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Abstract

Generating speech-consistent body and gesture move-
ments is a long-standing problem in virtual avatar creation.
Previous studies often synthesize pose movement in a holis-
tic manner, where poses of all joints are generated simul-
taneously. Such a straightforward pipeline fails to gen-
erate fine-grained co-speech gestures. One observation is
that the hierarchical semantics in speech and the hierar-
chical structures of human gestures can be naturally de-
scribed into multiple granularities and associated together.
To fully utilize the rich connections between speech audio
and human gestures, we propose a novel framework named
Hierarchical Audio-to-Gesture (HA2G) for co-speech ges-
ture generation. In HA2G, a Hierarchical Audio Learner
extracts audio representations across semantic granular-
ities. A Hierarchical Pose Inferer subsequently renders
the entire human pose gradually in a hierarchical man-
ner. To enhance the quality of synthesized gestures, we de-
velop a contrastive learning strategy based on audio-text
alignment for better audio representations. Extensive ex-
periments and human evaluation demonstrate that the pro-
posed method renders realistic co-speech gestures and out-
performs previous methods in a clear margin. Project page:
https://alvinliu0.github.io/projects/HA2G.

1. Introduction
When communicating with other people, we spon-

taneously make co-speech gestures to help convey our
thoughts. Such non-verbal behaviors supplement speech in-
formation, making the content clearer and more understand-
able to listeners [11, 48, 62]. Psycho-linguistic studies also
suggest that virtual avatars with plausible speech gestures
are more intimate and trustworthy [60]. Therefore, actuat-
ing embodied AI agents such as social robots and digital

humans with expressive body movements and gestures is of
great importance to facilitating human machine interaction
[55, 56]. To this end, researchers have explored the task of
co-speech gesture synthesis [1,2,8,19,25–27,41,53,68,69],
which aims at generating a sequence of human gestures
given the speech audio and transcripts as input.

Traditionally, the task is tackled through building one-
to-one correspondences between speech and unit gesture
pairs [12, 13, 32, 47]. Such pipelines require huge human
efforts, making them inapplicable to general scenarios of
unseen speech. Recent studies leverage deep learning to
solve this problem by training a neural network to map
a compact representation of audio [1, 25, 26, 41, 53] and
text [3,8,35,68,69] to holistic human pose sequence. How-
ever, such a straightforward approach fails to capture the
micro-scale motions and cross-modal information, e.g., the
subtle finger movements and the rich meanings contained in
speech audio. The problem of how to learn the fine-grained
cross-modal association remains unsolved.

In order to fully exploit the rich multi-modal semantics,
we identify two important observations from a human ges-
ture study [48]: 1) Different types of co-speech gestures are
related to distinct levels of audio information. For example,
the metaphorical gestures are strongly associated with the
high-level speech semantics (e.g., when depicting a ravine,
one would moving two outstretched hands apart and saying
“gap”), while the low-level audio features of beat and vol-
ume lead to the rhythmic gestures. 2) The dynamic patterns
of different human body parts in co-speech gestures are not
the same, such as the flexible fingers and relatively still up-
per arms. Thus it is improper to generate the upper body
pose as a whole like previous studies [1–3,25,26,41,53,68].

Inspired by the discussions above, we develop the Hier-
archical Audio-to-Gesture (HA2G) pipeline, which gener-
ates diverse co-speech gestures. Our key insight is to build
hierarchical cross-modal associations across multiple lev-
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els between tri-modal information and generate gestures in
a coarse-to-fine manner. Specifically, two modules are de-
vised, namely the Hierarchical Audio Learner, and the Hi-
erarchical Pose Inferer. In the Hierarchical Audio Learner,
we argue that features extracted from different levels of the
audio backbone capture different meanings. Additionally,
text information can further strengthen the audio embed-
ding through contrastive learning for more discriminative
representations. Afterwards, based on the hypothesis that
different levels of audio information contribute to different
body joint movements, we associate the multi-level audio
features with the hierarchical structure of human body in
the Hierarchical Pose Inferer. In particular, the associa-
tion is achieved in correlation with speaking styles encoded
from speaker appearances. The hierarchy of human upper
limb is predicted in a coarse-to-fine manner from shoul-
ders to fingers like a tree structure by cascading multiple
bi-directional GRU generators. In addition, we propose
a novel physical regularization to enhance the realness of
generated poses. Experiments demonstrate that our method
synthesizes realistic and smooth co-speech gestures.

