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Abstract
Part segmentations provide a rich and detailed part-level

description of objects. However, their annotation requires
an enormous amount of work, which makes it difficult to
apply standard deep learning methods. In this paper, we
propose the idea of learning part segmentation through un-
supervised domain adaptation (UDA) from synthetic data.
We first introduce UDA-Part, a comprehensive part segmen-
tation dataset for vehicles that can serve as an adequate
benchmark for UDA1. In UDA-Part, we label parts on 3D
CAD models which enables us to generate a large set of
annotated synthetic images. We also annotate parts on a
number of real images to provide a real test set. Secondly,
to advance the adaptation of part models trained from the
synthetic data to the real images, we introduce a new UDA
algorithm that leverages the object’s spatial structure to
guide the adaptation process. Our experimental results on
two real test datasets confirm the superiority of our ap-
proach over existing works, and demonstrate the promise
of learning part segmentation for general objects from syn-
thetic data. We believe our dataset provides a rich testbed
to study UDA for part segmentation and will help to signifi-
cantly push forward research in this area.

1. Introduction
Part-based object representations are of key importance

for many computer vision tasks such as object recogni-
tion [1, 9, 72, 98], pose estimation [13, 32, 93, 96], action
detection [85], and scene understanding [65, 70, 75]. Cur-
rently, part-based approaches often represent objects as a
set of sparse keypoints, because these are easy to annotate
in large-scale datasets for training deep neural networks. By
contrast, part segmentations provide a richer and more de-
tailed part-level object description. Instead of recognizing
specific parts sparsely on the object (e.g., keypoint or part
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Figure 1. An illustration of learning part segmentation through
unsupervised domain adaptation (UDA) from synthetic vehicles.
Based on part annotation on 3D CAD models, we propose to use
UDA to learn from large-scale labeled synthetic samples and un-
labeled real images, and the goal is to make accurate part segmen-
tation predictions on real test images.

detection), part segmentation gives a complete description
of an object by assigning every pixel belonging to the object
one and only one part label. This is a lot more challenging
task and requires a much greater annotation effort.

Given their recent success, deep learning methods have
dominated the studies of computer vision, including ob-
ject segmentation [7, 10, 47]. However, these deep models
usually require a large amount of annotated training data
to achieve satisfying performance. Existing part segmen-
tation datasets mostly contain only a small number of im-
ages [9, 74], or define only a small number of parts per ob-
ject category [74, 97], or focus on a single object category,
such as humans [18,19,43,94] and faces [32,38,39]. These
limitations inhibit effective training of standard deep seg-
mentation networks and have largely impeded the develop-
ment of computer vision models that leverage part informa-
tion. By contrast, 3D CAD models are available for many
different objects, and, once annotated, can be used to gen-
erate large-scale part segmentation datasets automatically.

In this work, we propose to solve part segmentation on
general objects by learning from synthetic data (Figure 1)
and address the problem in two steps. In the first step,
we introduce UDA-Part, a comprehensive part segmenta-
tion dataset that can serve as an adequate benchmark for
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UDA. UDA-Part is composed of 21 3D CAD models from
5 vehicle categories. For each category, we define a fine-
grained set of parts which are consistently annotated across
all CAD models of the corresponding category. Based on
these CAD models and their part annotations, we are able
to render a large-scale synthetic image dataset with auto-
matically generated part segmentation ground-truth. These
synthetic data are sufficient to train deep neural networks
and may also be used for model evaluation or diagnosis. To
evaluate how the models trained from synthetic data per-
form on the real images, we also label parts on 200 real
images collected from PASCAL3D+ [93] and include them
as the target test set in UDA-Part.

Secondly, we introduce a new unsupervised domain
adaptation (UDA) algorithm for part segmentation. UDA
has been explored for image classification [30,59], keypoint
detection [53, 103], and semantic segmentation [31, 105],
where it achieves satisfactory results on real images with
little annotation cost. To further advance UDA performance
on part segmentation, we introduce Geometric-Matching
Guided domain adaptation (GMG). GMG conducts cross-
domain geometric matching based on a global transfor-
mation function between real and synthetic images. The
function puts a smoothness constraint on the matching and
thus adaptively preserves the spatial relations between the
parts. Once an optimal match is found, GMG transfers
the synthetic labels to the real images and retains the high-
confidence results as pseudo-labels for a joint training pro-
cess. In short, GMG makes part-relation-aware adaptation
by explicitly using the object structure depicted in the syn-
thetic samples. In our experiments, GMG outperforms other
UDA baselines for part segmentation on both the UDA-Part
real test images and the PascalPart [9] test set.

