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Abstract

Convolutional Neural Networks have achieved remark-
able success in face recognition, in part due to the abun-
dant availability of data. However, the data used for train-
ing CNNs is often imbalanced. Prior works largely focus
on the long-tailed nature of face datasets in data volume
per identity, or focus on single bias variation. In this pa-
per, we show that many bias variations such as ethnicity,
head pose, occlusion and blur can jointly affect the accu-
racy significantly. We propose a sample level weighting
approach termed Multi-variation Cosine Margin (MvCoM),
to simultaneously consider the multiple variation factors,
which orthogonally enhances the face recognition losses to
incorporate the importance of training samples. Further, we
leverage a learning to learn approach, guided by a held-out
meta learning set and use an additive modeling to predict the
MvCoM. Extensive experiments on challenging face recogni-
tion benchmarks demonstrate the advantages of our method
in jointly handling imbalances due to multiple variations.

1. Introduction

Deep face recognition has achieved remarkable progress

[4, 6, 27, 39, 42, 50, 56], with strong results on public bench-

marks [19, 57]. However, real-world data distributions are

usually long-tailed, whereby a method trained with uniform

sampling over the imbalanced training data leads to degraded

accuracy. Since it is impractical to collect data that suffi-

ciently covers a wide variety of the imbalance factors, there

is a pressing need to develop training methods that can miti-

gate dataset bias along multiple factors of variations.

In current literature, long-tailed or imbalanced data distri-

bution is usually analyzed in terms of per-class data volume,

or a single bias factor such as ethnicity [10, 11, 44, 52] or

head pose [29, 35, 60, 64]. Previous approaches distinguish

long-tailed classes (minority in samples) from head classes

*This work was conducted as part of a summer internship at NEC Labs

America.
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Figure 1. While traditional methods only consider per-class data

volume or single bias factor for long-tailed effects, multiple bias

factors such as head pose and ethnicity jointly manifest as long-

tailed effects in MS-Celeb-1M [14]. Further, samples from the

same identity can show different variations – for example, images

from ID1 show both frontal and profile poses – indicating that

accounting for identity or class-level variation is not sufficient.

Hence, our MvCoM aims at explicitly modeling the sample-level

multiple long-tailed variations jointly for face recognition.

(majority in samples) to mitigate the bias. However, we

observe that there usually exist more than one bias variation

factors. As shown in Fig. 1, several bias factors jointly in-

fluence the overall data distribution. We hypothesize that

dealing with such multiple factors of imbalance results in

a feature space that allows better test-time generalization.

Moreover, recent methods focus on class-level imbalance,

where samples within the same class share the same impor-

tance [2, 21, 37]. This is limited in practice, as different

images from the same person would likely differ in their

importance (e.g., frontal and profile views). Some other

methods [20, 54] compensate the loss with the sample hard-

ness, which is general but cannot attribute the hardness to

any of the concrete variation factor. Thus, we hypothesize

considering sample-level variation instead of class-level,

and explicitly model each of the variation factor into the loss

design.

To handle data imbalance, classical methods [2, 16, 41]

introduce re-weighted loss functions by assigning higher
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loss weights to long-tailed classes and lower weights to head

classes. Cao et al. [2] mentioned that “label-distribution-

aware” re-weighting approaches are advantageous in com-

putational efficiency. However, the assigned weights are

usually either fixed based on prior statistics or obtained by

sophisticated design choices [5]. We seek a more adaptive

re-weighting method that can count for per-sample variation

regarding multiple variation factors while potentially sacri-

ficing certain training efficiency. Meta-learning [9] is such

an adaptive differentiable mechanism to iteratively learn

sample-level importance and further contribute to recogni-

tion model update. It allows a plug-in mechanism to many

recognition losses such as Cosine Loss [50].

Specifically, our proposed framework deals with head

pose, ethnicity, blur and occlusion as multiple factors of

variation that cause data imbalances, besides per-class data

volume. First, we show that the weighted identification loss

which is commonly used in re-weighting methods [21, 37],

is equivalent to a learnable margin built into the cosine loss

(Sec. 3.1). Thereby, we represent each imbalance factor

through a corresponding learnable margin. Second, we pro-

pose an additive framework to indicate a sample’s variation

importance using the class volume margin as prior, together

with residuals as other variations (Sec. 3.2). With the care-

fully designed sample-level margin, we orthogonally equip

it with cosine loss or its variants, termed Multi-variation

Cosine Margin (MvCoM). During training, the proposed

MvCoM controls the contribution of each instance in the

loss function by assigning its dedicated margin considering

all imbalance factors. To realize a meta-learning framework

for MvCoM update, we introduce four variation classifiers

corresponding to the four variation factors. By hard sample

mining over a held-out meta-learning set (no identity over-

lap with the training set, and its identity data is not used in

updating recognition model) to select the samples that are

most variation-different from the current training batch, we

meta-learn the MvCoM and feedback to the recognition loss

update (Sec. 3.2.2). Fig. 2 summarizes our approach.