To summarize, our main contributions are three-fold: (1)
We propose the Hierarchical Audio Learner to extract hier-
archical audio features and render discriminative represen-
tations through contrastive learning. (2) We propose the Hi-
erarchical Pose Inferer to learn associations between multi-
level features and human body parts. Human poses are thus
generated in a cascaded manner. (3) Extensive experiments
show that HA2G can generate fine-grained co-speech ges-
tures, which outperform state-of-the-art methods on both
objective evaluations and subjective human studies.

2. Related Work
Human-Centered Audio-Visual Learning. In recent
years, human-centered audio-visual learning has been ex-
tensively studied [21–23,44,57–59,66,71,71,72,75]. While
some works utilize audio-visual correspondence to solve
the problems like music-to-dance [33, 39, 42], and talking
face generation [14, 15, 36, 45, 51, 73, 74, 76], the model-
ing between speech and gesture remains largely unexplored.
The difficulty of speech-based gesture generation lies in
constructing the correspondence between speech and hu-
man gesture, which is more complicated and implicit than
music-to-dance or talking face generation.
Human Motion Synthesis. Synthesizing human motions
has been of important interest in both computer vision
and graphics, where spatial-temporal coherence of pose se-
quence is used to generate realistic motions [7,67,77]. Ear-
lier methods employ statistical models such as kernel-based
probability distribution [9, 10, 20, 52] to synthesize human
motions. Still, they fail to handle motion details, and the
complicated training procedures essentially limit model ca-
pacity. Recently, the ability of deep models to generate hu-

man motions has been proven on different network archi-
tectures, where CNN-based [31, 67], RNN-based [4, 24, 61]
and GAN-based [6,29] methods have been explored. These
methods are purely visual-based with the input of history
motions, while our work focuses on identifying the strong
correlations between speech and gestures in conversational
settings to achieve speech-driven motion synthesis.
Audio/Text-Driven Motion Generation. Early works
on speech-driven motion generation are mostly rule-based
methods [12, 47], where a predefined set of unit gestures
and motion connecting rules are designed manually. With
the development of deep learning, data-driven approaches
have demonstrated superior performance. Some works map
speech text information to co-speech gestures [3, 8, 35, 69].
Yoon et al. [69] resort to RNN to map from utterance text
to upper body gestures. Some methods use speech audio
signals to drive gestures [2, 19, 25–27, 41, 53]. For exam-
ple, Ginosar et al. [25] collect a 2D speaker-specific ges-
ture dataset and train the model with an adversarial loss.
To make gestures more expressive, Habibie et al. [26] lift
the 2D pose to 3D and generate facial expressions simul-
taneously. However, all of their methods learn a model for
each speaker individually, which makes it hard to transfer to
general scenes and limit speaker styles to a tiny number. Be-
sides, either audio- or text-driven motion generation meth-
ods fail to consider messages from both modalities, which
motivates recent methods to jointly tackle multi-modal in-
formation [1, 37, 68]. Specifically, Yoon et al. [68] propose
to encode the trimodal feature embeddings of text, audio,
speaker identity and concatenate them together to pass a de-
coder. But they fail to fully make use of multi-level features.
Further, the dynamic patterns of different human body parts
are diverse when people talk, e.g., the range and frequency
of co-speech finger and arm movement are not the same,
which makes it unreasonable to learn holistic human pose
directly. In this work, we propose to extract hierarchical
audio features with a contrastive learning strategy to ex-
cavate cross-modal messages at multiple granularities and
learn co-speech gestures in a coarse-to-fine manner.

3. Our Approach
We present Hierarchical Audio-to-Gesture (HA2G)

that generates a target person’s co-speech gestures given
speech audio. The generated poses are conditioned on
speaker identity and initial poses. Following Yoon et
al. [68], text information can be provided additionally. The
whole pipeline is illustrated in Fig. 1. In this section, we
first formulate the problem in Sec. 3.1, and then elaborate
the Hierarchical Audio Learner which extracts hierarchical
audio features in Sec. 3.2. Sec. 3.3 introduces the Hierar-
chical Pose Inferer to perform multi-level feature blending
and co-speech gesture synthesis. Finally, training objectives
for gesture generation are described in Sec. 3.4.
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Figure 1. Illustration of the Hierarchical Audio-to-Gesture (HA2G). In Hierarchical Audio Learner, Ea encodes speech audio a into
multi-level audio features f low

a , fmid
a and fhigh

a (blue). The speech transcript t is encoded by Et into text features ft (grey). Then a
contrastive learning strategy is used to enforce the discriminative audio feature extraction by attracting text feature and high-level audio
feature (green) while repelling from low/mid-level features (red). In Hierarchical Pose Inferer, the reference frames I are encoded by EID

to represent speaker’s identity fid (orange), which is then transformed to style coordinator C for multi-level feature blending (f1
a , ..., f6

a ).
Finally the co-speech gestures p̂6

(1:N) are generated by cascaded bi-GRU based on initial poses p1
(1:M) in a coarse-to-fine manner (purple).

