory (right) and interaction hotspots. The orange
curve shows how we project future hand locations (red dots) to the last observation frame. The future hand trajectory is shown in red dashed line.

the Transformer decoder to express the uncertainty of the future.

3. Problem Setup
3.1. Task Description

Given observation key frames V = {f1,··· ,fT} of length T
as input, where fT is the last observation frame, our goal is
to predict future hand trajectories H and object contact points
O in the future time horizons of F , as shown in Figure 2.
H={hT+1,···,hT+F} denotes the future hand trajectories. At
each time step t, the future hand location ht=(htl,h

t
r) consists of

the left and right hand 2D pixel locations in the last observation
frame. Time step T+F is when the hand-object contact occurs
and frame fT+F is the contact frame. O={o1,···,oN} denotes
the future object contact points, where N is the maximum
number of contact predictions and each element defines the 2D
future contact location in the last observation frame.

3.2. Training Data Generation
We describe how to collect training labels of future hand

trajectory H and object hotspots O from future key frames
{ft+1,···,fT} automatically without manual labor. We first run
an off-the-shelf active hand-object detector [73] to get hand
and object bounding boxes per frame, providing the future hand
locations in each frame. Then we project them back to the last
observation frame to collect a complete future hand trajectory.
See Figure 2 for illustration. As shown in [62, 81], the global
motion between two consecutive frames is usually small, and they
can be related by a homography [77]. Given the homography
between every two consecutive frames, we could build a chain
and establish the relations of each future frame w.r.t. the last obser-
vation frame and project the future hand location back. In order to
estimate the homography, we first exclude the moving objects, in
particular the detected hands and objects in each frame. We mask
out the corresponding location and find the correspondences
between two frames outside the masked regions using SURF
descriptor [3]. We calculate the homography by sampling 4
points and applying RANSAC to maximize the number of inliers.

Similarly, for collecting the hotspots labels, we perform an
additional skin segmentation [70] and fingertip detection 1 within
the active intersection region of hand and object bounding boxes
to obtain contact points. Then we adopt a similar technique as
above to project the sampled contact points from the contact

1https://www.computervision.zone/courses/finger-counter/

frame to the last observation frame. More detailed discussions
are provided in the supplementary.

3.3. Pre-processing

Given the video clip of observation frames V={f1,···,fT},
we extract per-frame features, {X1,···,XT}. Each frame consists
of three types of input feature tokens Xt = (Xt

h, X
t
o, X

t
g),

whereXt
i represents the feature of i-th type in frame t. Subscripts

h,o,g refer to the hand, object, and global feature (environment
context) vectors respectively. To this end, we first encode each
frame ft using a pre-trained Temporal Segment Network [83]
(TSN) and extract hand and object RoIAlign [34] feature Pt

i

given the detected bounding boxes from [73]. The global
feature Pt

g is obtained similarly by average-pooling. Next, for
hands and objects, we concatenate the pooled features along
with the corresponding center coordinates and forward it to a
Multi-Layer Perceptron (MLP), yielding the Xt

i . Take a hand
as an example, Xt

h=Wh[ht;Pt
h], Wh is the learnable weights

of the corresponding hand MLP. When there is no hand or object
detected in a certain frame, we set corresponding places with zero
vectors. For global features, we directly use an MLP to obtain
the output, Xt

g =WgPt
g. All the features (global/hand/object)

are taken as independent input tokens to the Transformer.

4. Object-Centric Transformer
The proposed Object-Centric Transformer (OCT) has an

encoder-decoder architecture as shown in Figure 3. Both the
encoder and the decoder stack multiple basic encoding and
decoding blocks B. Each block has an attention module named
Att and a feed-forward module that consists of a two-layer MLP
followed by a layer normalization [2] (LN). The only difference
between the two blocks is the attention module, where we
perform self-attention across input tokens in the encoding block
and cross-attention between the encoder output and prediction
in the decoding block. Assume Qℓ−1 is the output query from
block ℓ−1, and the key, value, mask denoted by Kℓ−1,V ℓ−1,M
respectively, are three additional inputs to block ℓ. Then the
output Qℓ=B(Qℓ−1;Kℓ−1;V ℓ−1,M), of the block B could be
written as follows:

[Q;K;V ]=W [Qℓ−1;Kℓ−1;V ℓ−1]