In the experiments, our method empirically achieve con-

sistently better performance across five challenging datasets

highlighting all the long-tailed variations such as occlusion,

head pose, blur and ethnicity. Moreover, we find that the

proposed MvCoM can be equipped with many backbones

such as CosFace and URFace (see Table 3), demonstrating

the wide applicability to face recognition platforms. We

also visualize the learned sampling importance alongside all

those long-tailed variations in Fig. 3 and verify that our Mv-

CoM indeed assigns significant weights to those long-tailed

factors which leads to overall smaller loss.

Our technical contributions are thus concluded:

• To our best knowledge, we are the primary several to ex-
plicitly model multiple long-tailed variation factors, such

as ethnicity, pose and occlusion, in an additive formulation

within a single framework for face recognition.

• We move beyond class-level imbalance to propose a novel

sample-level Multi-variation Cosine Margin (MvCoM)

that better compensates distribution imbalance from mul-

tiple factors.

• We propose a meta-learning based differentiable mecha-

nism to adaptively learn the proposed MvCoM, enabling

an end-to-end unified recognition training scheme.

• Extensive experiments on both controlled and challenging

benchmarks show that our method can better mitigate

distribution imbalances to outperform prior methods.

2. Related Work
Deep Face Recognition While other face recognition

works are related, we only focus on the ones applying CNNs

due to their impressive recent gains. Seminal works such as

DeepFace, DeepID [45, 47] were among the first to surpass

human-level accuracy. A series of recent works [6, 8, 27, 42,

49, 50, 56, 65, 66, 68] design more effective learning losses

to further advance the state-of-the-art. Specifically, they

focus on designing margins with respect to the angle or the

cosine space or a combination of the two. For more complete

comparisons, we refer the readers to a survey [51]. We note

that these methods either assume the training datasets have

balanced distribution or simply remove tail classes from

training sets. To better utilize long-tailed data, we propose a

comprehensive Multi-variation Cosine Margin (MvCoM) to

address data imbalances by considering multiple causative

factors such as ethnicity, pose, occlusion and blur.

Imbalanced Data Classification While classification

with imbalanced data is a wide direction, we focus on meth-

ods specific to face recognition. Early methods directly

change the sampling frequency [16, 41]. However, the re-

balancing mostly applies empirical rules based on prior statis-

tics, which may lead to sub-optimal training. To adaptively

learn the sampling, recent methods exploit hard negative

mining [7, 24], metric learning [18, 26, 34, 35, 59, 61, 62] and

meta learning [15, 21, 37, 55]. Liu et al. [28] use a dynamic

meta-embedding with an associated memory to enhance the

representation. AdaptiveFace [25] analyzes the difference

between rich and poor classes to propose an adaptive margin.

Despite the above advances in addressing the long-tailed

problem, those methods only consider the per-class data vol-

ume as a cause of imbalance. A recent work of Cao et al. [1]

explores other long-tailed factors including ethnicity. But

they consider only factors correlated with identity, which

excludes other significant factors like pose, occlusion or blur.

In contrast, we propose a unified framework to handle a gen-

eral set of multiple factors, that can be related or unrelated

to identity. While Wu et al. [58] share the high-level idea

of sampling matters for training, they consider metric space

sampling and make a spherical distribution assumption for
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Figure 2. The proposed method flowchart. In Sec. 3.1, we firstly show that traditional re-weighting methods are equivalent to the margin-

modulated cosine loss. To jointly tackle multiple variations that cause the long-tailed distribution, we propose the Multi-variation Cosine

Margin (MvCoM) (Sec. 3.2). Then, MvCoM is learned via a learning-to-learn scheme specified as three steps (Sec. 3.2.2): (1) recognition

model pseudo update. (2) MvCoM meta-update with pseudo recognition model. (3) recognition model real update with updated MvCoM.

it. Our method makes no prior assumption on training data

distribution. We instead leverage meta-learning to adaptively

generate a balanced training data distribution.

Meta Learning The aim of meta-learning is to train a

meta-learner optimized over a set of learning tasks. Each

task is typically associated with a dataset. Generally, the

approaches are categorized into three categories. (1) Model
based methods use memory to record the intermediate

learned models and incorporate recent model updates with

older ones to prevent the forgetting issue [31, 32, 38]. (2)

Metric based methods learn embedding vectors of input data

explicitly and use them to design proper kernel functions,

with the prediction usually being a weighted sum over all the

kernel functions [43,46,48]. (3) Optimization based methods
aim to adjust the optimization algorithm so that the model

can learn under limited conditions, such as few training sam-

ples, data with bias or unseen domain data [9, 13, 33, 36, 63].