3.1. Problem Formulation

Large amounts of speaking videos with clear co-speech
gestures are used for training. Given a video with N
frames V = {I1, . . . , IN}, the skeletal poses of the up-
per body can be denoted as p = {p1, . . . ,pN | pi =
[di,1,di,2, . . . ,di,J−1]}. Each pi is represented as the con-
catenation of unit direction vectors di,j between J joints.
The goal of our model G is to use the video’s accompany-
ing speech audio sequence a = {a1, . . . ,aN} to recover
p according to target’s identity representation fid and ini-
tial poses {p1, . . . ,pM}. Following the setting of Yoon et
al. [68], the text transcripts t = {t1, . . . , tN} are also pro-
vided for training. With encoder Ea for audio information
extraction, the overall objective can be written as:

argmin
G,Ea

||p−G(Ea(a)|fid,p1, . . . ,pM )||. (1)

3.2. Hierarchical Audio Learner

Hierarchical Audio Feature Extraction. In most previ-
ous studies [2, 25, 26, 41, 53, 68], only high-level audio fea-
tures are extracted to guide the synthesis of desired move-
ments. However, it has been discussed that different se-
mantics in audios contribute to different granularities in the
movements of human poses [46,48], which has been mostly
ignored in previous works. We identify that such multi-
level audio information could be inferred from the hierar-
chy of an audio encoder Ea to improve the generation res-
olution. Notably, the rich semantics of hierarchical feature
maps embedded at different layers of a deep neural network
have been explored in other deep learning tasks [43,54,63].
Therefore, the output deep feature fhigh

a of Ea, the feature

fmid
a encoded in the middle of the audio encoder and the

feature f low
a encoded in the shallow of Ea are specifically

leveraged. We expect f low
a ,fmid

a ,fhigh
a to represent the

low, middle and high level audio features respectively, as
shown in blue block of Fig. 1. These hierarchical features
are used for inferring poses in Sec. 3.3.

Contrastive Learning Strategy. Though we expect the au-
dio features can be learned automatically given the prop-
erty of the encoder, additional text can further enforce the
embedding of our desired information. Transcripts, which
represent high-level linguistic information, can be directly
recognized by Automatic Speech Recognition (ASR) mod-
els [30, 49, 70] from speech. Thus we propose to learn the
association between provided transcripts and audios in a
simple yet effective manner with contrastive learning. Our
strategy is to leverage the natural synchronization between
text and audio. While the high-level audio features should
reflect the temporally-aligned transcripts, text can in turn
encourage mid- and low-level audio features to capture cru-
cial speech content-irrelevant information such as tone and
cadence.

Specifically, we denote the feature extracted by the text
encoder from transcript t as ft = Et(t). In our contrastive
learning formulation, the high-level audio features aligned
to the transcript serve as positive examples, which are de-
noted as fhigh

a+ . Then we design two types of negative sam-
ples: (1) Firstly, high-level features extracted at other time
steps, or from other clips are selected as negative samples
to enforce the high-level audio feature capture correct se-
mantic information from the aligned text; (2) Secondly, the
low/mid-level audio features are expected to be discrimi-
native to reflect other audio information rather than high-
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level semantics. Therefore, we enforce them all to repel
the text feature. With the similarity function defined as
sim(f1, f2) = f1·f2

|f1||f2| , we can compute the final multi-
level contrastive loss as:

Lmulti = − log
exp(sim(ft,f

high
a+ )/τ)∑K

i=1

∑
l∈L exp(sim(ft,f l

a(i))/τ)
, (2)

where L = {low,mid,high}, and f low
a(i), f

mid
a(i) , fhigh

a(i) denote
the i-th sample of low/mid/high-level audio feature, respec-
tively. K is the number of samples and τ is the temperature
parameter that controls the concentration of distribution.

