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Abstract

Gesture recognition plays an important role in natural
human-computer interaction and sign language recogni-
tion. Existing research on gesture recognition is limited
to close-range interaction such as vehicle gesture control
and face-to-face communication. To apply gesture recog-
nition to long-distance interactive scenes such as meetings
and smart homes, a large RGB-D video dataset LD-ConGR
is established in this paper. LD-ConGR is distinguished
from existing gesture datasets by its long-distance gesture
collection, fine-grained annotations, and high video qual-
ity. Specifically, 1) the farthest gesture provided by the
LD-ConGR is captured 4m away from the camera while
existing gesture datasets collect gestures within 1m from
the camera; 2) besides the gesture category, the temporal
segmentation of gestures and hand location are also anno-
tated in LD-ConGR; 3) videos are captured at high reso-
lution (1280 × 720 for color streams and 640 × 576 for
depth streams) and high frame rate (30 fps). On top of the
LD-ConGR, a series of experimental and studies are con-
ducted, and the proposed gesture region estimation and key
frame sampling strategies are demonstrated to be effective
in dealing with long-distance gesture recognition and the
uncertainty of gesture duration. The dataset and experimen-
tal results presented in this paper are expected to boost the
research of long-distance gesture recognition. The dataset
is available at https://github.com/Diananini/
LD-ConGR-CVPR2022.

1. Introduction

Gesture is an important way of information transmis-
sion. We use gestures to assist our language expression,
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Figure 1. Example frames from gesture datasets. The upper left
corner of each frame marks the dataset from which it is sampled.
The gestures in our dataset LD-ConGR are collected at long dis-
tances and are more challenging to recognize.

communicate with the deaf, direct traffic, and so on. Fur-
thermore, gestures help us interact with machines more nat-
urally and conveniently: 1) A simple gesture can replace
multiple mouse and keyboard operations. 2) In scenes such
as hospitals, conferences, and smart homes, people prefer
touchless interaction methods such as gestures and voice.
3) Gesture interaction is more user-friendly and lowers the
barrier to using smart devices. There are many datasets
[1, 12, 15, 21, 27] and related research [2, 3, 10, 16, 18, 28]
for gesture recognition. These datasets focus on interaction
with wearable devices (e.g., EgoGesture [27]), interaction
with vehicles (e.g., NVIDIA Gesture [15]), sign language
and symbolic gestures (e.g., ChaLearn ConGD [21]), or in-
teraction with computers (e.g., Jester [12] and IPN Hand
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[1]). As we can see, the existing datasets are all oriented to-
wards close-range gesture interaction and collect gestures at
a very close distance from the subjects. However, in many
scenarios such as the meeting and home automation, users
are far away from the machines to be controlled. More-
over, limited by the early data acquisition sensors, the exist-
ing datasets can not meet the high demand of long-distance
gesture recognition for video quality.

In this paper, a large high-quality RGB-D video dataset
LD-ConGR is established for long-distance continuous
gesture recognition. Firstly, LD-ConGR draws attention
to long-distance gesture interaction. Unlike the existing
datasets that record gestures within 1m from the camera, we
capture gestures at long distances (between 1m and 4m).
Fig. 1 shows example frames sampled from different ges-
ture datasets. It can be seen that the gestures in LD-ConGR
are captured with a large field of view, and the hands are
small and difficult to recognize, which poses a new chal-
lenge for gesture recognition. Secondly, LD-ConGR pro-
vides fine-grained annotations for continuous gesture recog-
nition. Continuous gesture recognition requires not only
to classify gestures but also to detect the specific duration
of gestures in the video. In LD-ConGR, each video con-
tains multiple gestures, and all gestures are manually la-
beled with the categories and the start and end frames in
the video. It should be noted that we also annotate the posi-
tion of the hand in each frame, which provides researchers
with more detailed information and brings more possibil-
ities for accurate gesture recognition. Lastly, videos col-
lected in LD-ConGR are of high quality. The Kinect V41,
equipped with an advanced depth sensor, is used to col-
lect high-quality RGB-D video data. The color and depth
streams are captured synchronously at 30 fps with resolu-
tions of 1280× 720 and 640× 570 respectively.