In summary, our main contributions are:
1. We propose to learn part segmentation for general ob-

jects through unsupervised domain adaptation (UDA) from
synthetic data.

2. We introduce a new part segmentation dataset for ve-
hicles called UDA-Part which can serve as a comprehensive
benchmark for part segmentation through UDA.

3. We introduce a new UDA algorithm for part segmen-
tation called Geometric-Matching Guided domain adapta-
tion (GMG), which leverages the object’s spatial structure
to guide the adaptation and achieves superior results.

2. Related Work
Part segmentation. Both rigid [49, 69] and non-rigid

objects [18, 43, 82, 94] have been studied in part segmen-
tation, where structure-based methods, e.g., compositional
models, are widely used [49, 82, 84, 91, 92]. Architecture-
wise, both fully convolutional network (FCN) [84, 90] and
long short-term memory (LSTM) [42, 44] have been stud-
ied. Many works explore the use of auxiliary tasks (e.g.,

pose estimation) to boost part segmentation and get promis-
ing results [17, 19, 55, 91]. Moreover, 3D information such
as 3D geometric features [69] and depth [66] could also be
embedded into the models to improve the performance. Be-
yond single-object parsing, multi-object parsing is recently
proposed and studied [51, 101]. While all these methods
require pixel-level annotations on real images, some works
start to use synthetic data to advance human parsing [29,81],
but they are limited to human object. In this work, we aim
to solve part segmentation on general objects by learning
from synthetic vehicles.

Datasets with part annotations for rigid objects. Ima-
geNetPart [83] provides bounding box annotation for parts
on 6 vehicle categories. PASCAL3D+ [93] includes key-
point annotation on 12 rigid object categories. CarFu-
sion [61] and ApolloCar3D [68] contain keypoint annota-
tion for cars in street scenes. For 3D object part recogni-
tion, PartNet [52] provides hierarchical part annotations on
3D models covering 24 object categories, most of which
are indoor furniture and none is a vehicle. Yi et al. [97]
label parts on 3D models selected from 16 categories in
ShapeNetCore [4], while their definition of part is coarse
and the average number of parts per category is less than
4. In the context of image part segmentation, PascalPart [9]
has been widely studied. It includes 20 categories but pro-
vides limited number of samples and parts. MVP [46] is
recently introduced to provide detailed part segmentation
labels for cars in the wild. An earlier dataset ETHZ [74]
provides annotations of 5 parts on 141 wheelchair images
and 6 parts on 139 car images, which is not adequate for
deep network training. PartImageNet [23] is a very recent
large scale dataset consisting of 158 classes with up to 5
parts annotated per class, requiring several hundred hours
of annotation. Our aim is to build a large-scale part seg-
mentation dataset for generic objects efficiently using 3D
computer graphics models.

Learning from synthetic data. Synthetic data gen-
erated by computer graphics techniques are effective for
model diagnosis [28,100] and have boosted performance in
many real-world application domains [15,22,37,53,76,81].
However, the domain shift between synthetic data and real-
world data limits the improvement. To overcome this, do-
main adaptation is proposed [58]. Maximum Mean Dis-
crepancy (MMD) and its kernel variants [48, 71, 78, 79]
have been studied to reduce the difference between source
and target domain distributions. In the context of unsu-
pervised domain adaptation (UDA) for semantic segmen-
tation, self-training is one of the mainstream research direc-
tions [40,99,104,105], while there has also been an increas-
ing interest in using style transfer [5,24,41,54,64,89] or fea-
ture alignment [25, 77] to encourage domain-wise marginal
distribution matching. Other methods adopt category-
aware feature alignment or local contextual feature simi-
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Figure 2. An overview of our UDA-Part dataset. UDA-Part is a comprehensive part segmentation dataset for five vehicle categories. Each
category is composed of several 3D CAD models/prototypes. By labeling parts on these 3D CAD models, we render a large-scale synthetic
image dataset with automatically generated part segmentation ground-truth (left panel). To benchmark unsupervised domain adaptation
methods, we also label parts on a moderate number of real images for testing (right panel).

larity [14, 26, 50, 99]. We promote the idea of using UDA
to solve part segmentation and leverage object structure to
guide the knowledge transfer from synthetic to real.

