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Abstract

Benefiting from the pioneering design of generic ob-
ject detectors, significant achievements have been made in
the field of face detection. Typically, the architectures of
the backbone, feature pyramid layer, and detection head
module within the face detector all assimilate the excel-
lent experience from general object detectors. However,
several effective methods, including label assignment and
scale-level data augmentation strategy, fail to maintain con-
sistent superiority when applying on the face detector di-
rectly. Concretely, the former strategy involves a vast body
of hyper-parameters and the latter one suffers from the
challenge of scale distribution bias between different detec-
tion tasks, which both limit their generalization abilities.
Furthermore, in order to provide accurate face bounding
boxes for facial down-stream tasks, the face detector im-
peratively requires the elimination of false alarms. As a
result, practical solutions on label assignment, scale-level
data augmentation, and reducing false alarms are neces-
sary for advancing face detectors. In this paper, we fo-
cus on resolving three aforementioned challenges that ex-
iting methods are difficult to finish off and present a novel
face detector, termed MogFace. In our Mogface, three key
components, Adaptive Online Incremental Anchor Mining
Strategy, Selective Scale Enhancement Strategy and Hier-
archical Context-Aware Module, are separately proposed to
boost the performance of face detectors. Finally, to the best
of our knowledge, our MogFace is the best face detector
on the Wider Face leader-board, achieving all champions
across different testing scenarios. The code is available at
https://github.com/damo-cv/MogFace.

1. Introduction
Face detector, predicting location coordinates of face

boxes, serves as the fundamental step for many facial down-
stream tasks, including face alignment [1], face recogni-
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tion [5] [28] and face attribute analysis [24]. In the past
few years, we have witnessed the quick development on the
general object detectors, deriving from the Fast-RCNN [8]
and SSD [18] to Retinanet [16] and DERT [3]. Motivated by
this, state-of-the-art face detectors adopt the great architec-
ture designs from general object detectors, such as Feature
Pyramid Network [15] and One-stage Single-Shot frame-
work [16].

However, label assignment and scale-level data augmen-
tation strategy 1, achieving great superiority on the task of
generic object detection, bring rare gains on face detec-
tors . On the one hand , the designation of former strat-
egy involves a vast body of hyper-parameters (e.g. K in
ATSS [34], α in OTA [7] ) , which limits its generalization
ability. On the other hand, as shown in Fig. 1(b), com-
pared with generic object detector, face detector confronts
more severe scale variance challenge. Uniform sampling
based scale-level data augmentation strategies (e.g. multi-
scale training and random square crop [18]), serving as the
main scale enhancement methods on generic object detec-
tors [16, 23, 34], fail to provide effective scale information
for face detector (more analysis can be seen in the supple-
mentary material). Furthermore, the face detector is a real-
world application that emphasizes reducing the number of
false alarms urgently. Therefore, how to distinguish false
alarms away from true positive faces is an another distinc-
tive challenge on the task of face detection.

Based on the above analysis, we discover that label as-
signment strategy, scale-level data augmentation strategy
and eliminating false alarms have a huge potential for con-
structing a high-performance face detector. Then we per-
form a systematically quantitative and qualitative analysis
on 3 aforementioned perspectives to provide some intrinsic
insights.
Label Assignment. Label assignment strategies adopt pre-
defined rules to match ground-truth (gt) or background for
each anchor. As shown in the Fig. 1(a), the designation
of predefined rules highly depends on offline and online in-
formation. Offline information contains Intersection-over-
Union (IoU) and Center Point Distance (CPD) between gt

1enriches the scale distribution of the training data to resolve scale vari-
ance challenge.
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Figure 1: Motivation illustration. (a) Online and offline information both can be adopted as criterion to determine the
boundary between positive and negative anchors. But how to effectively and adaptively combine them remains a huge
challenge. (b) Cumulative density curve of face or object scale relative to the fixed scale (640). In the Wider face and COCO
dataset, almost 55% and 18% ground-truth scale is less than 20, demonstrating that compared to generic object detector, a
more severe scale variance challenge is occurred on the task of face detection. (c) For the same detector, we discover the
top-left calendar is a false alarm in the left image, while the top-left calendar in the other two images are not.