Our method lies in the third category. We set up multiple

tasks corresponding to the variations that cause long-tailed

imbalances. Assuming bias in training data, we seek an opti-

mization method to update the margin, such that our main

task of face recognition training is less biased. Note that

our focus is on dealing with data bias while [13] emphasizes

model generalization to unseen domains.

3. Our Approach

Fig. 2 illustrates our overall framework. We start by ex-

plaining traditional re-weighting methods and show their

equivalence to optimizing a margin-based identification loss

(Sec. 3.1). As the factors causing long-tailed distribution are

usually diverse, we propose a sample-level multi-variation

cosine margin (MvCoM) as an additive modeling combining

all the long-tailed variation factors to enhance a canonical

identification objective, i.e., cosine loss [50] (Sec. 3.2). Fur-

ther, we introduce a three-stage meta-learning approach to

dynamically update MvCoM and use the MvCoM for recog-

nition model training (Sec. 3.2.2).

3.1. Interpreting Margin as Sampling Importance

Traditional methods [21, 37] seek to address imbalanced

data distributions by introducing a sampling importance

weight σyi to weigh each sample loss term so as to com-

pensate each sample’s imbalance level:

min
Ω

1

N

N∑
j=1

σyj
L(f(xj ; Ω), yj), (1)

where N is the number of classes, L is a general loss func-
tion, {(xj , yj)}N denotes training set with xj as sample

and yj as class label. f(x; Ω) is a convolutional neural net-

work (CNN) backbone generated feature as commonly used

in deep face recognition, where Ω stands for the network

parameters. The class-level weight σyj is designed to com-

pensate for class imbalances. If a class has few samples

which is long-tailed, the weight should be large such that

its contribution to the overall objective can suitably penalize

the model to account for this long-tailed condition.

Without loss of generality, we consider Cosine Loss [50]

as the L in Eqn. 1, which has seen significant recent success

in face recognition:

Lcos = −log
es·cos θyj−m̄

es·cos θyj−m̄ +
∑C

yk �=yj
es·cos θyk

. (2)

In Eqn. 2, cos θyj
is the inner product between the fea-

ture vector f(xj ; Ω) and j-th class template wyj
, that is,

cos θyj
= wT

yj
f(xj ; Ω). The margin m̄ is set as a positive

constant to squeeze the inner product cos θyj such that the

separating hyper-planes are pushed further away and s is a

scale factor to facilitate training convergence. Combining
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Eqn. 2 with Eqn. 1, we obtain:

min
Ω

1

N

N∑
yj=1

−log

[
es·cos θyj−m̄

]σyj

[
es·cos θyj−m̄ +

∑C
yk �=yj

es·cos θyk
]σyj

(3)

When near convergence, the denominator in Eqn. 3 is close

to constant [es−m̄ + C − 1]
σyj as θyj ≈ 0, θyk

≈ π
2 . Then,

the decisive component is generally the numerator, which is

further rearranged as the following:
[
es·cos θyj−m̄

]σyj

= eσyj
s·cos θyj−σyj

m̄

= es
′·cos θyj−myj (4)

Replacing the numerator of the loss in Eqn. 3 with Eqn. 4,

it can be shown that Eqn. 3 is equivalent to a modified Cosine

Loss Lcos, where s′ = σyj
s and myj

= σyjm̄ are defined

as the new scalar and new margin, respectively. In contrast

to cosine loss defined in Eqn. 2, in the new formulation,

both the scale and margin are proportional to the class-level

sampling weight σyj
. Therefore, the importance sampling

problem can be interpreted as learning the per-class margin
myj

, and s′ can be derived as s′ =
myj

m̄ s.

3.2. Multi-variation Cosine Margin Loss

Cosine Loss assumes a constant margin that assigns equal

importance to all the data, which inevitably pushes the model

focus more on the head classes and leads to biased estima-

tion. Meanwhile, class-level importance cannot account

for intra-class variations. Prior work has considered a sin-

gle weight reflected from the recognition loss, to indicate

sample importance [20]. However, such weight does not

distinguish bias from other factors such as label noise or

outlier. In contrast, we search for explicit anchors that corre-

spond with a few known and important causes of distribution

bias, namely, class volume, ethnicity, head pose, blur and
occlusion. Thereby, we train a classifier for each variation to

quantify bias corresponding to it.

Thus, we propose the sample-level multi-variation cosine

margin (MvCoM) to flexibly capture sample-level variations.