Based on the proposed LD-ConGR dataset, we con-
ducted a series of experimental explorations. A baseline
model based on 3D ResNeXt [23] is implemented and
achieves 85.33% accuracy on RGB data. To make good use
of the depth information, we learn from the ideas of [9] and
build a multimodal gesture recognition model ResNeXt-
MMTM. It achieves an accuracy of 89.66% on LD-ConGR.
To deal with long-distance gesture recognition, we estimate
the possible appearing area of the gesture based on hand
location and conduct recognition on the estimated gesture
region. This strategy increases the accuracy by 9.33% and
7.67% on RGB data and RGB-D data, respectively. More-
over, we observe the large difference in gesture duration
brings great difficulties to recognition. In view of this, we
try to extract key frames of the video based on inter-frame
difference to remove redundant frames for long-duration
gestures. Results show that the key frame sampling strategy
reduces the impact of gesture speed and duration, and real-

1https://azure.microsoft.com/en-us/services/kinect-dk

izes high-speed and accurate recognition with fewer frames.
In summary, the main contributions of this paper are as

follows: 1) We release a new large-scale RGB-D video
dataset LD-ConGR. To the best of our knowledge, this is
the first dataset for long-distance continuous gesture recog-
nition. LD-ConGR is finely annotated with gesture cate-
gory, temporal segmentation (the start and end frames of
the gesture in the video), and hand position. The dataset
will be available to the public. 2) The results of baseline
methods and state-of-the-art gesture recognition methods
on LD-ConGR are reported to provide references for sub-
sequent research. 3) For the two main challenges raised
by LD-ConGR: the long-distance recognition and the un-
certainty of gesture duration, we explore possible solutions
and provide more research directions.

2. Related Work

2.1. Gesture Recognition Datasets

Existing gesture recognition datasets are collected close
to the subject making gestures, as they are established for
close-range human-computer interaction or sign language
understanding. EgoGesture [27] focuses on gesture inter-
action with wearable devices. It is collected with Intel Re-
alSense SR300 RGB-D camera mounted on the head of the
subject. In Jester [12] and IPN Hand [1] datasets, the sub-
jects are asked to record gestures using their own personal
computer or laptop. They sit in front of the computer cam-
era and simulate using gestures to operate the computer.
NVIDIA Gesture [15] aims to make it possible to manip-
ulate cars through gestures. The gestures in NVIDIA Ges-
ture [15] are recorded inside a car simulator. The gesturing
hand is directly in front of the collector, SoftKinetic DS325
sensor, and is very close to the sensor. As for ChaLearn
ConGD [21], the subjects perform gestures standing within
1m from the Kinect V1 camera. It can be seen that the ges-
turing hand in these datasets is very close to the camera,
which means that the gesture is salient and easy to recog-
nize (See Fig. 1). However, in many application scenarios,
it is necessary to interact with the machine from a long dis-
tance. For example, in conferences, participants hope to re-
motely control the interactive meeting board to play slides
and turn pages. In home automation, we are pleased to use
gestures to adjust the lights, TV volume, and movie play-
back progress. To fill the vacancy of long-distance gesture
interaction data, we release a large RGB-D video dataset
LD-ConGR in this paper. Subjects are asked to perform ges-
tures at 6 recording spots in each scene, which are evenly
distributed within a range of 1m to 4m from the camera.
This makes our dataset contain various gesture distances
and complex backgrounds. It provides more realistic and
comprehensive data for gesture interaction.

Another issue is the granularity of annotations. For ges-
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ture recognition datasets, the category of gestures is the
coarsest-grained annotation, and the finer annotation needs
to mark the start and end of the gesture in video. Except for
the EgoGesture dataset [27], all other datasets mentioned
above provide precise temporal segments of gestures. It is
worth noting that our proposed dataset LD-ConGR further
annotates the location of the hand in each frame, which can
help to quickly locate the key area of the gesture in long-
distance gesture recognition.

2.2. Gesture Recognition Methods

According to whether the temporal boundary of the ges-
ture is pointed out, gesture recognition can be divided into
isolated gesture recognition and continuous gesture recog-
nition. Isolated gesture recognition refers to the classifica-
tion of a given sequence that contains a single gesture. Con-
tinuous gesture recognition refers to detecting the beginning
and end of each gesture instance and identifying its category
for a given video sequence, which may contain more than
one gesture.