3.3. Hierarchical Pose Inferer

As discussed in Sec. 1, different levels of audio features
contribute to different hierarchies of human poses. Thus we
propose to hierarchically infer gestures for more delicate
audio-based control. To this end, we detach the joints from
human body ends (fingers) to the main structure (spine) in
H stages as illustrated in Fig. 1 (right). However, two ques-
tions still remain: 1) How to associate multiple levels of
audios with different levels of joints; 2) How to supervise
coarse-to-fine generation process.
Multi-Level Feature Blending with Style Coordinator.
Our solution to the first question is to learn automatic fea-
ture blending schemes for different levels depending on a
person-related style coordinator. As human gestures corre-
sponding to the same speech are diverse across persons, the
idea of learning person-specific styles has been adopted in
various audio-driven animation tasks [2, 68]. In this work,
the style coordinator should be responsible for finding the
suitable ratio among hierarchical audio features that con-
tributes to each level of motion hierarchy.

Different from [68] that uses one-hot labels to repre-
sent identities, we leverage a more general form by learn-
ing from the appearances of reference frames. The encoder
EID is used to extract identity feature from a few frames,
fid = EID(I1, . . . , IM ). Then through a linear layer and
softmax function, fid is transformed into the style coordi-
nator C ∈ R3×H , where

∑3
i=1 C[i, h] = 1. In this way,

we can associate multi-level audio features with hierarchi-
cal body parts by linear blending:

fh
a = C[1, h] ·f low

a +C[2, h] ·fmid
a +C[3, h] ·fhigh

a , (3)

where fh
a denotes the blended audio feature for the h-th mo-

tion hierarchy. The procedure is illustrated in the middle of
Fig. 1. To further facilitate style sampling at the inference
stage, the Kullback–Leibler (KL) divergence loss LKLD be-
tween the feature space of fid and N (0, I) is adopted to
assume Gaussian style embedding distribution.
Coarse-to-Fine Pose Generation. We follow the human
body dynamic rules to design a H-level (H = 6) body hier-
archy (Fig. 1 right). At each level, the generation is affected

by both the inferred pose from the previous level and the
current level’s audio feature rendered by the style coordina-
tor. Such an idea is also similar to previous coarse-to-fine
network designs [50].

In particular, we leverage the bi-directional GRU as
motion decoder since the recurrent structure effectively
captures spatial-temporal dependency in human motion as
proved in [40, 64]. With the hierarchical audio feature of
the h-th level fh

a = {fh
a(1), . . . ,f

h
a(N)}, the h-th level co-

speech gesture p̂h = {p̂h
1 , ..., p̂

h
N} is generated by:

p̂h
i = [hi; p̂

h−1
i ;fh

a(i)] ∗W
h+ bh,hi = GRU(hi−1, p̂

h
i−1),

(4)
where hi is the i-th hidden state, [·; ·] is the concatena-
tion operation and ∗ is the matrix multiplication. Wh ∈
R(ds+dh−1

p +da)×dh
p and bh ∈ Rdh

p are parameters where ds,
da and dhp are the dimensions of hidden state, audio fea-
ture and the h-th level pose p̂h, respectively. Note that the
poses of the first M frames serve as initial poses and are
denoted as p̂0 = {p0

1, ...,p
0
M , 0, ..., 0}. In this way, fine-

grained correspondences between audio sequence and co-
speech gestures are jointly built in a coarse-to-fine manner.
The last layer’s output p̂H from the hierarchy is our desired
result. This procedure is depicted in the right part of Fig. 1.

3.4. Training Objectives for Gesture Generation

Reconstruction Huber Loss. The generation process is
constrained via a hierarchical Huber loss [34] by measur-
ing the distances between generated samples p̂h

i and ground
truth ph

i :

Lhuber = E

[
1

HN

H∑
h=1

N∑
i=1

HuberLoss(ph
i , p̂

h
i )

]
, (5)

where H is the number of motion hierarchy and N is the
length of gesture sequence. We feed the blended audio fea-
ture to cascaded bi-GRU as generator G and leverage an
adversarial loss for preserving realism following [25, 68]:

LGAN = min
G

max
D

Ep [logD(p)]

+ Ea [log(1−D(G(Ea(a)|fid,p1:M ))] .
(6)

Style Diverging Loss. To further avoid posterior collapse
on speaker identity fid, we guide the generator to synthe-
size different poses with diverse style input following [68].
Assuming that p̂(fid) is the predicted pose depending on
identity feature fid, we have:

Lstyle = −E
[
min

(
HuberLoss(p̂(fid(1)), p̂(fid(2)))