Geometric matching. Geometric matching aims at find-
ing spatial correspondences among images belonging to the
same category at a fine-grained level. Both hand-engineered
descriptors [3, 33, 45] and pre-trained convolutional neu-
ral network (CNN) features [20, 73, 80, 95] are explored
in early works. Recent progress is made in trainable im-
age descriptors [34, 35, 56] and trainable geometric mod-
els [6, 21, 62, 63]. However, they have only explored ge-
ometric matching for images in the same domain. Bai et
al. [2] demonstrate that pre-trained CNN features can be
effectively used to find sparse spatial correspondence be-
tween synthetic images and real images. Zhou et al. [102]
use 3D cycle consistency to learn dense correspondence
between real-to-real and real-to-synthetic pairs. However,
their method does not consider the global structure nor con-
strain it with a geometric transformation function, thus the
result is less competitive. In this work, we explore cross-
domain geometric matching without supervision and inte-
grate it into our part segmentation framework.

3. The UDA-Part Dataset
In this section, we introduce UDA-Part, a part segmenta-

tion dataset for vehicles that provides detailed annotations
on both synthetic images for training and real images for
testing (Figure 2). UDA-Part can serve as a comprehensive
benchmark for part segmentation through UDA.

3.1. Data Generation
We build UDA-Part in five steps. Examples of the anno-

tations on the synthetic images and the real test images are
shown in Figure 2. More details (e.g., CAD models, part
list, etc.) could be found in the supplementary material.

(1) Select 3D CAD models. UDA-Part is composed of
21 3D CAD models from 5 vehicle categories: car, motor-
bike, aeroplane, bus, and bicycle. Each CAD model repre-
sents a common prototype (i.e., subtype) of the category it
belongs to. For example, for the category bicycle, the CAD
models are different bicycle subtypes such as utility, sports,
road, and tandem. These can effectively represent the struc-
tural variability of bicycle objects. In total, we select 21
CAD models to be included and annotated in UDA-Part.

(2) Define list of parts to be studied. We take ref-
erences from existing vehicle part datasets [9, 74] and
Wikipedia [86–88] to determine the part list for each cat-
egory. Comparing with the part list in PascalPart [9], we
make more fine-grained level definitions. For example, in
PascalPart, the category car has a part “back side”. We
instead distinguish “back windshield”, “tail light”, “back
bumper”, and “trunk”. The fine-grained definition used here
makes it possible to merge the part list and map to other
coarse lists defined in existing datasets.

(3) Annotate parts on 3D CAD models. We adopt the
Blender [11] plugin built by Kim et al. [36] to perform per-
mesh part labeling on the 3D CAD models. The plugin al-
lows the user to assign a label to a group of selected meshes
and save the results to a JSON file. We include a quality
control step to ensure each surface mesh is assigned one and
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Figure 3. Histogram of number of parts per image in PascalPart [9]
test split and UDA-Part real test images. The x-axis represents
count of images.

only one part label. Annotating all CAD models in UDA-
Part takes roughly 300 working hours.

(4) Render synthetic images with part annotations.
We use Blender [11] as our renderer to generate the syn-
thetic images with part segmentation ground-truth. Follow-
ing previous work [60, 76], we randomize the render pa-
rameters (e.g., viewpoint, lighting, object texture, etc.) to
enable nuisance factor control and facilitate domain gener-
alization. We generate 8000 synthetic images with resolu-
tion 2048 × 1024 for each 3D CAD model and split the
training and test set with a ratio of 3 : 1, resulting in a total
of 126000 images for training and 42000 for testing.