The general method of continuous gesture recogni-
tion. Sliding window is a common strategy to deal with
continuous gesture recognition [2,10,15]. The basic idea of
this method is to slide on the video sequence with a certain
step size and window size and conduct gesture classifica-
tion on these window clips. The prediction results of the
windows are fused through the cumulative average or other
strategies to generate the final gesture detection and recog-
nition results. An inevitable problem in continuous gesture
recognition is the detection and processing of non-gesture
segments. The existing methods can be roughly divided into
two categories. One is to deal with non-gesture clips sepa-
rately [1,10]. This kind of methods first trains a lightweight
binary classifier to detect whether gestures appear. If there
is a gesture in the video clip, then perform multi-class clas-
sification on it. The other is to add an extra no gesture class
and process it together with the gesture classes [3, 15]. In
other words, it directly predicts the probabilities that the
video clip belongs to all the gesture classes and no ges-
ture class. Compared with the first class of methods, the
second one can be optimized end-to-end, so we deal with
non-gesture fragments according to the second method.

Feature extraction for dynamic gestures. For the fea-
ture extraction of dynamic gestures, both spatial and tempo-
ral dimensions need to be considered. Most of the existing
methods use Convolutional Neural Networks (CNNs) to ex-
tract spatial features. For the representation of temporal fea-
tures, there are three main methods: The first is based on op-
tical flow [4,16,18], motion vectors [25], etc., the second is
to learn temporal features using Recurrent Neural Networks
(RNNs) [3, 8, 15, 17, 26], and the last is based on 3D con-
volutions [4, 10, 14, 20, 28], which perform convolution in
three dimensions (two spatial dimensions and one temporal

dimension) to extract spatial features and temporal features
simultaneously. In this paper, we adopt 3D ResNeXt [23],
a 3D CNN architecture, as a baseline model.

Multimodal learning in gesture recognition. Mul-
timodal data can reflect different aspects of the context.
Learning and fusing relevant features from multimodal data
will greatly benefit gesture recognition. Multimodal data
fusion can be achieved at the data level, feature level, or de-
cision level. The data-level fusion tries to fuse multimodal
data before feeding it to the recognition model. [11] fuses
the optical flow and color modalities by appending the op-
tical flow maps calculating from the previous frames to the
RGB frame as extra channels. The feature-level fusion first
extracts the features of different modal data and then de-
signs algorithms to fuse these features for prediction. [13]
analyzes the pair-wise correlation between features from
different modalities to fuse the features. [9] proposes a Mul-
timodal Transfer Module (MMTM), which can be applied
to any level of the feature hierarchy. It enables the fusion of
modalities with different spatial dimensions. The hierarchi-
cal progressive fusion by adding MMTM to multiple layers
of the network improves the performance significantly. [6]
fuses features from different modalities based on attention
mechanism, and the temporal order of the data is consid-
ered during the fusion. This ensures that the multi-modal
features are aligned in the temporal dimension. As for
the decision-level fusion, it designs the network structure
separately for each data modality and then averages [4] or
weighted averages [16] the predicted scores obtained from
different data modalities as the final result. The available
information for the decision-level fusion is limited to the
top-level output of the network, which is very abstract and
compact, so the performance improvement it brings is of-
ten not as much as the feature-level fusion. In view of the
above analysis, we integrate the information of RGB and
depth modalities at the feature level based on MMTM.

3. The LD-ConGR Dataset
The LD-ConGR dataset is developed for the long-

distance gesture recognition task. It contains 10 gesture
classes, of which three are static gestures and seven are dy-
namic gestures. The standard practice for these gestures is
shown in Fig. 2. It can be seen that a variety of hand shapes
and movements are involved in the design of gestures. A
total of 542 videos and 44, 887 gesture instances are col-
lected in LD-ConGR. The videos are collected from 30 sub-
jects in 5 different scenes and captured in a third perspective
with Kinect V4. Each video contains a color stream and a
depth stream. The two streams are recorded synchronously
at 30 fps. The resolutions of the color stream and the depth
stream are 1280 × 720 and 640 × 576, respectively. The
distance between the subject and the camera ranges from
1m to 4m, which ensures the long-distance characteristic
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Palm Fist Shift Right Thumb Up Downward Upward Left Right Pinch Click

Figure 2. Ten gesture classes of LD-ConGR dataset, including
three static gestures (‘palm’, ‘fist’, ‘pinch’) and seven dynamic
gestures (‘shift right’, ‘thumb up’, ‘downward’, ‘upward’, ‘left’,
‘right’, ‘click’). Each column shows the standard practice of the
gesture noted above. The red arrows indicate the direction of the
hand movement.

of the gestures in the dataset. We label the category and
the start and end frames for each gesture instance in video.
In addition, the locations of the hands in each frame are
marked with bounding boxes, which benefits long-distance
gesture recognition. In the following subsections, we will
introduce the collection and annotation of the dataset, re-
port data statistics, and make a comparative analysis of the
LD-ConGR dataset and other gesture recognition datasets.