∥fid(1) − fid(2)∥1
, ϵ

)]
,

(7)
where fid(1), fid(2) are two different speaker identities and
ϵ is the numerical clipping parameter.
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Physical Constraint. Previous methods on co-speech ges-
ture generation mostly fail to consider human physical con-
straint, which leads to unnatural poses and incoherent re-
sults. Therefore, we propose to add restrictions on the in-
cluded angle between bones to ensure reasonable human
poses. Concretely, the pose is represented as directional
vectors, thus the angle between consecutive bone vectors
must obey physical rules. We specifically calculate the
mean and variance of each angle within TED-Expressive
dataset, and expect our generated ones to fall within such
a Gaussian distribution. The loss function for the physics
constraint is the log-likelihood function:

Lphy = −
J−1∑
j=1

logN (θj ;µj , σ
2
j ) (8)

where θj is the j-th bone angle value, µj and σ2
j are the

mean and variance of the j-th angle, respectively.
The overall learning objective for the whole framework

is as follows:

Ltotal = LGAN + λhLhuber + λpLphy

+ λsLstyle + λkLKLD + λcLmulti,
(9)

where the λh, λp, λs, λk, λc are weight coefficients. At the
training stage, the hierarchical audio encoder Ea, text en-
coder Et, speaker identity encoder EID and hierarchical
pose decoder are trained with back-propagation from the
above overall loss function.

4. Experiments
At the inference stage, we use speech audio as guidance

while text is not needed. We further extract initial poses and
speaker identity from a few reference images. If the refer-
ence image is unavailable, we can sample initial poses from
dataset and sample speaker identity from normal distribu-
tion to generate co-speech gestures since we constrain iden-
tity space with LKLD. In this way, we can generate diverse
gestures with multiple styles by sampling style vectors.

4.1. Datasets and Annotation1

TED Gesture. TED Gesture dataset [68,69] is a large-scale
English-language dataset for speech-driven motion synthe-
sis, which contains 1,766 TED videos of different narrators
covering various topics. The extracted 3D human skele-
tons, aligned English transcripts and speech audio are all
available. Following [68], we resample human poses with
15 FPS and sample the consecutive 34 frames with stride of
10 frames as input segments. We finally get 252,109 seg-
ments with length of 106.1h. In this dataset, human pose p
is represented by direction vectors of 10 upper body joints.
TED-Expressive. The pose annotations of TED Gesture
limit to 10 upper body keypoints without expressive co-
speech finger movements. Hence, to harvest more detailed

pose annotation as training data, we use the state-of-art 3D
pose estimator ExPose [16] to extract 3D human skeleton as
pseudo ground truth. In particular, we first annotate the 3D
coordinates of 43 keypoints, including 13 upper body joints
and 30 finger joints. Then we convert 3D coordinates into
42 unit direction vectors following [68] to represent each
bone for eliminating the influence of various bone lengths
in training data. In this way, our 3D representation is invari-
ant to root joint motion and body shape. At the inference
stage, the mean bone length over dataset is multiplied to the
predicted bone vectors for visualized results.

4.2. Experimental Settings

Baselines. We compare our method with : (1) Attention
Seq2Seq [69] which generates gestures from speech text by
attention mechanism; (2) Speech2Gesture [25] that takes
the whole-length audio spectrogram as input and generates
motion sequence with an encoder-decoder architecture and
adversarial training scheme; (3) Joint Embedding [3], a
representative method that maps the text and motion to the
same embedding space and creates motion from descrip-
tion text; (4) Trimodal [68], the state-of-art method that
considers the trimodal context of text, audio and speaker
identity to learn co-speech gestures. Note that some recent
works [41,53] lack open-source codes so far, thus we do not
compare with them. All works are trained on the TED Ges-
ture and TED-Expressive datasets for the same number of
epochs with hyper-parameters optimized by grid search for
best evaluation results. We also show the evaluation directly
on the pseudo Ground Truth annotated in the dataset.
Implementation Details.1 Following the settings of [68],
we set N = 34 and M = 4, so that the data are segmented
into 34-frame sequences and the first 4 frames serve as ref-
erence frames. The number of joint J is 10 for TED Gesture
dataset and 43 for TED-Expressive dataset as mentioned in
Sec. 4.1. The audio encoder backbone is a ResNetSE34 [17]
and the structure of text encoder Et is borrowed from [5].
The reference video frames are resized into 224×224, then
passed into the speaker identity encoder EID with visual
backbone of ResNet-18 [28] to extract speaker identity. The
raw audios are converted to mel-spectrograms with FFT
window size 1024, hop length 512. The word sequence is
inserted with padding tokens to align with gestures. For
each frame, 16 padded words and 0.25s mel-spectrogram
with the target frame time-step in the middle are sampled
as condition. The pose decoder is a cascaded 4-layer bi-
directional GRU with a hidden size ds of 300 for each level
of pose hierarchy. Empirically, we set τ = 0.07, ϵ = 1000,
da = 32, λh = 200, λp = 0.1, λs = 0.05, λk = 0.1,
λc = 0.1. The models are trained using Adam Optimizer
with the learning rate of 1e− 4 on 1 GTX 1080Ti GPU.