and anchor, which can be computed during the process of
data preparation. Online information consists of the pre-
dicted classification scores (PCS) and the predicted location
coordinates (PLC), which can be extracted at the end of for-
ward propagation. Traditional label assignment strategies
adopt offline information as threshold criterion for pos/neg
anchors division, e.g. IoU in retinanet [16], faster-rcnn [23],
IoU and CPD in ATSS [34]. Recently, Hambox [21] further
points out the effectiveness of online information and put
forwards an online high-quality anchor mining strategy to
utilize the PLC. OTA [7] formulates the assigning proce-
dure as an optimal transport problem, where the cost func-
tion is designed by the weighed combination of CPD, PCS
and PLC.

However, there exist two drawbacks lying behind current
label assignment strategies: 1) Online information cannot
provide high-confidence matching information as well as
offline one. Thus, it will result in the emergence of sub-
optimal label assignment strategy when encouraging on-
line rules to serve as main metric on distinguishing posi-
tive and negative anchors like OTA and Hambox. 2) The
selection of hyper-parameter in the recent label assignment
strategies frequently goes through constant trials and errors,
making it difficult for transferring different detection tasks,
e.g. from general object detection to face detection. In
this paper, we address the aforementioned issues by propos-
ing an adaptive online incremental anchor mining strategy
(Ali-AMS), which is based on the standard anchor matching
strategy adopted in retinanet [16] and further compensates
outlier ground-truths with incremental anchors at the end
of forward propagation. In our Ali-AMS, two key compo-
nents, quality assessment based anchor mining strategy and
pyramid-level consistency principle, are proposed to mine
and assign the high-quality anchor adaptively. Concretely,
the former strategy regards the PCS as the quality assess-
ment criterion to re-sort the anchor mined with the CPD and
IoU information; then, the latter principle guarantees that

ground-truths located at the same pyramid layer can match
the same number of anchors. The motivation and more de-
tails of our Ali-AMS can be seen in section 3.1.
Scale-level Data Augmentation. Generic object de-
tector frequently introduces scale-level data augmentation
strategy to resolve extreme scale variance on the COCO
dataset. However, the most authoritative face detection
dataset Wider Face [31] contains more severe scale variance
than COCO [17]. As shown in Fig. 1(b), we display the
scale distribution of ground-truths on the COCO and Wider
Face benchmark, respectively. Comparing with COCO
dataset which is famous with extreme scale variance, Wider
Face has more rigorous scale distribution, where contains
almost 55% small scale faces 2.

To resolve extreme scale variance challenge, there ex-
ist 3 widely-adopted data augmentation strategies, in-
cluding Multi-scale-training (MST), Random Square Crop
(RSP) and Data-anchor-sampling (DAS). Multi-scale-
training strategy, resizing each image into a random scale
selected from fixed scale range, frequently serves as the
optimal solution on handling with scale variance problem,
which has demonstrated its significance in many technology
reports on the COCO detection challenge. Random Square
Crop strategy, cropping the square area from a given image
randomly, is a main-stream scale-level data augmentation
strategy on the task of face detection [6], [35]. Data-anchor-
sampling strategy [26] aims to introduce more small scale
faces by resizing each image into a smaller scale.

MST and RSP are both designed from uniform sampling
perspective while DAS focuses on generating many small
faces. Meanwhile, in the Wider Face training set, almost
55% face scale is less than 20, making uniform sampling
based augmentation strategies generate a large number of
small faces. As a result, MST and RSP both have great
detection ability on small faces. This raises a worth solv-
ing problem: How to increase the detection ability on the