3.1. Data Collection and Annotation

Collection. We use Kinect V4 to collect RGB-D video
data. Kinect V4, known as Kinect for Azure and released in
2019, is equipped with a 12-megapixel RGB camera and
a 1-megapixel depth camera, ensuring the quality of the
captured videos. We synchronously record color and depth
streams with resolutions of 1280 × 720 and 640 × 576 re-
spectively and a frame rate of 30 fps. The video recording is
arranged in 5 meeting rooms with different designs and fur-
nishings. Six recording spots are set in each scene, and the
distance from the recording spot to the camera is between
1m and 4m (See supplementary material for more details).

A total of 30 subjects participate in data collection and
are randomly assigned to 5 scenes to record gestures. All
subjects are shown the standard gestures before recording,
and the recorded video will be further checked whether the
gestures are correct. The subjects are asked to perform ges-
tures continuously, and a short break is allowed between
two gesture instances. The data is only allowed for aca-
demic research and we will provide strict access for appli-
cants who sign data use agreements. The subjects were in-
formed of the uses of the data and signed informed consent.

Annotation. We label the category and the start and end
frames for each gesture instance in the video. Frames are
extracted from the video at 30 fps for gesture annotation. As
the color and depth video streams are synchronized, only
the color streams need to be labeled, and the annotations

Classes Instances Duration

Total Train Test Avg. Std. Max. Min.

Palm 15,315 11,672 3,643 10.96 4.20 54 4
Fist 2,689 2,059 630 16.38 4.60 37 5

Thumb Up 2,689 2,059 630 36.56 7.60 72 10
Shift Right 2,689 2,062 627 38.52 8.29 78 8
Downward 2,686 2,055 631 27.32 7.09 62 7

Upward 2,679 2,049 630 27.39 7.13 85 11
Left 2,684 2,053 631 26.27 6.40 92 10

Right 2,690 2,060 630 25.58 6.33 54 8
Pinch 2,686 2,056 630 16.28 4.75 60 5
Click 8,080 6,190 1,890 11.88 3.48 33 5

Total 44,887 34,315 10,572 18.70 10.80 92 4

Table 1. Statistics of the proposed LD-ConGR dataset. Gesture
duration is measured in frames.

of depth videos can be obtained accordingly. In addition,
the positions of the hands in each frame are annotated with
bounding boxes. In long-distance gesture recognition, the
hand area accounts for a small proportion of the frame.
Therefore, the localization of hands can help to get rid of
the interference of redundant background information and
focus on the gesture itself. Different from the gesture label-
ing, hand position annotation is carried out at 15 fps. Since
the hand position between adjacent frames changes little at
a high frame rate, marking the hand position at a low frame
rate can save a lot of time and manpower.

3.2. Data Statistics

The LD-ConGR dataset contains 44, 887 gesture in-
stances of 10 different hand gesture classes. The dataset
is randomly divided into training set and testing set by sub-
jects. The training set includes a total of 34, 315 gestures
collected from 23 subjects. The gestures performed by the
other 7 subjects, 10, 572 gestures in total, are collected as
the testing set. The number of instances of each gesture
class is shown in Tab. 1. There are more ‘Palm’ instances as
the ‘Click’ starts and ends with ‘Palm’ (See Fig. 2) and these
palms are also counted. As for ‘Click’, it is collected in two
forms: one is an independent click, and the other is two con-
secutive clicks (simulating a double-click), so the amount of
‘Click’ is about three times that of other classes (except for
‘Palm’). The gesture duration, measured in frames, is ana-
lyzed and detailed statistics, including the average, standard
deviation, maximum, and minimum, are reported in Tab. 1.
It can be seen that the duration of gestures fluctuates greatly
both within the same gesture class and between different
gesture classes. In the whole data set, the duration differ-
ence between the longest gesture and the shortest gesture
can reach 88 frames (92 vs. 4). Even for instances of the
same gesture class, the maximum duration difference is 82
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Dataset Classes Videos Instances Distance Label Resolution Frame Rate/fps
Cat. Seg. Loc. RGB Depth