(5) Annotate parts on real test images. We manually
label part segmentations on 200 real vehicle images (40 im-
ages per category) for testing. The images are selected from
PASCAL3D+ dataset [93] to contain objects with differ-
ent subtypes and evenly distributed viewpoints. We use the
VGG Image Annotator (VIA) [16] to label the parts on the
images, which takes about 150 working hours.
3.2. Dataset Comparison

In Table 1, we compare UDA-Part with existing datasets
that provide vehicle part segmentation labels. UDA-Part
contains the largest number of parts per category, and its
annotation on both synthetic images and real images makes
it adequate for UDA studies. In Figure 3, we compare the
number of parts per image labeled on PascalPart and UDA-
Part real test images. Generally, UDA-Part contains 2 to 3
times more annotations per image, making it a more chal-
lenging part segmentation benchmark. More comprehen-
sive comparisons between UDA-Part and PascalPart can be
found in the supplementary material.

4. Geometric-Matching Guided Adaptation
To facilitate studies targeting real-world data applica-

tions, we explore unsupervised domain adaptation (UDA)
algorithms which enable the models trained on the syn-
thetic data of UDA-Part to perform well on the real test im-
ages. In this section, we introduce our proposed Geometric-
Matching Guided domain adaptation (GMG) approach. The
key steps of GMG are illustrated in Figure 4 and will be dis-
cussed in detail in the following.
4.1. Preliminaries for Part Segmentation and UDA

We start with the preliminaries for part segmentation and
unsupervised domain adaptation (UDA). In our work and

UDA-Part
(Ours)

PascalPart
[9]

ETHZ
[74]

SNPart
[97]

3D Models ✓ ✗ ✗ ✓

Syn. Img. ✓ ✗ ✗ ✗

Real Img. ✓ ✓ ✓ ✗

Avg. #Parts
per Cat.

24 9 6 4

Table 1. Comparison of UDA-Part with existing datasets that have
part segmentation labels on vehicles.

all baseline experiments, we assume the category label is
known, such that the part segmentation models are trained
and tested for each object category separately. This assump-
tion is reasonable since many off-the-shelf classifiers are
freely available for the objects included in UDA-Part.

Similar to semantic segmentation, a part segmentation
model M can be formulated as a mapping function from
the image domain to the output label domain: M :
I → Y , which predicts a pixel-wise category label Y ∈
{1, . . . , C}H×W , where H and W denote the image size,
C is the total number of part categories.

In UDA, the data are usually collected from two do-
mains: source domain S (i.e., synthetic data) and target do-
main T (i.e., real data). During training, we have access to
the labeled training samples (Is, Y s) from Strain and unla-
beled training samples It from Ttrain. The goal is to train a
model M that can predict accurately on the test samples in
Ttest. Most existing approaches start with training a Source-
Only model MS on the labeled source data. For segmenta-
tion models with softmax output, the cross-entropy loss is
widely used during the optimization process:

Lce(I
s, Y s) = −

H∑
i=1

W∑
j=1

C∑
c=1

ys(i,j),c log p(i,j)(c|I
s; w),

where (i, j) are the pixel coordinates in Is, c is the cate-
gory index, ys(i,j),c ∈ {0, 1} is entry in the one-hot vector
of the ground-truth label, i.e., ∀(i, j),

∑
c y

s
(i,j),c = 1, and

p(i,j)(c|Is; w) is the predicted category probability based
on the model parameters w.

Generally, MS has limited generalization capability and
does not perform well on target samples due to domain dis-
crepancy between the real and synthetic data. One common
approach in UDA is using MS to generate pseudo-labels
Ŷ t on It, which enables a joint training on Strain and Ttrain
based on the following loss function:

L(Strain, Ttrain) =
∑
Strain

Lce(I
s, Y s) + λ

∑
Ttrain

Lce(I
t, Ŷ t),

where λ balances the loss between source and target do-
main. The joint training process encourages the learning of
domain-invariant features and shared decision boundaries.

Different UDA methods have been proposed to find re-
liable pseudo-labels Ŷ t [53, 99, 104], select a relevant sub-
set of Strain [40], or add regularization terms and adversar-
ial losses [41, 105] for the joint training process. However,
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Figure 4. An illustration of Geometric-Matching Guided (GMG) domain adaptation. A pair of synthetic and real images are passed through
a feature extractor to get their feature maps, and cross-domain geometric matching is used to estimate a 2-D transformation based on the
feature similarities. The transformation is then applied to the segmentation ground-truth of the synthetic image to make it match the parts
in the real image. Finally, a confidence threshold is used to filter out unreliable warping results and make high-quality pseudo-labels for
the joint training step in unsupervised domain adaptation.

since most of these methods are designed for semantic seg-
mentation, none of them takes advantage of the object’s spa-
tial structure to predict parts. On the contrary, our proposed
Geometric-Matching Guided domain adaptation (GMG) ex-
plicitly uses the structural relation between parts to generate
pseudo-labels for joint training.