2the scale of ground-truth is less than 20

4094



middle and large scale faces since the training set only con-
tains a small proportion large faces (10%) ? In this paper,
we investigate this question by analyzing the relationship
between the performance of each pyramid layer and the
number of ground-truths it matches. Based on comprehen-
sive quantitative and qualitative analysis in supplementary
material, we unexpected discover that it is not the more
ground-truths that is matched in a single pyramid layer,
the greater performance of this pyramid layer. As a result,
this phenomenon releases an amazing conclusion that in or-
der to improve the representation of certain pyramid layer,
the number of ground-truths matched in this layer should
be appropriate instead of ’the more, the better’. Under
the guidance of this meaningful conclusion, we propose a
simplex selective scale enhancement strategy for detecting
large scale face accurately on the basis of prior statistical
result, which controls the ground-truths distribution to im-
prove the deep pyramid layer representation, achieving the
best detection performance on large and middle scale faces.
To the best of our knowledge, our selective scale enhance-
ment strategy is the first novel work to consider the relation-
ship between the performance of each pyramid layer and the
number of ground-truths it matches, which provides a solid
knowledge on how to mine the learning capacity of certain
pyramid layer.
Eliminating False Alarms. Reducing the number of false
alarms is vitally important for the real-world face detec-
tor. The common solution is to introduce additional train-
ing data with false alarms, which helps the detector acquire
more knowledge on the property of false alarms. How-
ever, collecting extra training data is labor-intensive such
that the solution without extra data is deserved exploring.
In this paper, we present a Hierarchical Context-Aware
Module (HCAM) to help false alarms away from ground-
truths, which explicitly encodes neighbour context infor-
mation into high-confidence anchors 3. The effectiveness
of neighbour context information can be seen in Fig. 1(c),
we send the left image into the Hambox [21] face detec-
tor and find a top-left false alarm. However, when we crop
this false alarm with expanding context area (middle im-
age) and less expanding context area (right image), we un-
expectedly discover that the same detector believes there is
no false positives in these two images. Moreover, we uti-
lize Hambox face detector to find all false alarms in the
Wider Face validation dataset, almost 95% false alarms are
disappeared when adopting similar operations like above.
This phenomenon demonstrates that the appropriate neigh-
bour context information is conducive to eliminating false
alarms.

In summary, our contribution can be summarized as:

• Presenting 3 worthy of in-depth research topics on the
3high-confidence anchors contains correct predicted positive anchors

and false predicted negative anchors

task of face detection, including Label Assignment,
Scale-level Data Augmentation and Eliminating False
Alarms.

• Proposing Adaptive Online Incremental Anchor Min-
ing Strategy, Selective Scale Enhancement Strategy,
Hierarchical Context-Aware module respectively to
construct a promising face detector, termed as Mog-
Face.

• Achieving state-of-the-art results in all popular face
detection benchmarks, including Wider Face, AFW,
FDDB and Pascal Face.

2. Related Work

Recently, a large number of face detectors [6, 9, 13, 19,
20,26] has been proposed to advance face detection commu-
nity. In this section, we mainly review the related work from
two following perspectives, label assignment and scale-
level data augmentation strategies.
Label Assignment. In the field of face detection, zhang
et.al. [35] propose a scale compensation anchor matching
strategy to increase the matched anchors of outer faces by
reducing the IoU threshold. Liu et al. [21] discover that
some negative anchors have stronger localization ability
than positive ones and further propose an “online high-
quality anchor mining strategy” by compensating outer
faces with high-quality negative anchors. In the field of ob-
ject detection, ATSS [34] automatically selects positive and
negative samples according to statistical characteristics of
object. OTA [7] formulates the label assigning procedure as
an optimal transport problem, which converts the best as-
signment solution into solving the optimal transport plan at
minimal transportation costs.
Scale-level Data Augmentation. SNIP [25] introduces
a Scale Normalization for Image Pyramids (SNIP) strat-
egy which selectively back-propagates the gradients of ob-
ject instances of different sizes as a function of the image
scale. Li et.al [14] proposes a novel Trident Network to
generate scale-specific feature maps with a uniform repre-
sentational power. Data-anchor-sampling [26] augments the
training samples to increase the diversity of training data for
smaller faces. Zhang et.al [35] proposes a scale-equitable
face detection framework to handle different scales of faces.
ASFD [32] introduces an automatic feature enhance module
to allow multi-scale feature fusion efficiently.