Jester [12] 27 148,092 148,092 < 1m ✓ ∗ × 100 - 12
NVIDIA Gesture [15] 25 1,532 1,532 < 1m ✓ ✓ 320× 240 320× 240 30

EgoGesture [27] 83 2,081 24,161 < 1m ✓ ✓ 640× 480 640× 480 30
ChaLearn ConGD [21] 249 22,535 47,933 < 1m ✓ ✓ 320× 240 320× 240 10

IPN Hand [1] 13 200 4,218 < 1m ✓ ✓ 640× 480 - 30
LD-ConGR (Ours) 10 542 44,887 1m ∼ 4m ✓ ✓ ✓ 1280× 720 640× 576 30

Table 2. Comparison of our dataset LD-ConGR and popular gesture recognition datasets. ‘Distance’ means subject distance, i.e., the
distance between the camera and the subject. The label here includes gesture category (‘Cat.’), temporal segmentation (‘Seg.’), and hand
location (‘Loc.’).

frames (’Left’ class, 92 vs. 10). There are two main reasons
for the large difference in gesture duration. One is that in-
dividuals make gestures at different speeds, and the other is
that different classes of gestures take different amounts of
time. The huge difference and uncertainty of gesture dura-
tion also bring great challenges to gesture recognition. We
will analyze and explore possible solutions in Sec. 4.3.

3.3. Comparative Analysis

In Tab. 2, we compare our dataset LD-ConGR with
the publicly available gesture recognition datasets, includ-
ing Jester [12], NVIDIA Gesture [15], EgoGesture [27],
ChaLearn ConGD [21], and IPN Hand [1]. Below we will
make a detailed comparison and explain the advantages of
our dataset from three aspects: subject distance, label , and
video quality.

Subject distance. In all these datasets, only our dataset
LD-ConGR is established for long-distance gesture recog-
nition. As shown in Fig. 1, in the previously published
datasets, the subjects are very close to the camera during
recording (within 1m). Therefore, the hands in the video are
salient, and the details of the gestures are clear and distinct.
It is easy to recognize such gestures correctly. However,
in many scenes that require long-distance gesture interac-
tion, such as meetings and movie watching, it is necessary
to accurately recognize gestures even when the subject is far
away from the camera. Our data set is constructed to solve
this problem. In our setting, the subject is 1m ∼ 4m away
from the camera when performing gestures. To the best of
our knowledge, the LD-ConGR dataset is the first dataset
targeted at long-distance gesture recognition.

Label. The Jester dataset [12] is collected for gesture
classification and provides only gesture category annota-
tions. Other than the category information, the NVIDIA
Gesture [15], EgoGesture [27], ChaLearn ConGD [21], IPN
Hand [21], and our dataset LD-ConGR also provide spe-
cific temporal segmentation for each gesture, i.e., the start
and end frames of the gesture in the video. This is very im-
portant for continuous gesture detection, which needs not

only to classify gestures but also to determine the beginning
and end of gestures. Moreover, we annotate the location of
hands in each video frame. The LD-ConGR is the first ges-
ture recognition dataset to provide such fine-grained annota-
tions. We hope that the precise annotation of hand position
can bring more help to long-distance gesture recognition.

Quality. The videos collected in our dataset are of high
quality. As we can see in Tab. 2, our dataset provides high-
definition RGB video data (1280 × 720), while the high-
est resolution of other gesture datasets is only 640 × 480.
In addition, the depth streams (captured synchronously
with color streams) are available in our dataset and have
a higher resolution (640× 576) compared to NVIDIA Ges-
ture (320 × 240), EgoGesture (640 × 480), and ChaLearn
ConGD (320×240). Moreover, the color and depth streams
are captured at a high frame rate (30 fps).

4. Experimental Studies
In this section, we will first introduce a baseline method

for the LD-ConGR dataset, and then discuss two important
issues raised by the dataset: long-distance gesture recogni-
tion and great uncertainty of gesture duration. Finally, we
evaluate the state-of-the-art methods in the field of gesture
and action recognition on the LD-ConGR dataset.