4.2. Cross-Domain Geometric Matching
In GMG, we use cross-domain geometric matching to

find an optimal global transformation that can be used to
transfer segmentation labels from synthetic to real. Cross-
domain geometric matching has been previously explored
for few-shot learning and correspondence learning [2, 102],
but either with sparse alignment or strong supervision. Here
we use it to facilitate the domain adaptation for part segmen-
tation at dense pixel-level and require no labels on the real
images in the whole training process.

Specifically, cross-domain geometric matching aims to
find spatial correspondence between a pair of synthetic and
real images (Is, It). To achieve this, we optimize a global
transformation function Wθ that matches the two images Is

and It based on their feature similarities. Wθ puts smooth-
ness constraint on the matching, so it is able to preserve
the spatial relations between parts. After the matching, the
transformation is applied to transfer the synthetic label Y s

to the real image It as a pseudo-label Ŷt. In the following,
we first assume that the input image pair is given and the ob-
jects in both images belong to the same prototype and have a
similar viewpoint. We then discuss how to search such input
pairs in an unsupervised manner. Note that cross-domain
geometric matching is only used to generate pseudo-labels
for the joint-training. At test time, neither a paired input nor
a geometric matching is necessary in our framework.

Given (Is, It) with similar appearances, we first use
CNN convolutional layers to extract their feature maps. The
output F s and F t are h × w × d tensors, which can be
interpreted as h × w grids of d-dimensional local features

f(i,j) ∈ Rd. The similarity between two feature vectors in
F s and F t can be measured by cosine similarity:

ϕ(fs
(i,j), f

t
(k,l)) =

fs
(i,j) · f

t
(k,l)

||fs
(i,j)||2 ||f

t
(k,l)||2

.

To emphasize the similarities are measured for features
sampled from different domains, we use (i, j) to denote spa-
tial coordinates in Is, and (k, l) for spatial coordinates in It.

We then define a 2D geometric transformation function
Wθ : R2 → R2 so the spatial correspondence between
It and Is could be found by (k′, l′) = Wθ(k, l), where θ
denotes the transformation parameters, (k′, l′) are the cor-
responding coordinates of (k, l) in Is.

The quality of a geometric transformation can be mea-
sured by the sum of feature similarities at corresponding
coordinates:

Φθ(F
s, F t) =

∑
(k,l)

ϕ(fs
Wθ(k,l)

, f t
(k,l)),

and our goal is to find the best parameters θ̂ such that:
θ̂ = argmax

θ
Φθ(F

s, F t).

In practice, we follow Rocco et al. [63] and use a spa-
tial transformer layer [27] to implement the warping, which
makes Φ differentiable w.r.t θ. Note that we just optimize
the transformation parameters based on the feature similar-
ities. The CNN backbone is fixed in this step.

Unsupervised selection of input pairs. For each real
training image It ∈ Ttrain, we perform a grid search over the
viewpoint and prototype in the synthetic images and select
the best one based on Φθ̂. More specifically, we first build
a pool of prototypical synthetic images by selecting sam-
ples from each prototype with 24 diverse viewpoints (i.e.,
azimuth angles sampled from {0, 30, 60, . . . , 330} and el-
evation angles sampled from {5, 20}). Then, we perform
geometric matching for It and each Is in this pool. The
synthetic image that achieves the highest Φθ̂ is selected, and
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its label is warped to infer the pseudo-label for It.