Q′=Qℓ−1+Att(Q,K,V,M)

Qℓ=Q′+MLP(LN(Q′))
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Figure 3. The OCT has an encoder-decoder architecture. The input is observation frames and corresponding hand-object detections. The output is the
future hand trajectory and contact point prediction. Inside the model, we use ConvNet to extract hand, object and global features of each frame as input
tokens to the Transformer encoder. All tokens (global/hand/object) are passed through the Transformer independently. We take the output from the encoder
and previously predicted hand locations as input to the decoder. The decoder output is sent to hand C-VAE and object C-VAE to obtain the final results.

where the input tokens Qℓ−1, Kℓ−1, V ℓ−1 are first passed
through a linear transformation layer parameterized by W
to produce embeddings Q,K,V ; then they are forwarded to
the attention module Att. The attention output is sent to the
feed-forward module with residual connection [35] to obtain the
final output Qℓ. The attention operator is defined as follows:

Att(Q,K,V,M)=softmax(
QKT+M√

D
)V

D is the dimension of the attention module. The attention
operator computes a weighted sum of value V where the weight is
computed by the taking dot-product between query Q and key K
and adding up the mask M followed by scaling and Softmax nor-
malization. M masks out the padding values in key K by setting
corresponding positions to -inf before the Softmax calculation.

4.1. Encoder

The Encoder E stacks multiple encoding blocks B and generate
outputs {Z1,···,ZT} from inputs {X1,···,XT} (Sec. 3.3):

Z1,···,ZT =E(X1,···,XT ) (1)
Each Xt = (Xt

h,X
t
o,X

t
g) and Zt = (Zt

h,Z
t
o,Z

t
g) consists of a

triplet of tokens, hand tokens h, object tokens o and global tokens
g. The input tokens are encoded by two kinds of embeddings,
a learnable spatial embedding [20] to represent category-specific
(global/hand/object) information of different features, and the
sinusoidal positional embedding [79] to incorporate the temporal
position information. All tokens passed through the encoding
blocks independently. In each encoding block, we compute
self-attention over all input tokens across space and time. Given
that there could be padded tokens when there is no hand/object
detected in certain frames, we use mask M to mask out such

tokens. Thus we have Qℓ=B(Qℓ−1,Qℓ−1,Qℓ−1,M) in each of
the ℓ-th encoding blocks, where the query, key, and value come
from the same output Qℓ−1.

4.2. Decoder

The decoder D predicts future hand feature XT+t one at a
time, where t ∈ (T +1,T +F) is the future time step. The
predicted features XT+t are then sent to the trajectory head
network to predict the future hand location hT+t. At each step,
the decoder is auto-regressive [32], consuming the previously
generated future hand locations (hT ,···,(hT+t−1) as additional
input when generating XT+t. The 0-th input to the decoder is the
hand location hT in the last observation frame. The prediction
at future time step t of the decoder can be written as follows:

XT+t=D(hT ,···,hT+t−1) (2)
The decoder consists of several decoding blocks B. Each block
works like an encoding block, except it performs cross-attention
that takes the output Qℓ−1 from block ℓ−1 as query, output token
ZT (Sec. 4.1) of the encoder in the last observation frame as key
and value. To constrain the decoder block to only attend to earlier
input positions of Qℓ−1, we create a mask M ′ that masks out
subsequent positions. Thus we have Qℓ=B(Qℓ−1,ZT ,ZT ,M

′)
in each decoding block ℓ, where the three inputs to block B
correspond to query, key, and value. Before forwarding the input
to the 1st decoding block, we encode it with sinusoidal positional
embedding [79] to incorporate the temporal information.

4.3. Head Networks

We employ two C-VAE as two heads; one for hand trajectory
estimation and another for object contact points prediction. A
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C-VAE contains two functions: an encoding function Fenc which
encodes the input x and condition c into a latent z-space param-
eterized by mean µ and co-variance σ, and a decoding function
Fdec which decodes sampled z from the latent space and condi-
tion c to reconstruct input x. Formally, we have µ,σ=Fenc(x;c)
and x̂=Fdec(z;c) where z∼N (µ,σ2). The Fenc and Fdec are
implemented as a MLP. At training time, we minimize the ob-
jective of reconstruction error Lrecon(x,x̂)=∥x−x̂∥2 between
ground-truth x and predicted x̂, as well as a KL-Divergence term
Lkl(µ,σ)=−KL[N (µ,σ2)||N (0,1)] that regularizes the latent
z-space close to normal distribution N (0,1). During inference,
we sample z from the latent space and concatenate with condition
c to predict output x̂.