4.1. A Baseline Method

We build a baseline model based on ResNeXt-101 [23]
and conduct experiments to explore the recognition perfor-
mance of different input modalities. In our experiments,
the ResNeXt-101 network is used to do gesture recogni-
tion on a single modality (RGB or depth). For multi-modal
gesture recognition, we design a multimodal fusion model
ResNeXt-MMTM learning from the idea of [9]. The archi-
tecture of ResNeXt-MMTM is shown in Fig. 3. ResNeXt-
MMTM maintains a ResNeXt-101 network for each modal-
ity and fuses the features of different modalities at multiple
layers through Multimodal Transfer Modules (MMTMs)
[9]. The MMTM learns a multimodal embedding and uses
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Figure 3. The architecture of the RGB-D baseline model
ResNeXt-MMTM. 3D ResNeXt-101 [23] is adopted to extract fea-
tures from RGB and depth streams, and the features of the two
modalities are fused at four levels through MMTMs [9].

it to recalibrate the features of each modality. In our de-
sign, the features extracted from RGB and depth streams
are blended by the MMTM after each ResNeXt block. The
feature vectors output from the fully connected layers are
integrated by element-wise addition and then passed to the
softmax layer to obtain the final prediction results.

Evaluation metrics. Both isolated gesture recognition
and continuous gesture recognition are studied on the LD-
ConGR dataset. The accuracy is adopted to evaluate the
model for isolated gesture recognition task, while the mean
Jaccard Index [21] for continuous gesture recognition task.
The Jaccard Index is the ratio of the overlapping frames of
the ground-truth gesture segment and the predicted gesture
segment to the total frames. For video v and gesture class c,
the Jaccard Index can be calculated as:

Jv,c =
Gv,c ∩ Pv,c

Gv,c ∪ Pv,c
, (1)

where Gv,c and Pv,c are the sets of all frames belonging to
gesture c in the ground truth and prediction of video v, re-
spectively. The Jv,c is set to 0 when Gv,c = ∅ or Pv,c = ∅.
The Jaccard Index for the video v is defined as the average
of the Jaccard Index on all the ground-truth gesture cate-
gories C:

Jv =
1

|C|
∑
c∈C

Jv,c. (2)

The model performance is evaluated by the mean Jaccard
Index of all the test videos:

J =
1

|V |
∑
v∈V

Jv, (3)

where V is the test video set and |V | refers to the number
of videos in the set. J cannot accurately reflect the model
performance when the classes are imbalanced. In this case,
the mean Jaccard Index of each class can be used to further
evaluate the model:

Jc =
1

|V |
∑
v∈V

Jv,c. (4)

Train and test. In the training phase, the gesture clip
is first randomly cropped or cyclically filled to a fixed
length of 32 frames, and then multi-scale random clipping
is applied to all frames in the spatial dimension to obtain
112× 112 regions. The elastic distortion is used for further
data enhancement in our experiments. In the testing phase
of isolated gesture recognition, central clipping or cyclic
filling is employed to generate gesture clips with a length
of 32 frames and the frames are scaled to 112 × 112 in the
spatial dimension before being fed into the model. The be-
ginning and end of the gesture are known in isolated gesture
recognition, and there is only the need to classify the gesture
segments. For continuous gesture recognition, the model is
not told when the gesture appears in the video. Here the
sliding window method is adopted to deal with this issue.
We use a 32-frame window to slide over the video sequence
in a certain stride (2 frames in our experiments). Each win-
dow clip is preprocessed the same as the isolated gesture
recognition and then sent to the model to determine the ges-
ture class (including no gesture class). The initial gesture
is set to no gesture. When the predicted gesture is inconsis-
tent with the previous gesture for two consecutive windows,
a new gesture is considered to appear and the indices of the
first and last frames of the window are recorded as the start
and end of the new gesture, respectively. When the pre-
dicted gesture is consistent with the previous window, the
end of the gesture is updated to the index of the last frame
of the current window.

Results. Results of the baseline method are reported
in Tab. 3. The basic ResNeXt-101 model trained on the
RGB modality achieves 85.33% accuracy and 0.31 mean
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Classes Accuracy/% Mean Jaccard Index

RGB RGB-D RGB RGB-D

Palm 84.90 90.94 0.02 0.01
Fist 76.35 81.90 0.11 0.11

Thumb Up 95.08 99.21 0.33 0.57
Shift Right 98.41 99.36 0.61 0.65
Downward 98.89 98.89 0.54 0.54

Upward 93.97 96.03 0.34 0.38
Left 91.28 97.62 0.52 0.51

Right 91.90 97.78 0.50 0.50
Pinch 38.89 46.19 0.02 0.01
Click 85.45 87.30 0.11 0.09

Total 85.33 89.66 0.31 0.34

Table 3. Results of the baseline method.