Formally, we model our MvCoM myj ,j in an additive man-

ner by combining the class-volume margin mcls
yj

, and a set

of margin residual terms rkj representing the importance

of each variation k. The additive assumption stems from

each variation equally and independently contributing to

the sample importance. With experimental trial, we find

that class-volume factor can be stably estimated by statistics

prior [2]. Thus, starting with the prior, we accumulate other

factors’ importance contribution to form the overall margin:

myj ,j = mcls
yj

+
∑
k

λkr
k
j (5)

k ∈ {vol., eth., pose, blur, occ.}

where vol., eth, pose, blur and occ. stand for per-class data

volume, ethnicity, head pose, blur level and occlusion varia-

tions. Notice that other variations may be similarly consid-

ered if necessary. λk is a weighting factor for each variation

(empirically we set all the λk as 1). The overall objective is:

LMvCoM = −log
es·cosθyj−myj,j

es·cosθyj−myj,j +
∑C

yk �=yj
es·cosθyk

(6)

The method effectiveness is highly depended on the Mv-

CoM estimation. Ideally, MvCoM is dynamically updated

during training to highlight the samples with variations that

are less present in the training distribution. The remainder is

to estimate each component of MvCoM: the class-volume

margin mcls
yj

and variation-aware margin residual rkj .

3.2.1 Estimate Class-volume Margin
Following [2], we use the class-wise statistics as the prior

for the class-volume margin:

mcls
yj

=
α

n
1/4
yj

(7)

where j is sample index, α is a hyper-parameter (0.45 used

in the experiment) and nyj
is class yj volume.

3.2.2 Meta-learn Variation-aware Margin Residual

To estimate the residual terms of MvCoM in Eqn. 5, we lever-

age a learning-to-learn framework [9, 21], by considering

each sample’s long-tailed factor variations within a training

batch {(xj , yj , μ
k
j )}|B|, where yj is the class label, μk

j the

variation k’s label and |B| the batch size. This is achieved

by introducing variation classifiers to predict per-sample

long-tailed factors. Further we introduce a meta-learning

face dataset, which is a typical “in-the-wild” distribution

and independent from training set distribution. With the on-

line mined samples from this meta-learning set that present

largest variation difference to the current training batch, we

meta-update the proposed MvCoM and further utilize it to

update the face recognition model.

Long-tailed Variation Classification To quantitatively in-

dicate how a training sample is biased alongside each of

the pre-defined variations, we introduce the variation clas-

sifiers to predict the variation level. Given our choice of

the four variations above, we set up four independent clas-

sifiers g(·; vk) as shown in Fig. 2, where vk indicates the

classifier parameter. For example, we label the ethnicity

information of our training set MS-Celeb-1M into African

American, Caucasian, East Asian and South Asian categories

to conduct a 4-way classification1. Other variations’ labeling

1We omit other too limited data volume ethnicities such as Latino in the

training set, to guarantee the classifier’s unbiasedness.
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are explained in Sec. 4 “Variation Augmentation”. A cross

entropy loss is used to update the variation classifiers:

Lk
var(xj ,Ω, vk, μ

k
j ) =

∑
j

Lce(g(f(xj ; Ω); vk), μ
k
j ) (8)

where Lk
var is the cross-entropy loss for variation task k and

μk
j is the variation label for sample j. The variation classi-

fiers are trained on the same training data as face recognition.

The difference is we re-balance the original imbalanced data

according to the variation labels, i.e., forcing the volume for

each variation level the same by increasing the occurrence

of the long-tailed data, denoted as T̂k in Algorithm 1. This

data re-balance cannot be directly applied to face recognition

training, because the joint multiple variations’ re-balance is

not trivial. Notice that the re-balanced T̂k is based on each

single variation k. In this way, we maximally guarantee the

variation classifiers are trained balanced. Hence, we make

sure in the later meta-learning stage, the imbalance is from

the training batch, not from the variation classifiers.

Online Meta-learning Batch Construction We posit that

samples that share the similar long-tailed variation result in

similar classifier logits g(f(xj ; Ω)). To reshape the train-

ing set distribution to be more balanced, we search for the

distribution that is complementary to the current training

distribution. This is achieved by selecting samples from

the meta-learning set V that have the largest logit distance

from the current training batch. Accordingly, the objective

to search for such samples compares the logit distance:

xm : argmax
xm∈V

‖g(f(xm; Ω); vk)− g(f(xj ; Ω); vk)‖2 (9)

where xj is from training batch B and xm is from meta-

learning batch V . g(·; vk) are variation k’s classifier logits.

By mining the meta-learning batches, the original training

batch’s bias information is fed back to meta-update MvCoM.