4.3. Confidence Threshold of Pseudo-Labels
Given θ̂, we can warp Y s to It and use it as pseudo-

supervision for joint training. However, the warping re-
sults can contain errors due to the variability of the object
shapes and 3D poses, or due to a sub-optimal estimation of
the transformation parameters. To correct such errors, in
GMG, we use the confidence of the prediction provided by
the Source-Only model MS . Specifically, for spatial coordi-
nates (k, l) in It, if the corresponding coordinates Wθ̂(k, l)
in Is have ground-truth label c̄, we use the predicted proba-
bility of c̄ by MS at (k, l) as a confidence score:

zkl = p(k,l)(c̄|It; wS),

and threshold zkl with γ to obtain the final pseudo-label:

ŷt(k,l) =

{
ysWθ̂(k,l)

, if zkl > γ

0, otherwise,
where 0 denotes vector with 0 entries everywhere, and is
ignored by the cross-entropy loss. Consequently, GMG is
able to select high-confidence warping results as pseudo-
labels for joint training.

5. Experiments
In the experiments, different UDA methods are trained

using the synthetic data in the source dataset and unlabeled
real training images in the target dataset, and are then eval-
uated on the real test images in the target dataset.

Datasets and evaluation metric. In all experiments, we
use the synthetic samples of the UDA-Part dataset as the
source data. UDA-Part provides 30000 / 24000 / 24000 /
24000 / 24000 training samples for the object categories car
/ motorbike / aeroplane / bus / bicycle. We evaluate all meth-
ods on two target datasets. In the first set of experiments,
PASCAL3D+ [93] is used as the target dataset, which con-
tains 2763 / 624 / 986 / 548 / 661 unlabeled training images
for car / motorbike / aeroplane / bus / bicycle. After training,
the domain adaptation models are evaluated on 200 (40 per
category) real images in the test split, which are selected and
annotated as the real test set of UDA-Part. In the second set
of experiments, PascalPart [9] is used as the target dataset.
We pre-process PascalPart data by cropping images to con-
tain single object which leads to 538 / 261 / 266 / 221 / 252
training images, and 520 / 255 / 280 / 229 / 263) test images.
Note that the segmentation labels for the PascalPart training
images are not used. We train with the dense part labels
defined in UDA-Part first and then merge the predictions to
PascalPart label space during testing. All models are trained
and tested on samples belonging to each vehicle category
separately. Mean Intersection over Union (mIoU) is used
as the metric for the part segmentation task, where IoU is
first computed for each part and then averaged over all parts
belonging to the corresponding category.

Baseline methods. For comparison purposes, we adapt

several popular UDA methods from related tasks to ob-
ject part segmentation. BDL [41], CRST [105], and
CAG [99] are all methods proposed for semantic segmen-
tation but follow different strategies: BDL uses cycleGAN
to reduce pixel-level domain discrepancy and encourage
marginal feature alignment; CRST performs self-training
with smoothness regularization; while CAG applies ad-
versarial training as initialization and explores category-
aware feature alignment during self-training. In addition,
we test CCSSL [53], a self-training-based method designed
for keypoint detection. CCSSL uses consistency constraints
to select reliable pseudo-labels and applies strong data aug-
mentation to improve the model’s generalization capability.
The code for all baselines was adapted from the original
public repositories and is modified to use the same back-
bone and input size.

Implementation details. We use DeepLabv3+ [8] as
the segmentation network for GMG and all baseline meth-
ods. The weights are initialized from an ImageNet [12] pre-
trained model. We implement our model using Pytorch [57]
on two TitanX GPUs. Synthetic training images are re-
sized to have a long edge of 800 pixels while real training
images are resized to have a short edge of 224. For the
geometric matching, we use thin plate spline transforma-
tion with 25 anchor points and take the first four convolu-
tional blocks of an ImageNet [12] pre-trained VGG16 net-
work [67] as the feature extractor. The confidence thresh-
old γ is set to the 60th percentile of the scores obtained
from all samples in the corresponding category. We imple-
ment the pair selection using python with 8 parallel CPU
threads. For a pool of 24 candidates, it takes 2.1 seconds
per image and roughly 54 (195) minutes for the training
set of PascalPart (PASCAL3D+). When the ground-truth
viewpoint is given, the matching takes less than 0.4 second
per image, and thus roughly 10 (30) minutes for PascalPart
(PASCAL3D+). During joint training, we apply strong aug-
mentations to synthetic images following [53]. The joint
training takes 10000 iterations and the learning rate is fixed
at 2.5e − 4. The real loss coefficient λ is set to 1.0 for all
“w/vp” experiments and 0.1 for all others. More training
details could be found in the supplementary material.