Jaccard Index. It should be noted that when combining
color and depth information for recognition, the accuracy
and the mean Jaccard Index increase by 4.33% (85.33%
vs. 89.66%) and 0.03 (0.31 vs. 0.34) respectively compared
with using only RGB modality. The results indicate that
the hand details contained in RGB streams are essential for
long-distance gesture recognition, and the depth modality
can provide extra information to assist the recognition.

4.2. Long-Distance Gesture Recognition

In long-distance gesture recognition, the hand area occu-
pies a very low proportion of the picture, and the features
that the model can use to capture and recognize gestures
are very limited. We try to use the position of the hand to
estimate the region where the gesture may occur, and then
perform gesture detection and recognition in the estimated
region. The hand location annotations provided by the LD-
ConGR dataset can assist the training process and can be ex-
ploited to train a hand detector to estimate the gesture region
in the test stage. The gesture region is predicted using the
first tracked hand location Rhand = (x, y, w, h), where x, y
are center coordinates of the hand bounding box Rhand, and
w, h are the width and height of Rhand. The gesture region
Rges is the extended rectangular area centered on (x, y):

Rges = (x, y, rw × w, rh × h) . (5)

rw > 1 and rh > 1 are the extension ratios in width and
height. As the 10 gesture classes in LD-ConGR have large
horizontal movements and small vertical movements (See
Fig. 2), rw and rh are set to 5 and 4 respectively in our ex-
periments. The specific processes of training and predicting
with gesture region estimation are illustrated in the supple-
mentary material.

The gesture region estimation strategy removes most
of the redundant information in the spatial dimension and

Input Modality Strategy
Raw Region Region&Key

16-frame RGB 82.16 92.02 93.26
RGB-D 86.00 93.75 94.68

32-frame RGB 85.33 94.66 94.62
RGB-D 89.66 97.33 97.45

Table 4. Accuracy of with and without gesture region estimation
and key frame sampling strategies.

magnifies the gesture details, which can help the model
learn gesture features faster. Moreover, it can locate and
recognize gestures in situations where multiple gestures oc-
cur at the same time. To verify the effect of this strategy, we
have carried out experiments on different input lengths and
data modalities. Test results without and with gesture region
estimation are shown in the ‘Raw’ and ‘Region’ columns of
Tab. 4 respectively. With 16-frame length input, the accu-
racy is improved by 9.86% (92.02% vs. 82.16%) on RGB
data and 7.75% (93.75% vs. 86.00%) on RGB-D data. With
32-frame length input, the accuracy is improved by 9.33%
(94.66% vs. 85.33%) on RGB data and 7.67% (97.33% vs.
89.66%) on RGB-D data. The significant performance im-
provement proves that gesture region estimation is a good
strategy for long-distance gesture recognition.

4.3. Uncertainty of Gesture Duration

The uncertainty of gesture duration brings great difficul-
ties to gesture recognition, as mentioned in Sec. 3.2. For
long-duration gestures, a large window needs to be used to
capture long-term temporal dependencies, while for short-
duration gestures, a small window is adequate. Moreover,
in real-time continuous gesture detection, it is unknowable
how long the gesture will last, and it is tricky to set an ap-
propriate prediction window size. A large window will in-
crease the computational cost and slow down the inference
speed. On the other hand, too many interference factors
may be involved, such as adjacent gestures and non-gesture
fragments. A small window may not be able to capture the
key information of the gesture, leading to wrong judgments.
To solve this problem, we try to extract key frames of the
video and perform gesture recognition on the key frames.
The key frames function in three aspects: 1) As the video is
recorded at a high frame rate, there is a lot of similar infor-
mation between adjacent frames. Sampling the key frames
can remove redundant frames and reduce the computational
burden. 2) Different individuals make gestures at differ-
ent speeds, which makes the temporal features of gestures
changeable and hard to learn. Using key frames reduces the
impact of different gesture speeds. 3) Key frames reduce
the number of frames required to recognize a gesture. In
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Classes Avg. duration Std. duration Max. duration

Raw Key Raw Key Raw Key

Palm 10.96 6.85 4.20 2.74 54 24
Fist 16.38 8.86 4.60 3.03 37 19

Thumb Up 36.56 16.59 7.60 5.06 72 37
Shift Right 38.52 15.82 8.29 5.15 78 41
Downward 27.32 13.02 7.09 4.76 62 31

Upward 27.39 12.92 7.13 4.63 85 32
Left 26.27 12.50 6.40 4.59 92 35

Right 25.58 10.78 6.33 4.47 54 29
Pinch 16.28 8.90 4.75 3.30 60 23
Click 11.88 6.78 3.48 2.23 33 20

Total 18.70 9.60 10.80 4.95 92 41

Table 5. Statistics of gesture duration before and after key frame
sampling.

other words, just a small window can achieve high recog-
nition accuracy. In addition, the small window ensures fast
predicting speed.