Hand C-VAE. At future time step t, the hand C-VAE takes
hand locations hT+t as input, and conditioned on the hand
feature tokens XT+t (Sec. 4.2) from the decoder output. The
encoding function Fh

enc outputs distribution parameters µh and
σh of the latent space. The decoding function Fh

dec predicts
future hand locations ĥT+t. Thus, the loss function of hand
C-VAE LH is the reconstruction loss over all future time steps
t and KL-Divergence regularization:

LH=

F∑
t=1

Lrecon(hT+t,ĥT+t)+Lkl(µh,σh) (3)

Object C-VAE. The object C-VAE takes the future contact
points o sampled from the generated ground-truth set of future
contact points O (Sec 3.1) as input, and is conditioned on
global feature token ZT

g (Sec. 4.1) in the last observation
frame from the Transformer encoder output and future hand
locations (hT , ··· ,hT+F ). The hand trajectory is forwarded
to a fully-connected layer and concatenated with ZT

g as the
conditional input. We found that the object’s future contact points
could be predicted more accurately with the future hand trajectory
as conditional input. During training, we use teacher forcing [85]
by taking ground-truth future hand trajectory as input. During
inference, we use the predicted future hand trajectory as input
for the object C-VAE. Similar to hand C-VAE, the encoding
function Fo

enc outputs µo and σo, while the decoding function
Fo
dec predicts future object contact points ĥo. The loss function,

LO, of the object C-VAE is the following:
LO=Lrecon(o,ô)+Lkl(µo,σo) (4)

4.4. Training and Inference
Training. We train the Object-Centric Transformer with both
the hand trajectory loss LH and object contact point loss LO.
We observe that the object contact points labels are noisier than
the hand trajectory labels in our generated training set. The total
loss is L=LH+λLO, where λ=1e−1, is a constant coefficient
to balance the training loss.

Inference. During inference, we sample 20 times for both
the trajectories and contact points from the C-VAE for each
input video. Following the evaluation protocol in previous

work [57, 59, 67, 89] that involves stochastic unit in trajectory
estimation, we report the minimum of among 20 samples for
trajectory evaluation. We collect all predicted contact points and
convert them into a heatmap by centering a Gaussian distribution
over each point for affordance evaluation.

5. Experiments

5.1. Implementation Details

We sample T =10 frames at 4 FPS (frames per second) as
input observations and forecast 1s in the future on Epic-Kitchens,
where the future time horizon F=4. We sample T=9 frames at
6 FPS on EGTEA Gaze+, forecasting 0.5s withF=3. We use the
pre-trained TSN [83] from [25] as the backbone to extract RGB
features from the input video clip. We use the detector proposed
in [73] to detect active hand and object bounding boxes in each
input frame. Then we use RoIAlign [34] and average pooling
to produce a 1024-D vector for hand Pt

h, object Pt
o and global

features Pt
g (Sec. 3.3) at input time step t. We set the embedding

dimension of the OCT to 512. We set the number of blocks in
encoder and decoder to be 6 and 4 on Epic-Kitchens, 2 and 1 on
EGTEA Gaze+. Each block has 8 attention heads. For encoding
and decoding function Fenc and Fdec in C-VAE, we use a single-
layer MLP for both the hand and object. The OCT is trained using
Adam optimizer [40] with a learning rate of 1e−4 and a batch size
of 128. Training takes 35 epochs on Epic-Kitchens, 25 epochs
on EGTEA Gaze+, including 5 epochs warm-up [31] and rest
epochs with cosine decay [52]. During inference, we sample 20
times from the C-VAE for both hand trajectory and object contact
points. Please see supplementary for detailed network structures.