1Please refer to Supplementary Material for more details.

10466



TED Gesture [68, 69] TED-Expressive

Methods FGD ↓ BC ↑ Diversity ↑ FGD ↓ BC ↑ Diversity ↑
Ground Truth 0 0.795 110.821 0 0.723 175.231

Attention Seq2Seq [69] 18.154 0.186 92.176 54.920 0.155 122.693
Speech2Gesture [25] 19.254 0.764 98.095 54.650 0.714 142.489
Joint Embedding [3] 22.083 0.177 91.223 64.555 0.131 120.627
Trimodal [68] 3.729 0.688 102.539 12.613 0.592 154.088

HA2G (Ours) 3.072 0.769 108.086 5.306 0.715 173.899

Table 1. The quantitative results on TED Gesture [68, 69] and TED-Expressive. We compare the proposed Hierarchical Audio-to-
Gesture (HA2G) against recent SOTA methods [3, 25, 68, 69] and ground truth under three metrics. For FGD the lower the better, and the
higher the better for other metrics. Note that the FGD results of [3, 25, 68, 69] on TED Gesture are reported from [68].

4.3. Quantitative Evaluation

Evaluation Metrics. We take the evaluation metrics that
have been previously used in the co-speech gesture genera-
tion and music2dance for quantitative analysis.
Fréchet Gesture Distance (FGD) is used in [68] to mea-
sure how close the distribution of generated gesture is to
the real one. Note that for the evaluation on TED Gesture
dataset, we use the feature extractor provided in [68] for
fair comparison. For the TED-Expressive dataset, we sim-
ilarly train an auto-encoder on the TED-Expressive dataset
and take the encoder part for feature extraction. FGD is
calculated as the fréchet distance between the latent repre-
sentations of real gesture and generated gesture.
Beat Consistency Score (BC) is a metric for motion-audio
beat correlation as proposed in [39, 42]. However, since the
kinematic velocities vary from different joints, we propose
to use the change of included angle between bones to track
motion beats. Concretely, we calculate the mean absolute
angle change (MAAC) of angle θj in adjacent frames by:

MAAC(θj) =

∑S
s=1

∑T−1
t=1 ∥θj,s,t+1 − θj,s,t∥1
S ∗ (T − 1)

, (10)

where S is the total number of clips over dataset, T is the
number of frames for a clip and θj,s,t is included angle be-
tween the j-th and the (j+1)-th bone of the s-th clip at time-
step t. In this way, the angle change rate of frame t for the
s-th clip is 1

J−1

∑J−1
j=1 (∥θj,s,t+1 − θj,s,t∥1/MAAC(θj)).

Then we extract the local optima whose first-order differ-
ence is higher than a threshold1 to get kinematic beats. We
follow [39] to detect audio beat by onset strength [18] and
compute the average distance between every audio beat and
its nearest motion beat as Beat Consistency Score:

BC =
1

n

n∑
i=1

exp(−
min∀txj ∈Bx ∥txi − tyj∥2

2σ2
), (11)

where Bx = {txi } are the kinematic beats, By = {tyj} are
the audio beats and σ is a parameter to normalize sequences
that is empirically set to 0.1 for experiments.

Diversity evaluates the variations among generated gestures
corresponding to various inputs [38]. Similarly, we use the
same feature extractor in measuring FGD to map synthe-
sized gestures into latent feature vectors and calculate the
average feature distance for evaluation. Concretely, we ran-
domly sample 60 speech audios from the test set to gen-
erate co-speech gestures and compute the average feature
distance between 500 random combinated pairs.
Evaluation Results. The results are shown in Table 1.
We can see that our HA2G framework outperforms exist-
ing methods on both datasets. Since our method establishes
motion hierarchy and generates gestures in a coarse-to-fine
manner, we can learn the diverse motion pattern of differ-
ent human body parts and perform the best on FGD metric.
Note that the improvement of FGD is smaller on TED Ges-
ture dataset compared to TED-Expressive. This is due to
the absence of finger information in TED Gesture dataset,
which makes the motion hierarchy lower and the improve-
ment brought by our hierarchical framework less signifi-
cant. We can find that both Speech2Gesture [25] and ours
synthesize synchronous gestures to speech with high values
on BC. But they tend to create unnatural poses and hence
perform fair on FGD. In terms of Diversity, the discrimina-
tive feature extraction at multiple granularities enables us to
excavate fine-grained audio-pose associations, thus captur-
ing diverse speaking styles compared to baseline methods.