We extract the key frames of the gesture according to the
inter-frame difference. The frame difference calculation is
limited to the rectangular area centered on the hand. The
width is five times the hand width and the height is four
times the hand height, consistent with the size of ‘gesture
region’ (See Eq. (5)). Statistics of raw gesture frames and
key frames are shown in Tab. 5. It can be seen that key
frames sampling removes about half the number of frames
(18.70 vs. 9.60 in average) and lowers the difference in ges-
ture duration (10.80 vs. 4.95 in standard deviation). The
longest gesture is reduced from 92 frames to 41 frames.
We add the key frame sampling strategy to the model in-
troduced in Sec. 4.2. The test results are listed in the ‘Re-
gion&Key’ column of Tab. 4. It can be seen that with 16-
frame input, the accuracy is improved by 1.24% and 0.93%
on RGB data and RGB-D data respectively. With 32-frame
input, there is no significant performance improvement, as
the large window already provides enough long-term infor-
mation for recognition. On the raw data, a small window
has an advantage in speed compared to a large window,
but not in accuracy. By contrast, with the key frames, the
small input window can store long-term information to ob-
tain high recognition accuracy while maintaining a speed
advantage.

4.4. State-of-the-art Evaluation

We evaluate the state-of-the-art gesture and action recog-
nition methods on the proposed LD-ConGR dataset. The
results are shown in Tab. 6. Publicly available pretrained
models are used considering pretraining these models from
scratch may result in suboptimal performance. To avoid the

Model Input Pretrain Acc./%

C3D [19] 32-frame - 88.32
I3D [4] 32-frame Kinetics400 [4] 90.11

SlowFast [5] 64-frame Kinetics400 [4] 93.51

TSN [22] 8-seg Kinetics400 [4] 86.80
TPN-TSM [24] 8-seg Sth-V1 [7] 87.45

Ours 32-frame Jester [12] 94.66

Table 6. Results of representative methods on the RGB modality
of LD-ConGR. ‘Sth-V1’ means Something-Something V1 dataset.

influence of different multimodal data processing methods,
the comparison is based on the RGB modality. C3D [19],
I3D [4], SlowFast [5], and our method are based on 3D
CNNs, and the input sizes of the temporal dimension in the
experiments are listed in the ‘Input’ column. Different from
3D CNN-based methods, which extract spatial and temporal
features simultaneously via 3D convolutions, the TSN [22]
and TPN-TSM [24] model the spatial and temporal infor-
mation separately. They segment the video and sample one
frame from each segment. 2D CNNs are then used to extract
spatial features from the sampled frames, and the temporal
features are represented by the optical flow as in TSN [22]
or learned from the temporal context as in TPN-TSM [24].
The results show the performance of TSN [22] and TPN-
TSM [24] is not as good as that of 3D CNN-based methods
on the LD-ConGR dataset. This is mainly because gestures
with long duration may lose key frames in the segmentation
and random sampling. The 3D CNNs show strong ability
in extracting spatiotemporal features. It is worth noting that
our model achieves 94.66% accuracy (higher than all other
methods), which proves its superiority.

5. Conclusion
In this paper, we present a large RGB-D video dataset

LD-ConGR. It is the first dataset targeted at long-distance
continuous gesture recognition. LD-ConGR contains high-
quality video data and fine-grained annotations, including
the gesture category, temporal segmentation, and hand lo-
cation. In contrast to the existing gesture dataset, the LD-
ConGR captures gestures at long distances (1m ∼ 4m), and
the gesture duration varies in a wide range (from 4 frames
to 92 frames). Two strategies, gesture region estimation
and key frame sampling, are proposed to deal with long-
distance gesture recognition and the uncertainty of ges-
ture duration. Moreover, representative methods of gesture
and action recognition are evaluated and discussed on the
LD-ConGR. We believe that our dataset and experimental
studies can inspire research in many fields, including but
not limited to gesture recognition, action recognition, and
human-computer interaction.
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