Meta-learning Optimization for MvCoM
1) Pseudo Recognition Model Update. At each iteration t,
we uniformly sample a batch B from the training data and

feed it to update the recognition model parameters Ω with

margin mj,t:

Ω̃t+1(mj,t) : Ω
t − η

∂
∑

k,j∈T

LMvCoM (f(xj ; Ω
t), yj ;mj,t)

∂Ω
(10)

where sample xj is from training set T . From this procedure,

we see that by adjusting margin mj,t, we adjust the overall

loss LMvCoM and it backpropagates to update the model

parameter Ω̃t+1. Thus, Ω̃t+1 is a function of mj,t while Ωt

and mj,t are independent.

2) Margin Residual Meta-Update. We exploit the online

sample mining described by Eqn. 9 to prepare the meta-

learning batch from V . Given that the current mj,t is sub-

optimal due to the original biased training data, we seek to

send the meta-learning batch to the variation classifiers, with

the pseudo-updated Ω̃t+1, to reduce the classifiers predic-

tion error to meta-learn the margin mj,t+1. This mj,t+1

compensates the previous step data bias to achieve lower

variation classification error. Further acknowledging that

Ω̃t+1 is the function of mj,t, we meta-update mj,t+1 as:

mj,t+1 : mj,t − τ

∂
∑

k,j∈V

Lk
var(xj , Ω̃

t+1(mj,t), vk, μ
k
j )

∂mj,t

(11)

As the class-level margin prior mcls
yj

is unchanged from

mj,t to mj,t+1, Eqn. 11 is effectively meta-updating the

margin residual from rj,t to rj,t+1 through Eqn. 5. As a

result, the updated margin mj,t+1 should be better than the

previous update mj,t, in the sense that it results in smaller

variation-level classification errors on the meta-learning set

by balancing the long-tailed training distribution for multiple

factors of variation.

3) Real Recognition Model Update. We apply the obtained

new importance margin mj,t+1 to conduct the update for

the actual recognition model:

Ωt+1 : Ωt − η

∂
∑

k,j∈T

LMvCoM (f(xj ; Ω
t), yj ;mj,t+1))

∂Ω
(12)

Algorithm 1 Multi-variation Cosine Margin meta-learning

Require: Training set T , meta-learning set V
Require: Learning rates η and τ , iteration steps t1 and t2

for t = 1, 2, · · · , t1 do
Sample a mini-batch B from the training set T
Compute loss LMvCoM with Eqn. 6

Update Ω ← Ω− η∇ΩLMvCoM (mcls
y )

end for
for t = t1 + 1, · · · , t1 + t2 do

Sample a mini-batch B from the training set T
Set rkj ← 0, ∀j ∈ B, denote by rk := {rkj , j ∈ B}
Set mt ← ∑

k r
k +mcls

y

Update Ω̃(mt) ← Ω− η∇ΩLMvCoM (mt) with Eqn. 10

for k = 1 : 4 do � 4 factors of variations

Sample Bv from V with Eqn. 9.

rk ← rk − τ∇rkLvar(Ω̃(mt)) with Eqn. 11.

end for
Set mt+1 ← ∑

k r
k +mcls

y

Update Ω ← Ω− η∇θLMvCoM (mt+1) with Eqn. 12

end for
Update g(f(.); vk) (Eqn. 8) with variation re-balanced T̂k

The overall procedure is summarized in Algorithm 1.

Although our meta-learning shares the high-level structure
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as [21], we consider multiple branches for rkj to estimate the

residuals instead of a single weight. Moreover, [1, 21] con-

sider only the class-level importance weighting, whereas our

method considers the finer-scale sample-level importance.

Another difference from [21] is that we leverage an inde-

pendent meta-learning set which has no prior distribution

correlation with the training set, while they use a held-out

set which shares the same distribution as the training set.

4. Implementation Details
We use MS-Celeb-1M [14] with the clean list from Ar-

cFace [6] for training data. For the meta-training set, we

adopt VGGFace2 [3] and exclude the duplicate identities

to prevent additional benefit for the training. The baseline

models are trained with CosFace loss [50] for 30 epochs

with empirically fixed margin m = 0.35. After pre-training,

we discard the classifier and fine-tune the models with the

proposed framework for 18 epochs to ensure convergence.

Variation Augmentation We use mechanical turk to label

ethnicity in the training set, including African American,

Caucasian, East Asian and South Asian. For head pose,

following the pose angle setting in MultiPIE [12], we group

every 30◦ as one class and thus obtain 7 classes ranging from

−90◦ to 90◦. For blur, we apply Gaussian kernel with four

different kernel sizes (3, 7, 11, 15) to augment the training

images. For occlusion, we adopt five different block sizes

(5, 11, 17, 23, 29) to randomly black out the training images

with the specific size.