4.4. Qualitative Evaluation

Subjective evaluation is crucial for judging the quality of
results in generation tasks. Here we show the key frames
comparison of our method against ground truth and SOTA
baselines (as listed in Sec. 4.2) in Fig. 2. For two cases,
both Attention Seq2Seq [69] and Joint Embedding [3] gen-
erate slow and invariant motions that are misaligned to
speech as demonstrated in red rectangles of Fig. 2. While
Trimodal [68] generates diverse gestures, the rigid mo-
tion pattern makes them mismatch to audio beats. For ex-
ample, they stiffly move hands up and down with asyn-
chronous beats to speech audio (see the red rectangle on the
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Figure 2. The visualized results in two example clips. We show the key frames of the generated motions from ground truth and baseline
methods [3, 25, 68, 69]. Please zoom in for better visualization. More high-resolution results can be found in the demo video.

Methods GT Seq2Seq [69] Joint. [3] Tri. [68] S2G. [25] HA2G (Ours)

Naturalness 4.16 1.36 1.52 3.66 2.88 4.13
Smoothness 3.97 4.48 4.32 3.87 2.23 3.92
Synchrony 4.28 1.24 1.18 3.21 3.89 4.06

Table 2. User study results on motion naturalness, smoothness and synchrony. The rating is on a scale of 1-5, with the larger the better.

right). Both our method and Speech2Gesture [25] create
synchronous motions, but they synthesize unnatural poses,
e.g., the twisted hands in both cases as highlighted in Fig. 2.
The hierarchical cross-modal association against single-
level design also leads to more diverse results than [25].
User Study.2 We conduct a user study on motion natu-
ralness, smoothness and the generated co-speech gestures’
synchrony to speech. In particular, we randomly sample 20
speech clips from test set of TED-Expressive to generate
results for ground truth (tracked) annotations, baselines and
our method. The study involves 24 participants. We adopt
the widely-used Mean Opinion Scores (MOS) rating pro-
tocol, which requires the participants to rate three aspects
of generated motions: (1) Naturalness; (2) Smoothness; (3)
Synchrony between speech and generated gestures. The rat-
ing is based on a scale of 1 to 5, with 5 being the most plau-
sible and 1 being the least plausible.

The results are shown in Table 2. Since both At-
tention Seq2Seq [69] and JointEmbedding [3] generate
slow and near-stationary results, they score reasonably low
on naturalness and synchrony, and trivially perform well
on smoothness, which is even better than ground truth
due to the motion jitter in ExPose annotation. Although
Speech2Gesture [25] performs well on synchrony, unnat-

2Please refer to Supple. for more details about user study.

ural poses lead to fair results on naturalness and smooth-
ness. Moreover, as our hierarchical design can capture fine-
grained associations between multi-level features and di-
verse body parts, we score better than Trimodal [68] on all
three aspects, with comparable results against ground truth.
Note that to measure the disagreement on scoring among the
participants, we also calculate the Fleiss’s-Kappa3 statistic
on 24 participants’ ratings over all methods. The Fleiss-
Kappa value is 0.837, which is comparatively high and can
be interpreted as “almost perfect agreement”.

4.5. Ablation Study

In this section, we present ablation studies on two key
modules proposed in our framework. We report the results
implemented on the TED-Expressive dataset.
Hierarchical Audio Learner. To show the effect of multi-
level audio feature in generating co-speech gesture, we con-
duct experiments on our model (1) f low

a only, which means
we only use low-level feature from hierarchical audio en-
coder, i.e., the weight for low-level is set as 1 and weights
for mid/high level features are set as 0 in Eq. 3; (2) fmid

a

only; (3) fhigh
a only; (4) w/o fhigh

a− , which means we do
not involve high level audio negative samples mentioned in

3https://en.wikipedia.org/wiki/Fleiss%27 kappa
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Methods FGD ↓ BC ↑ Diversity ↑

f low
a only 6.588 0.704 171.482

fmid
a only 7.212 0.682 168.223

fhigh
a only 7.421 0.661 165.741

HA2G w/o fhigh
a− 7.982 0.652 163.649

HA2G w/o f low,mid
a− 6.998 0.701 169.021

HA2G w/o text 9.228 0.619 158.236
HA2G-ASR 5.319 0.716 173.058
HA2G Full 5.306 0.715 173.899

Table 3. Ablation study results of Hierarchical Audio Learner.