3. Method

In this section, we consecutively introduce three com-
ponents of our MogFace, including Adaptive Online Incre-
mental Anchor Mining Strategy, Selective Scale Enhance-
ment Strategy and Hierarchical Context-Aware Module.
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Algorithm 1 Adaptive Online Incremental Anchor Mining
Strategy (Ali-AMS)
Input:
A is a dict, key is ground-truth, value is the number of anchors
matched with this ground-truth with standard anchor matching
strategy.

1: for pyramid layer pi in [p2, p3, p4, p5, p6, p7] do
2: G ← ground-truths that matched in the pi
3: T ← maximum number of anchors that matched in G with

standard anchor matching strategy.
4: for each ground-truth g ∈ G do
5: if A[g] == T then
6: continue
7: end if
8: compute the number of compensated anchors for g:

Ng = T − A[g];
9: cpd ← select T anchors whose centers are closest to

the center of ground-truth g based on L2 distance;
10: iou ← select T anchors whose have the highest iou

with ground-truth;
11: conf candidate ← sort the anchor in iou and cpd

according to predicted classification scores;
12: select top-Ng confident anchors from conf condidate

to serve as positive anchors for g;
13: end for
14: end for

3.1. Adaptive Online Incremental Anchor Mining
Strategy

Algorithm 1 describes how our Ali-AMS compensates
high-quality anchors for outer ground-truths, when given an
input image. Concretely, our Ali-AMS consists of pyramid-
level consistency principle and quality assessment based an-
chor mining strategy, which identifies the number of an-
chors matched with each ground-truth among all pyramid
layers and mines the high-quality anchors for outer ground-
truth, respectively. The first principle (line 2-3) is described
as follows: on each pyramid level, we first find the set of
ground-truths (G) matched in this pyramid layer based on
the standard anchor matching strategy [16] and compute the
maximum number (T ) of anchors that matched in G. For
each gt (g) in G, if the number of anchors matched with g
is less than T , the number of anchors that the g matches
will be compensated to T with following metric. The de-
scription of second strategy is from line 8 to 12: For each
ground-truth that needs to be matched with incremental an-
chors, the select process of compensated anchors contains
three following steps: 1) select T anchors from the view
of CPD and IoU separately. 2) Sort all 2 * T anchors by
the predicted classification score 3) Compensate top-Ng an-
chors for the outer ground-truth. Note that the number of
top-Ng is computed in the first principle adaptively. The
motivation behind our Ali-AMS is explained as follows.

Adopting predicted classification score as quality assess-
ment on the candidates mined with CPD and IoU infor-
mation. We explain this from the view on the necessity
and the role of online information separately. 1) The suc-
cess of anchor-based detector demonstrates that only uti-
lizing offline information (CPD or IoU) as metric to de-
termine the boundary between pos/neg anchors can pro-
vide a great optimization direction for the detector. How-
ever, with the number of iterations increasing, offline in-
formation can not provide the progressive matching rules,
resulting in the sub-optimal optimization direction. Anal-
ogously, Hambox [21] points out the same conclusion that
even though adopting offline information as metric to distin-
guish pos/neg anchros, many negative anchors have amaz-
ing regression ability. Such inconsistent phenomenon be-
tween the learnt knowledge on detector and the formulated
knowledge on offline information (IoU) suggests that offline
information based label assignment strategy fails to satisfy
the requirements of optimization process. Therefore, comb-
ing offline and online information can provide more accu-
rate optimization direction, due to online information can
reflect the learnt knowledge on the detector. 2) Relying too
much on the online rule to identify pos/neg anchors has an
obvious drawback that it is easily over fitting on the bias as-
signment strategy, especially on the early stage of optimiza-
tion process. Thus, rather than serving the online informa-
tion as dominant criterion, we regard online rule as quality
assessment tool (auxiliary role) to measure the candidates
which already have mined with CPD and IoU rules.