Complexity We use the modified 100-layer ResNet [17] as

the backbone. All the variation classifiers are linear clas-

sifiers. Compared to the CosFace baseline, our framework

newly introduces four variation classifiers. But it almost

does not increase the network complexity as each variation

classifier is less than 10-way. The time complexity for our

training is nearly twice longer than the baseline training

due to one additional feed forward and a meta-learning step.

Since testing only utilizes the recognition model, the runtime

for inference is the same as CosFace.

5. Experiments
In this section, we organize the experiments as: (1) Ex-

tensive ablation study over the five variation factors, and

compare to the baseline CosFace [50]. (2) Evaluation on

challenging benchmarks that are prototypical on variations,

i.e., RFW [53] for ethnicity, CFP [40] and CP-LFW [67]

for head poses, IJB-A [23] for video blur and OC-LFW for

occlusion. (3) Evaluation on general face recognition bench-

marks LFW [19] and MegaFace [22] (4) Visualization of

sample images with the predicted margin residuals alongside

all the variation factors. (5) Further insights on the margin-

weighted validation loss, embedding distributions, and the

magnitude of the margin residual.

Method OC-LFW CFP-FP RFW

CA AF EA IN Avg ↑ Bias ↓
CosFace∗ 94.41 98.16 99.01 97.62 97.20 97.96 97.94 0.67

Ours (single) 94.52 98.35 99.06 97.90 97.83 98.23 98.25 0.49
Ours (all) 94.83 98.41 99.16 98.06 97.78 98.28 98.32 0.51

Table 1. Ablation study on variation-specific benchmarks, OC-LFW for

occlusion, CFP-FP for head pose, and RFW for ethnicity where CA, AA,

EA and IN are abbreviated for Caucasian, African American, East Asian

and Indian respectively. ∗: self-implemented CosFace as baseline. “Ours

(single)” means “Ours (occlusion)”, “Ours (pose)”, “Ours (ethnicity)” re-

spectively for each variation-spcific dataset. “Ours (all)”: adding all the

proposed variations for MvCoM.

Method IJB-A (Vrf)

FAR@0.01% FAR@0.001%
CosFace∗ 97.13 93.22

Ours (ethnicity) 97.24 94.91

Ours (pose) 97.27 95.12

Ours (blur) 97.42 95.58

Ours (occlusion) 97.25 95.21

Ours (ethnicity + pose) 97.20 95.12

Ours (ethnicity + pose + blur) 97.45 95.65

Ours (all) 97.46 95.69

Table 2. Ablation study on in-the-wild IJB-A dataset with multiple

variations. ∗: self-implemented CosFace serves as baseline for all

our ablation methods for a fair comparison.

5.1. Studies on Variation-Specific Benchmarks

While the proposed MvCoM complements various recog-

nition losses, in this evaluation, we use CosFace as the base-

line. All the ablations are built on top of this baseline for

fair comparison. To highlight each component’s function,

we evaluate on challenging datasets prototypical of specific

variations. We use RFW [53] for ethnicity, CFP-FP [40] for

head poses, and OC-LFW for occlusion variation. We also

evaluate on IJB-A as an in-the-wild dataset that incorporates

multiple variations for all our ablation methods.

Benchmark protocols. LFW verification protocol is used

for RFW, CFP-FP, IJB-A and OC-LFW. For CFP, we focus

on the frontal-profile (FP) protocol.

MvCoM is robust to occlusions. In Table 1, OC-LFW is

an occlusion evaluation protocol of LFW [19] that contains

more than 13,000 images from 5749 identities. For each

verification pair, we randomly set occlusion masks on one

of the images, and conduct the same verification protocol as

LFW. Although the performance on LFW is saturated, all

methods only achieve under 95% accuracy on OC-LFW. We

observe that our method with single variation already out-

performs the baseline. By adding all variations, the accuracy

further increases as more variation factors provide a more

complete regularization for representation learning.

MvCoM handles large poses. CFP-FP [40] consists of

face image pairs with one image of large pose variation, and

most of the image pairs are with high resolution. In Table 1,

the single margin ablation outperforms the baseline clearly.

While “Ours (all)” is generally better than “Ours (single)”.