5.2. Datasets

We use Epic-Kitchens-55 (EK55) [15], Epic-Kitchens-100
(EK100) [16] and EGTEA Gaze+ (EG) [46] datasets for
experiments. The EK100 dataset is an extended version of the
EK55 dataset. All datasets capture daily activities in the kitchen.
Following the standard partition protocol in [16, 25], we split
the training set of both datasets into training and validation splits.
Given the test set are only used for action anticipation, we don’t
incorporate them in our experiments. We used the method in
Sec. 3.2 to generate training labels automatically. The evaluation
is performed on the validation split of all datasets. We manually
filtered out badly generated hand trajectories and collected interac-
tion hotspot annotations on a challenging subset via the Amazon
Mechanical Turk platform (see supplementary for details). Given
the last observation frame and contact frame in the future, we ask
workers to place 1-5 future contact points in the last observation
frame. Following [21,61], we convert these annotations into an
affordance heatmap as our ground-truth. On the EK55 dataset, we
collect 8523 training samples, 1894 evaluation hand trajectories,
and 241 interaction evaluation hotspots. On the EK100 dataset,
we collect 24148 training samples, 3513 evaluation hand
trajectories, and 401 evaluation interaction hotspots. On the EG
dataset, we collect 1880 training samples, 442 evaluation hand
trajectories, and 69 evaluation interaction hotspots.
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Table 1. Future hand trajectory estimation performance on three
datasets. (↑/↓ indicates higher/lower is better.) Our method outperforms
previous approaches by a large margin and achieves comparable
performance with the more elaborate divided space-time attention design.

EK55 EK100 EG

Methods ADE ↓ FDE ↓ ADE ↓ FDE ↓ ADE ↓ FDE ↓
KF [7] 0.34 0.33 0.33 0.32 0.49 0.48

Seq2Seq [75] 0.18 0.14 0.18 0.14 0.18 0.14
FHOI [49] 0.36 0.35 0.35 0.35 0.34 0.34

Divided 0.11 0.11 0.12 0.11 0.15 0.15
Ours 0.12 0.12 0.12 0.11 0.14 0.14

5.3. Evaluation Metrics
Trajectory evaluation. We use normalized predicted 2D hand
locations for evaluation using the following metrics.
• Average Displacement Error (ADE). ADE is calculated

as the ℓ2 distance between the predicted future and the
ground-truth averaged over the entire trajectory and two hands.

• Final Displacement Error (FDE). FDE measures the ℓ2
distance between the predicted future and ground truth at the
last time step and averaged over two hands.

Interaction hotspots evaluation. We downsample and normal-
ize the affordance heatmap with a resolution of 32x and ensure it
sums up to 1. We don’t use KLD (Kullback-Leibler Divergence)
metric [10] as it is known to be sensitive to the tail of the distribu-
tions [4,63,91]. A small difference in the low-density regions may
induce a huge KLD, especially severe for forecasting problems.
• Similarity Metric (SIM): SIM [76] measures the similarity

between the predicted affordance map distribution and the
ground-truth one. It is computed as the sum of the minimum
values at each pixel location between the predicted map and
the ground-truth map.

• AUC-Judd (AUC-J): AUC-J [38] is a variant of AUC
proposed by Judd et al. [38]. The AUC evaluates the ratio of
ground-truth captured by the predicted affordance map under
different thresholds [10].

• Normalized Scanpath Saliency (NSS): NSS [65] measures
the correspondence between the predicted affordance map and
the ground truth. It is computed by normalizing the predicted
affordance map to have zero mean and unit standard deviation
and averaging over ground truth locations.

5.4. Comparison to the state-of-the-art
Trajectory estimation. We evaluate our method against several
baselines and state-of-the-art approaches. Kalman Filter (KF) [7]
tracks the center of the hand in observation frames and predicts
future hands locations. Seq2Seq [75] used LSTM to encode tem-
poral information in the observation sequence and decode the
target locations. Forecasting HOI (FHOI) [49] used I3D [13]
(CNN) with motor attention to forecast future hand motion. Note
that FHOI only used observation frames as input without access-
ing to hand-object detections. Besides, we also compare against
Divided Attention (Divided) [6] Transformer design by applying
temporal attention and spatial attention separately in the encoder

Table 2. Future object interaction hotspots prediction performance
on three datasets. (↑/↓ indicates higher/lower is better.) Our method
outperforms prior work as well as Divided Attention significantly.