3.2. Selective Scale Enhancement Strategy

As discussed above, previous scale-level data augmenta-
tion strategies fail to resolve the challenging problem: How
to increase the detection ability on the medium and large
scale faces since the training set only contains a small pro-
portion large faces (10%) ? To resolve this, we first ana-
lyze the relationship between the performance of each pyra-
mid layer and the number of ground-truths it matches in
the supplementary material. To our surprise, we discover
an amazing conclusion: it is not accurate that the more
ground-truths matched in one pyramid layer, the greater per-
formance of this pyramid layer. Based on this instructive
finding, we propose a selective scale enhancement strategy
(SSE) to maximize the learning capacity of deeper pyramid
layer by controlling the distribution of ground-truths among
pyramid layers from p2 to p7 based on the prior statistical
result.

To begin with, we introduce three prerequisites for our
SSE strategy. (1) We firstly define the conception of the
main pyramid layer and the auxiliary pyramid layer, which
embraces the top-2 greatest detection abilities on the large-
scale faces among all pyramid layers according to the em-
pirical results reported in the supplementary material. As
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Figure 2: Hierarchical Context-Aware Module.

a result, p5/p6 are the main/auxiliary pyramid layer for
the SSE strategy. (2) Then we determine the ratio of the
ground-truths matched in the main and auxiliary pyramid
layer. Let r pi (i=2,3,4,5,6,7) represents the maximum per-
formance ratio matched in the pyramid layer pi. The maxi-
mum performance ratio refers to that this ratio together with
our proposed scale control strategy 4 achieves the best per-
formance among all candidate ratios, that is shown on the
table 1 with bold annotation. Thus, r p5 equals to 20%
and r p6 equals to 20%. For the main pyramid layer, we
define the ratio of the total ground-truths matched in the
main pyramid layer as tr mpl that equals to r p5. More-
over, we define the ratio of the total ground-truths matched
in the auxiliary pyramid layer as tr apl that equals to (1 -
tr mpl) ∗ r p6. This assignment strategy on the scale infor-
mation of ground-truths can guarantee the learning capacity
of the main and auxiliary pyramid layer successively. (3)
Finally, in the table 2, we compute the scale range (sr pi,
i=2,3,4,5,6,7) of the faces that matched in different pyramid
layers. Note that the overlap scale range between neighbour
pyramid layers is divided uniformly for convenience.

20% 40% 60% 80%
p4 (easy) 67.0 75.3 81.3 84.3
p4 (med) 75.3 82.6 84.5 83.6
p5 (easy) 81.8 82.2 77.9 73.2
p5 (med) 85.4 85.2 85.0 83.7
p6 (easy) 86.2 83.1 84.8 83.3
p6 (med) 85.2 80.5 82.2 81.2

Table 1: The results of scale control strategy on the Wider
Face validation subsets.

Based on 3 above prerequisites, algorithm 2 shows the
pipeline of our SSE strategy on each training image. 1) Re-
size image by reshaping the short side of image into a scale

4Details shown in the supplementary materials

start scale end scale
sr p2 8.4 20.7
sr p3 20.7 48.2
sr p4 48.2 106.2
sr p5 106.2 212.4
sr p6 212.4 420.8
sr p7 420.8 640

Table 2: The scale range of the ground-truths that matched
in different pyramid layers.

selected from scale range [640, 1280]. 2) Randomly sample
a face from the resized image and compute its scale fs. 3)
Identify the target pyramid layer (tpl) . Randomly sample a
floating-point number (rn) from 0 to 1. If the value of the
rn is less than tr p5, we define the target pyramid layer as
p5. If rn is over r p5 and less than r p5 + r p6, the tar-
get pyramid layer (tpl) equals to p6. If rn is over r p5 +
r p6, the target pyramid layer equals to the random one of
the pyramid layers except for p5 and p6. 4) Random select
a scale from sr tpl and compute the target resize ratio (trr)
by fs / this scale. 5) Resize image with trr. 6) Define the
resolution of the input image as N × N. If the resolution
of the resized image is over N × N, we crop N × N area
randomly as the input image and pad zero pixel if it is less
than N × N. The motivation behind our SSE strategy is as
follows.
Depending on the main and auxiliary pyramid layer to
control the scale distribution of ground-truths. The pre-
vious designation on controlling the scale distribution of the
ground-truths can be divided into following two types. MST
and RCS emphasize on the uniform sampling while DAS
points out an alternative view that the more small-scale data
can boost the detection ability on small faces. However,
such heuristic designation can not utilize the scale infor-
mation effectively. On the one hand, in the supplementary
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Algorithm 2 Selective Scale Enhancement Strategy (SSE)
Input:
I is a set of all training data
tr p5 is a hyperparameter that represents the ratio of the total
ground-truths matched in the main pyramid layer (p5).
tr p6 is a hyperparameter that represents the ratio of the total
ground-truths matched in the auxiliary pyramid layer (p6).
sr tpl is the scale range of the ground-truths that matched in
the tpl.
N is the side of the resolution for the input image.