We observe the same trend as in OC-LFW, which consis-
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Method OC-LFW CP-LFW CFP-FP IJB-A (Vrf) RFW

FAR=0.001% FAR=0.01% CA AA EA IN Avg ↑ Bias ↓
ArcFace [6] † (CVPR’19) 94.56 92.08 98.37 93.7 94.2 98.80 97.48 96.80 97.38 97.61 0.84

URFace [42] (CVPR’20) 94.60 92.31 98.30 95.0 96.3 98.35 96.76 96.10 96.63 96.96 0.96

CurricularFace [20] (CVPR’20) - 93.13 98.37 - - - - - - - -

MagFace [30] (CVPR’21) - 92.87 98.46 - - - - - - - -

DebFace [10] (ECCV’20) - - - - - 95.95 93.67 94.33 94.78 94.68 0.83

RL-RBN [52] (CVPR’20) - - - - - 97.08 94.87 95.57 95.63 95.79 0.93

CIFP [59] (CVPR’21) - - - - - 97.08 94.87 95.57 95.63 95.79 0.93

GAC [11] (CVPR’21) - - - - - 97.60 97.03 95.65 96.82 96.78 0.82

DAM [26] (ICCV’21) - - - - - 96.30 94.51 94.31 95.20 95.08 0.78

CosFace [50]∗ (CVPR’18) 94.41 92.06 98.16 93.2 97.1 99.01 97.62 97.20 97.96 97.94 0.67

CB-CosFace [37]∗ (ICML’18) 94.44 92.04 98.24 94.6 97.2 99.03 98.23 97.36 97.83 98.10 0.61

LDAM-CosFace [2]∗ (NeuIPS’19) 94.54 92.05 98.31 94.5 97.2 98.93 97.80 97.23 97.50 97.86 0.65

MetaCW [21]∗ (CVPR’20) 94.48 92.06 98.28 94.1 97.2 99.13 97.86 97.73 98.11 98.20 0.55

MvCoM-URFace (ours) 94.92 92.86 98.47 96.0 97.6 98.85 97.18 97.15 96.98 97.54 0.76

MvCoM-CosFace (ours) 94.83 92.75 98.37 95.7 97.5 99.16 98.06 97.78 98.28 98.32 0.51

Table 3. Challenging variation-specific face recognition benchmarks comparison. “-”: the authors did not report the performance on the corresponding

protocol. “*”: self-implemented methods. ”†” indicates the testing performance by using the released models from corresponding authors. In RFW

(BUPT-BalancedFace), CA, AA, EA and IN are abbreviated for Caucasian, African American, East Asian and Indian respectively.

Method LFW MF1

Rank1 Veri.

CenterFace [56] 99.28 65.23 76.52

SphereFace [27] 99.42 75.77 89.14

ArcFace [6] 99.83 81.03 96.98

URFace [42] 99.75 79.10 94.92

CurriculumFace [20] 99.80 81.26 97.26
DomainBlancing [1] 99.78 - -

MagFace [30] 99.83 - -

CosFace [50]∗ 99.73 80.03 95.54

CB-CosFace [37]∗ 99.81 80.18 95.75

LDAM-CosFace [2] ∗ 99.75 80.73 96.78

MetaCW [21]∗ 99.78 80.32 96.22

MvCoM-URFace (Ours) 99.78 80.63 96.28

MvCoM-CosFace (Ours) 99.80 81.30 97.22

Table 4. General face recognition benchmarks comparison. The MegaFace

verification rates are computed at FAR=0.0001%. “*”: self-implemented

methods. “-”: the authors did not report the performance on the correspond-

ing protocol. Notice that MegaFace1 is based on uncleaned protocol, of

which numbers are lower than the cleaned protocol.

tently demonstrates that by adding the proposed MvCoM,

the accuracy is significantly improved.

MvCoM is less biased with respect to ethnicity. RFW

consists of four races (Caucasian, East Asian, African Amer-

ican, Indian) data from MS-Celeb-1M to study ethnicity bias

in face recognition. We have excluded the identities from

RFW that are duplicated in MS-Celeb-1M. In Table 1 RFW

column, we find that while both the CosFace baseline and

our method achieve strong accuracy, ours is slightly higher.

More importantly, following [11], we highlight the bias, de-

fined as the standard deviation over the accuracy of four

ethnicity subsets. The bias across CA, AA, EA and IN is

much smaller for our method, showing the effectiveness of

our learned margin that leads to more balanced performance

across different ethnicities.

MvCoM is accurate across diverse variations. IJB-A (Vrf)

is an in-the-wild dataset with multiple long-tailed variations.

In Table 2, we observe that all the single factor ablations

are better than the CosFace baseline, indicating that IJB-A

contains such long-tailed variations and our method indeed

alleviates the issue. Further, we notice that “Ours (blur)”

is better compared to other single variation ablations by

0.2%, and “Ours (ethnicity+pose+blur)” is better than “Ours

(ethnicity+pose)” by more than 0.2%, which is consistent

to the observation that IJB-A is a low-quality surveillance

video setting with large blur degradation.