EK55 EK100 EG

Methods SIM ↑ AUC-J ↑ NSS ↑ SIM ↑ AUC-J↑ NSS ↑ SIM ↑ AUC-J↑ NSS ↑
Center 0.09 0.61 0.33 0.09 0.62 0.31 0.09 0.63 0.27

Hotspots [61] 0.15 0.66 0.53 0.14 0.66 0.47 0.15 0.71 0.69
FHOI [49] 0.13 0.57 0.21 0.12 0.56 0.18 0.15 0.66 0.51

Divided 0.19 0.67 0.67 0.16 0.66 0.50 0.19 0.70 0.69
Ours 0.22 0.70 0.87 0.19 0.69 0.72 0.23 0.75 1.01

Table 3. Cross-dataset hand
trajectory estimation general-
ization performance. All models
are trained on Epic-Kitchens and
tested on EGTEA Gaze+.

Methods ADE ↓ FDE ↓
Seq2Seq [75] 0.24 0.19
FHOI [49] 0.31 0.32

Divided 0.15 0.13
Ours 0.16 0.13

Table 4. Cross-dataset interaction
hotspots prediction generaliza-
tion performance. All models
are trained on Epic-Kitchens and
tested on EGTEA Gaze+.

Methods SIM ↑ AUC-J↑ NCC ↑
Hotspots [61] 0.15 0.71 0.69
FHOI [49] 0.12 0.54 0.10

Divided 0.21 0.74 0.80
Ours 0.23 0.78 1.02

of the OCT instead of doing them jointly (Sec. 4.1). We compute
temporal attention only across hand tokens in different frames and
spatial attention only within each frame. The results are shown in
Table 1. Experimental results show that our method outperforms
previous approaches by a large margin, improving the ADE by
50%, and FDE by 27.3% on the EK100 dataset against the second-
best method of each metric, and achieves similar performance
with the Divided Attention Transformer encoder design. This
demonstrates the superiority of using Transformer to capture hand,
object, and environment context interactions in egocentric videos.

Interaction hotspots prediction. We compare our results
with the following methods. Center [49, 54, 61] generated
the heatmap by placing a fixed Gaussian at the center of the
image. Hotspots [61] anticipated spatial interaction regions using
Grad-Cam [71], given the future action label as additional input.
FHOI [49] and Divided [6] are the same method and baseline
introduced in trajectory estimation, where they used I3D (CNN)
and divided space-time Transformer encoder respectively. Table 2
summarizes the results of interaction hotspots prediction. Our
method achieves the best performance across datasets and all
metrics, improves SIM by +5%, AUC-J by +3%, and NSS by
+25% on the EK100 dataset against the second-best method of
each metric. Compared to Divided Attention, jointly modeling all
hand-object tokens in observation frames is more beneficial for
the prediction. These results also highlight that the Transformer
architecture is more suitable for visual forecasting problems.

Cross dataset generalization. We evaluate learned models’
cross-dataset generalization ability on both tasks. All models
are trained on Epic-Kitchens and tested on EGTEA Gaze+. The
hand trajectory estimation and interaction hotspots prediction
performances are shown in Table 3 and Table 4 respectively.
In addition to superior in-domain performance, our method
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Table 5. Ablation study of
trajectory estimation by using
different head network. Stochas-
tic models are in bold.

Heads ADE ↓ FDE ↓
MLP 0.21 0.16
Bivariate 0.19 0.14
C-VAE 0.12 0.11

Table 6. Ablation study of
hotspots prediction by using dif-
ferent head network. Stochastic
models are in bold.

Heads SIM ↑ AUC-J↑ NCC ↑
MLP 0.14 0.59 0.43
MDN 0.16 0.64 0.53
C-VAE 0.19 0.69 0.72

Table 7. Ablation study of different C-VAE conditions. H and O are
future hand trajectory and contact point. O|H stands for object C-VAE
is conditioned on hand trajectory, similar for H|O. None means no
conditions. Predicting contact points conditioned on hand trajectory
gives the best performance for both tasks.

Trajectory Interaction Hotspots

Condition ADE ↓ FDE ↓ SIM ↑ AUC-J↑ NCC ↑
None 0.14 0.12 0.16 0.64 0.53
H|O 0.13 0.12 0.16 0.64 0.54
O|H 0.12 0.11 0.19 0.69 0.72

demonstrates strong cross-domain generalization by significantly
outperforming other approaches across all metrics on both tasks.