Methods FGD ↓ BC ↑ Diversity ↑
Holistic 11.989 0.594 156.079
w/o hand hierarchy 10.832 0.606 158.823
w/o body hierarchy 5.882 0.709 173.066
Same audio fh

a 6.801 0.701 170.085
w/o Lphy 5.907 0.708 172.651
HA2G Full 5.306 0.715 173.899

Table 4. Ablation study results of Hierarchical Pose Inferer.

Sec. 3.2 for contrastive learning; (5) w/o f low,mid
a− , which

states the situation without cross-level negative samples; (6)
w/o text, in this setting the input of speech text is not used,
so we do not use the contrastive loss Lmulti for audio-text
alignment and discriminative audio feature extraction. The
results are shown in Table 3, which indicates the efficacy
of Hierarchical Audio Learner. Concretely, the only use of
single-level audio feature fails to excavate information at
multiple granularities, thus leading to degradation in per-
formance. Besides, the contrastive learning strategy further
improves performance since it achieves discriminative au-
dio feature extraction with the self-supervision of audio-text
alignment. More importantly, we find that our method with-
out text outperforms Yoon et al. [68] with the input of text.
This demonstrates that the hierarchical design and coarse-
to-fine generation manner can synthesize gestures of higher
quality despite lack of text, enabling our method to handle
general scenarios where video transcripts are unavailable.

Another ablation study relates to the Hierarchical Au-
dio Learner is why we adopt contrastive learning strategy
for discriminative feature extraction. We take inspiration
from the fact that ASR models can semantically align text
and audios, thus multi-level semantic information can be
extracted from audio itself. However, the amount of data
provided in the dataset is insufficient for training an expert
ASR model, which leads to our choice of hierarchical con-
trastive design. For the ablation experiment, we use a well-
trained ASR model [65] as the audio encoder and generate
co-speech gestures without contrastive strategy. The low,
middle and high level features are also extracted from the
backbone in a similar way as our method. We denote this

variant of HA2G as HA2G-ASR. The comparisons on the
TED-Expressive dataset are shown in the Table 3. We can
notice that the prior knowledge of pretrained ASR network
prevents outlier predictions, which achieves competitive re-
sults compared to ours. This illustrates that using differ-
ent levels of ASR features will benefit gesture generation.
Note that the pretrained ASR network is trained on a large
amount of additional data, while HA2G is trained with
just a multi-level contrastive loss without involving other
pretrained networks and additional data.
Hierarchical Pose Inferer. The experiments of Hierarchi-
cal Pose Inferer on our model contain: (1) Holistic, which
means we do not use pose hierarchy and directly generate
whole-body pose like previous methods [3, 25, 68, 69]; (2)
w/o hand hierarchy, where the hand poses are generated
holistically while body hierarchy remains; (3) w/o body hi-
erarchy, where body poses are generated holistically while
hand hierarchy remains; (4) Same audio fh

a , which means
we pass identical hierarchical audio features to each level
of motion hierarchy, i.e., all columns of style coordinator C
are same in Eq. 3; (5) w/o Lphy. Table 4 shows the results,
which verify that Hierarchical Pose Inferer improves the
performance. The pose hierarchy and distinct audio feature
of each level enable the model to grasp fine-grained audio-
pose associations of different body parts, making gener-
ated pose more vivid. The physical regularization Lphy en-
hances FGD with more realistic human poses. Note that
w/o body hierarchy outperforms w/o hand hierarchy. This
is reasonable since the hand motion is more subtle, so hier-
archical architecture’s impact on hand is more significant.

5. Discussion
Conclusion. In this paper, we propose a novel framework
Hierarchical Audio-to-Gesture (HA2G) for co-speech ges-
ture generation. We introduce Hierarchical Audio Learner
with a contrastive learning strategy that extracts discrimi-
native audio representations across semantic granularities.
Then we propose Hierarchical Pose Inferer with a physical
regularization to render the entire human pose gradually in
a hierarchical manner. Extensive experiments demonstrate
the superior performance of our proposed approach on co-
speech gesture generation with high fidelity.
Limitation. From the dataset perspective, our model is
trained on an English-based corpus, which brings inductive
bias on language. How to build a versatile model to generate
co-speech gesture of diverse languages is a worthy direction
for the community to explore.
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