5.1. Main Results
In Table 2, we report object part segmentation results on

the real test images of UDA-Part. In the header row, the
number of parts is denoted in parenthesis next to the cate-
gory name. The Source-Only model MS serves as a naı̈ve
baseline. We observe that the mIoU is generally low, indi-
cating that the domain shift between UDA-Part synthetic
images and real-world images indeed disturbs the model
performance and domain adaptation is necessary. By look-
ing at the overall performance, segmenting parts on mo-
torbike, aeroplane, and bicycle are more challenging since
their parts are often small, with irregular shape and self-
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car (32) motorbike (22) aeroplane (23) bus (33) bicycle (18)
Source Only MS 37.19 15.91 13.71 19.43 18.01

CRST [105] 39.35 18.39 13.38 21.03 15.31
BDL [41] 43.60 17.15 16.71 22.95 17.78
CAG [99] 48.97 17.89 16.06 25.74 19.50
CCSSL [53] 49.31 21.87 17.50 24.75 17.27

GMG (Ours) 49.93 23.09 17.89 25.78 19.07
GMG (Ours) w/ vp 53.77 23.28 17.98 26.31 19.09

Table 2. Part segmentation results (mIoU) on UDA-Part real test images. The number of parts is denoted in parenthesis next to the category
name. “GMG” uses unsupervised grid search to find the input pairs, while “GMG w/ vp” uses the ground-truth viewpoint of the real
training images to reduce matching error. Best and second best UDA results are marked accordingly.

car (14) motorbike (7) aeroplane (7) bus (14) bicycle (8)
Fully-Supervised Learning 40.36 38.08 42.47 34.42 40.57

UDA

Source Only MS 14.24 20.48 23.18 16.02 20.21
CRST [105] 14.44 24.71 23.04 16.56 22.57
BDL [41] 19.02 26.89 29.08 17.29 22.45
CAG [99] 18.39 24.09 28.60 17.12 22.22
CCSSL [53] 24.23 28.80 32.58 18.59 22.25
GMG (Ours) 25.61 29.68 33.50 19.30 22.91
GMG (Ours) w/ vp 27.59 30.73 33.98 21.20 23.63

Table 3. Object part segmentation results (mIoU) on PascalPart test images. The number of parts is denoted in parenthesis next to the
category name. “GMG” uses unsupervised grid search to find the input pairs, while “GMG w/ vp” uses the ground-truth viewpoint of the
real training images to reduce matching error. Best and second best UDA results are marked accordingly.

occlusion, which can also be observed in Figure 2.
Among the baseline methods, CRST only achieves

marginal improvement and may even hurt the performance
in some cases, implying that simple smoothness regulariza-
tion is not working very well on this task. Moreover, since
our synthetic images are generated with random texture and
background, it is hard to reduce pixel-level domain dis-
crepancy, so the results of BDL are not satisfactory either.
CAG achieves more improvement on car and bus, showing
category-aware feature alignment may work well on parts
with regular shapes and large areas. CCSSL improves most
categories, suggesting part segmentation benefits more from
consistency constraints and strong augmentations.

Compared with the baselines, GMG achieves very com-
petitive results, outperforming all other methods in most
cases. Furthermore, we introduce a variant of GMG, where
pseudo-label errors are reduced by using the ground-truth
viewpoints of the real training images during geometric
matching (the grid search step only looks for the best pro-
totype). The results from this model are shown in the row
“GMG (Ours) w/ vp”, which show further improvement.

We report object part segmentation results on Pascal-
Part test images in Table 3. For this dataset, we include
part segmentation results from a DeepLabv3+ network di-
rectly trained from PascalPart labels on real images in a
fully-supervised manner. These results can be considered as
upper-bound for UDA approaches. Compared with UDA-
Part, the PascalPart test set seems more manageable for
some categories since the parts are more coarse-grained
with larger sizes. On the other hand, the images in Pas-
calPart are overall with lower resolution and contain more

truncated/occluded objects, making the segmentation task
more challenging. Therefore, the result patterns on dif-
ferent categories are not the same as what we observe on
UDA-Part test images. Despite the variations in individual
test cases, GMG still outperforms all baseline methods on
all categories. Similarly, adding ground-truth viewpoints
during training consistently improves GMG performance.
Comparing with the fully-supervised learning results, we
are aware there is still a large room for improvement, indi-
cating a relevant future research direction.