5.5. Ablations and Analysis
We do ablation studies of our method on the EK100 dataset.

Head ablation. First, we evaluate the performance of using
different stochastic/deterministic head networks for trajectory
estimation and contact points prediction. For trajectory estimation,
we compare proposed C-VAE with MLP and Bivariate. MLP
deterministically outputs the future hand locations, while the
Bivariate [1] assumes the future hand location follows a bivariate
Gaussian distribution at each time step and explicitly samples
from the predicted distribution during inference. For future
contact points prediction, we compare C-VAE with MLP and
MDN. MDN [8] adopts the Mixture Density Model (MDN) and
models the distribution of future contact points as a mixture of
Gaussians, where we set the number of Gaussian components
to be 3. As shown in Table 5 and Table 6, stochastic models
outperform the deterministic one on both tasks, thanks to their
ability to deal with uncertainty. Adopting C-VAE against MLP
improves the trajectory estimation performance by 75.0% on
ADE and 45.5% on FDE, also obtains +5%, +10%, and +29%
gain on SIM, AUC-J, and NCC of hotspots prediction. Besides,
we also observe that C-VAE achieves better results compared
to Bivariate and MDN. It demonstrates modeling stochastic in
latent space works better than output space.

C-VAE condition. Besides modeling uncertainty in C-VAE,
we analyze the effect of condition dependency in C-VAE. In
Table 7, we evaluate the performance of using different C-VAE
conditions for both the hand and the object. We compare three
cases: no condition between the hand trajectory and object
contact point, denoted as None; hand trajectory is conditioned

Table 8. Ablation study of leveraging more automatically annotated
training data. We compare two models trained on EK55 and KE100
training split under the same setting, and evaluate the performance on
EK100 validation split. Training with more automatically annotated
training data (EK100) gives better performance on both tasks.

Trajectory Interaction Hotspots

Train Evaluation ADE ↓ FDE ↓ SIM ↑ AUC-J↑ NCC ↑
EK55 EK100 0.13 0.12 0.18 0.68 0.60
EK100 EK100 0.12 0.11 0.19 0.69 0.72

Table 9. Ablation study of differ-
ent input features for trajectory
estimation. Global features that
encode environmental context
and hand features are most
important.

hand object global ADE ↓ FDE ↓
✗ ✓ ✓ 0.13 0.16
✓ ✗ ✓ 0.13 0.11
✓ ✓ ✗ 0.15 0.13
✓ ✓ ✓ 0.12 0.11
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Figure 4. Ablation study of
observation time contributes
to trajectory estimation. Longer
temporal context are helpful.

on object contact point, denoted as H|O; object contact points
is conditioned on hand trajectory, denoted as O|H. We find that
explicitly incorporating the conditional dependency in C-VAE
improves the overall performance. Predicting interaction hotspots
conditioned on future hand trajectory leads to the best result on
both tasks, obtaining +3%, +5%, and +18% performance gain
on SIM, AUC-J, and NCC against conditioned on the inverse
order. It suggests that the two tasks are intertwined and modeling
their relation explicitly benefits the performance.

More training data. As we generate our training data automat-
ically without manual labeling, we are interested in understanding
whether leveraging more automatically annotated training data
can help boost performance. We trained two models under the
same setting on EK55 and EK100 training split respectively. We
evaluate their performances on the manually-collected EK100
validation split having no overlap with both EK55 and EK100
training splits. As shown in Table 8, we observe that a model
trained with larger data (EK100) outperforms a model trained on
EK55 on both tasks. This demonstrates the effectiveness of our
method. Even though there is inevitable noise introduced during
training data generation, our method could still learn useful
representations for forecasting and it benefits from utilizing more
training data. It also indicates a great potential for deploying our
method on larger-scale egocentric videos.

Input ablation. We evaluate the contributions of different input
settings to the performance of trajectory estimation. Contact
points prediction performance is conditioned on the trajectory,
thus the input relation is not as straightforward as trajectory
estimation. We evaluate the contribution of different features by
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Table 10. Action anticipation performance on EK55 and EK100
validation split. We report top-5 accuracy/recall in terms of verb, noun,
and action on EK55/EK100 respectively, following [25, 26, 28]. We
add a single MLP on top of the OCT encoder to classify future actions.
We compare the model trained from scratch (Scratch) and the model
pre-trained using trajectory and hotspots estimation task (Fine-tune).
The fine-tuned model greatly outperforms the model trained from scratch
across all anticipation metrics on both datasets.