5.2. Evaluation on Challenging Benchmarks

MvCoM captures long-tailed variations well. We compare

to both general state-of-the-arts and long-tailed re-weighting

specific methods on challenging variation-specific datasets,

across the top three sets of rows in Table 3. In general, our

method shows consistently better performance over other

methods, e.g., 0.3% higher than second best on OC-LFW,

1.0% higher than second best on IJB-A FAR= 0.001%.

While re-weighting based methods in the third set show

strong performance especially on RFW, our method achieves

a clearly lower bias of 0.51, defined as standard deviation

of accuracy reported across the four ethnicity subsets [11].

In addition to the performance advantages compared to re-

weighting methods, our joint consideration of multiple varia-

tion factors better represents the long-tailed distribution.

MvCoM is complementary to face recognition backbones.
Interestingly, we observe that MvCoM can combine with

different recognition architectures such as CosFace and UR-

Face in Table 3. When comparing MvCoM-CosFace and

MvCoM-URFace to their baselines, we see clear improve-

ments, which suggests that our MvCoM can complement a

variety of recognition frameworks.

5.3. Evaluation on General Benchmarks

MvCoM retains accuracy on more balanced test data. We

compare to the state-of-the-arts on general face recognition

benchmarks with limited variations, namely LFW [19] and

MegaFace [22]. We self-implement CosFace and use it as
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Figure 3. Sample level margin visualization across all the factors. Larger margin corresponds to more tailed class.
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Figure 4. Left: Curve of validation loss magnitude versus the tail

to head classes. Our MvCoM (in green) shows significantly lower

loss. Right: Histogram of the learned residual magnitude over the

long-tailed variations. Tailed classes’ MvCoM is clearly larger.

the backbone to further implement the Class-Balance Cos-

Face (CB-CosFace) [37], Label-distribution-aware margin

loss (LDAM-CosFace) [2], and Meta Conditional Weights

(MetaCW) [21]. The main purpose of this evaluation is to

show that, our method is consistently among the top, while

less imbalanced testing data does not degrade our perfor-

mance. In Table 4, “Ours” achieves close to best on LFW and

the first on MegaFace challenge 1 with uncleaned protocol.

Note that while our method uses an additional meta-learning

set for training, it is only utilized to feedback the importance

weight and no identity information from this auxiliary set is

used to train the recognition model.

5.4. Further Insights

MvCoM learns meaningful per-sample margins. We ran-

domly show identities from MS-Celeb-1M in Fig. 3 (more

in the supplement). Images of different variations (each

column) within the same identity (each row) are presented.

We consistently observe that the margin residuals for the

head classes are smaller, while those for tailed classes are

relatively larger, which suggests the learned MvCoM works

as expected to emphasize on the tailed class samples.

Visualization of margin modulation. We verify whether the

learned MvCoM can compensate the distribution imbalance

and whether the loss with the learned margin drops more

significantly. On MS-Celeb-1M, we count the class volume

to group the identities and form x-axis of Fig. 4 “Left”,

ranging from tailed to head. The y-axis is MvCoM loss in

Eqn. 6. As expected, our method achieves significantly lower

loss compared to LDAM-CosFace [2]. In Fig. 4 “Right”,

Head

Tailed

Head

Tailed

Figure 5. Left: Original head and tailed embedding distribution.

Right: MvCoM modulated head and tailed embedding distribution.

we compare the learned residual between head and tailed

classes across all the variations. The residual for tailed

classes is consistently higher than head classes across all the

variations. Moreover, we randomly pick a set of head and

tailed classes and visualize the feature distribution in Fig. 5.

Compared to original distribution (left), the feature space

with our MvCoM modulation (right) effectively enlarges

tailed classes’ variance and shrinks head classes’.

6. Discussions and Conclusions

Our models are trained on a public dataset. Consent is

obtained by the dataset providers. We will remove any sub-

ject image where privacy concern is not properly addressed.

Though face recognition may potentially be used for unlaw-

ful surveillance or discrimination, our work has the positive

benefit of alleviating a critical ethical concern with biases in

face recognition, which have been observed to have detrimen-

tal consequences in many societal outcomes. The limitation

of our work is the training efficiency, yet we trade off the

training efficiency for better model efficacy.

In this work, we explicitly handle multiple bias factors in

face recognition. This is in contrast to prior works that

mostly focus on single bias factor. A learning to learn

scheme is proposed to provide the training batch biased

distribution feedback in the form of a novel sample-level

Multi-variation Cosine Margin (MvCoM), which can be or-

thogonally equipped with many recognition losses such as

Cosine Loss. Empirical results demonstrate our method’s

top performance on general benchmarks, and clear advan-

tage on challenging variation-specific benchmarks. Avenues

for future work include applying the proposed MvCoM for

wider range of data bias problems.
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