In Figure 5, we compare object part segmentation results
from GMG and the Source-Only model. Generally, GMG
is better at recognizing the shape and the boundary of parts.
GMG can also eliminate wrong predictions that violate the
part relations, implying it gains more knowledge about the
object structure. On the other hand, GMG is prone to mis-
classifying small parts, such as the mirror of car and the
pedal of bicycle, whose labels are harder to be correctly
transferred through geometric matching. We consider it as
future work to improve GMG performance on smaller parts.

5.2. Ablation and Model Diagnosis

GMG Variants car mtbk arpl
Source-Only MS 37.19 15.91 13.71

+warped
labels

w/o vp 47.84 20.65 16.25
w/ vp 53.26 21.94 17.22

+conf.
thresh.

w/o vp 49.93 23.09 17.89
w/ vp 53.77 23.28 17.98

Table 4. Ablation of GMG components. Results on UDA-Part real
test images are shown. (mtbk: motorbike; arpl: aeroplane.)

We quantitatively evaluate the improvement introduced
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Figure 5. Visualizations of GMG results. We show examples of part segmentation predictions on test images from UDA-Part dataset
(column 1-5) and PascalPart dataset [9] (column 6,7). Row 1-4 are real test images, part segmentation ground-truths, Source-Only model
predictions, and GMG predictions for each case respectively.

by different components of GMG in Table 4. Compared
with the Source-Only model, a joint training based on
directly warped synthetic labels leads to a performance
gain by leveraging the pseudo-supervision on real samples.
However, this method is more sensitive to misalignment
caused by wrong geometric matching. Consequently, we
observe a larger performance gap between the models that
use viewpoint supervision (w/ vp) and those without (w/o
vp). Applying confidence threshold improves the results in
all cases, especially when ground-truth viewpoints are not
available for real training samples. In summary, we can ob-
serve the effectiveness of both components in our model.

In input pair selection, we observe that thresholding ϕ
can improve viewpoint estimation accuracy, but it leads
to reduced number of pseudo-labels for joint training and
eventually hurts the segmentation results for categories with
less samples, e.g. motorbike. Searching in more azimuth
bins indeed improves the viewpoint accuracy but has little
positive effect on the final part segmentation mIoU, while
searching in more elevation bins makes little difference in
both metrics. We also observe GMG is generally not very
sensitive to γ. When we change γ from 60th percentile of
the scores to 50th (70th) percentile, the mIoU results for
car on PASCAL3D+ changes from 53.77 to 53.65 (53.59).
More details could be found in the supplementary results.

In Figure 6, we visualize GMG pseudo-label quality and
the synthetic samples selected by grid search for the corre-
sponding real images. In the first three examples, the search
process successfully finds synthetic images with reasonable
prototype and viewpoint. Consequently, geometric match-
ing is performed on image pairs with similar appearances,
and generates high-quality pseudo-labels for joint training.
In the fourth row, we show a failure case where a wrong
(i.e., opposite) viewpoint is selected. Nevertheless, most of
the incorrect labels in this case are filtered out by confidence
threshold and will not disturb the joint training in this case.

Figure 6. Quality of GMG pseudo-labels. Column 1-4 show the
selected source label, the selected source image, the target image,
and the final pseudo-label, respectively. Light yellow color indi-
cates uncertain labels.

6. Conclusions
We introduce the idea of learning part segmentation

for general objects from synthetic data through unsuper-
vised domain adaptation (UDA). We first introduce UDA-
Part, a comprehensive dataset for 5 vehicle categories de-
signed to benchmark part segmentation through UDA. Ex-
tending UDA-Part to more object categories is one of our
future goal. Secondly, we propose a new UDA algo-
rithm called Geometric-Matching Guided domain adapta-
tion (GMG) which leverages the object’s spatial structure to
facilitate the adaptation process. In our experiments, GMG
outperforms previous UDA methods on two real test image
datasets, demonstrating the advantage of using structural in-
formation in UDA for part segmentation. On the other hand,
GMG requires a grid-search process to find input pairs and
is prone to misclassifying smaller parts, which could be im-
proved in future works. In conclusion, our work provides a
new solution for part segmentation on general objects with
low cost and will motivate more research in this area.
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