EK55 EK100

Train Verb Noun Action Verb Noun Action
Scratch 68.7 36.1 18.9 18.9 24.0 10.0
Fine-tune 73.9 45.9 24.4 21.9 27.6 12.4

removing them from the input and seeing the performance drop.
As shown in Table 9, global features that encode environmental
context (Sec. 3.3) and hand features are more crucial to the
performance. By removing global features from input, ADE
metric drops 25.0%. Without hand features as input, FDE metric
drops 45.5%. This demonstrates that the global features are as
imperative as hand features to the trajectory estimation. Besides,
we also analyze the effect of different observation lengths in
Figure 4. We observe that the performance improves as we
incorporate more observation frames as input, which also proves
our model is capable of capturing useful temporal information.

Action anticipation. So far we have shown the capability of
our method on the trajectory estimation and interaction hotspots
prediction. We further investigate the potential of our trained
model for action anticipation task. We only use the OCT encoder
and add a single MLP on top of it that takes the output global
feature token in the last observation frame ZT

g (Sec. 4.1) from the
encoder as an input and predicts future action labels. Following
previous work [25, 26, 28], we report top-5 accuracy on EK55
dataset, and top-5 recall on EK100 dataset for verb/noun/action
predictions. Each action label consists of (verb, noun). We trained
our model on the same training split as we used for trajectory
estimation and interaction hotspots prediction and evaluated
the performance on corresponding validation splits. We only
used cross-entropy loss between the prediction and ground-truth
action labels during training. We obtained verb/noun prediction
scores by marginalizing over the action scores. We compared
two training strategies: training the model from scratch, denoted
as Scratch, and fine-tuning the model pre-trained on trajectory
and hotspots prediction task, denoted as Fine-tune. In the
Fine-tune version, we freeze the OCT encoder and only trained
the added MLP. The action anticipation performance of the two
methods is shown in Table 10. The Fine-tune model outperforms
Scratch model by a large margin across all datasets and all
metrics. Specifically, Fine-tune obtains +4.3%, +8.5%, +4.4%
performance gain on EK55 dataset, and +2.9%, +3.8%, +2.6%
performance gain on EK100 dataset. Note that the performance
of our model is not fully comparable with state-of-the-art action
anticipation models as we only use a subset of samples for
training and evaluation. Neither do we adopt any fancy tricks,
network structures, or other loss functions for action anticipation.

Figure 5. Qualitative visualization of future hand trajectory and
interaction hotspots. The right and left hand trajectory are shown in red
and green. The first two row shows single-hand and two-hand scenarios.
The third row shows diversity in future trajectory and interaction hotspots
prediction.

The experimental results show that the representation learned
on trajectory estimation and interaction hotspots prediction could
benefit the action anticipation task. This also proves the usefulness
of the two tasks and generalization to other forecasting tasks.

Qualitative visualization. We visualize predicted future hand
trajectory and interaction hotspots in Figure 5. Our method could
deal with single and two hands scenarios (when hands are visible
in the last observation frame) in the first two rows. Our method
can also generate diverse predictions of the future in the third
row. This demonstrates that our method is able to forecast the
future hand-object interaction considering the future uncertainty.
Please see supplementary for more visualizations.

6. Discussion
Conclusion. We propose to forecast future hand-object interac-
tions in egocentric videos. We solve this task by proposing an
automatic way to collect training data, and a novel Object-Centric
Transformer (OCT) model that jointly predicts future hand
trajectory and interaction hotspots given a sequence of observation
frames as input. Through extensive experiments and ablations,
we show that OCT significantly outperforms state-of-the-art
approaches, and could benefit from stochastic modeling of the
future and conditional dependency of trajectory and interaction
hotspots into account. Furthermore, we show that our proposed
method could leverage more training data to achieve better perfor-
mance and easily adapt to action anticipation task. In the future,
we hope to apply our method to solve more visual forecasting
problems in egocentric videos with less human supervision.
Limitation and future Work. Our training dataset generation
process relies on widely used off-the-shelf tools such as
active hand-object detectors and skin segmentation. Thus the
ground-truth annotations for training might be affected by the
bias and errors from the off-the-shelf tools. In future work, we
plan to incorporate self-supervision signals during training to
make our model more robust to label noise.
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