Output:
S is a set of training data augmented by our SSE strategy

1: for each image i ∈ I do
2: Ri ← Resize image by reshaping the short side of im-

age into a scale selected from scale range [640, 1280] ran-
domly.

3: Fs ← Compute the face scale that is selected from Ri

randomly.
4: Random float = Random.random(0, 1)
5: if Random float < tr p5 then
6: tpl = p5
7: else if Random float <= (tr p5 + tr p6) then
8: tpl = p6
9: else

10: tpl = random([p2, p3, p4, p7])
11: end if
12: compute target resize ratio: trr = random(sr tpl)/Fs;
13: Rtrr

i ← ResizeRi with the shrink ratio trr;
14: if resolution(Rtrr

i ) > (N ,N ) then
15: Rtrr

i ← cropN ×N area randomly fromRtrr
i ;

16: else
17: Rtrr

i ← expand Rtrr
i into (N ,N ) by padding zero

pixel;
18: end if
19: if S is None then
20: S ← ∅
21: end if
22: S = S ∪Rtrr

i ;
23: end for
24: return S;

material, we find RSC and DAS achieve almost consistent
performance on the Wider Face hard subset although DAS
brings more small faces. On the other hand, as described in
the table 1, we find it is not accurate that the more ground-
truths that is matched in one pyramid layer, the greater per-
formance of this pyramid layer. These two findings demon-
strate that heuristically controlling the scale distribution of
ground-truths fail to satisfy the ground-truths requirements
on the related pyramid layer. Therefore, our SSE, consecu-
tively satisfying the requirement of main and auxiliary pyra-
mid layer on the ground-truths, is a better strategy than other
heuristic designation.

3.3. Hierarchical Context-Aware Module

As analyzed above, we find the appropriate neigh-
bour context information is conducive to eliminating false
alarms. Motivated by this finding, we propose a Hierar-
chical Context-Aware Module (HCAM) to distinguish false
alarms away from the face by encoding the neighbour con-
text information into related high-confidence anchors in
Fig. 2. Under the rescue of neighbour context information,
false predicted negative anchors and correct predicted posi-
tive anchors within the high-confidence anchors can be sep-
arated explicitly. The training pipeline is as follows:

1) We firstly send a batch of images into the detec-
tor and get the classification score of each anchor on the
main classifier. Then we mask the position of all high-
confidence anchors to generate two attention feature maps.
For each attention feature map, we assign the position of
high-confidence anchors and their related neighbour infor-
mation 5 as 1, otherwise is 0. The N are set 3 and 5 for
generating different neighbour information.

2) We compute the two neighbour context information
by dot-multiplying the context-enhanced backbone feature
maps and two attention feature maps, respectively. This step
aims to explicitly generate more abundant context informa-
tion related to the high-confidence anchors. Note that more
ablative experiments and architectures on context-enhanced
modules are discussed in the supplementary material.

3) We further encode two neighbour context information
into pyramid feature map by element-wise summation op-
erator.

4) Finally, this combined feature map feeds into progres-
sive classifier to further distinguish false predicted negative
anchors (false alarms) away from correct predicted positive
anchors according to Equ. 1.

L = fm
fl (fc, y) + γ ∗ fp

fl(f
com
c , yhc) (1)

where fm
fl and fp

fl represent the sigmoid focal loss [16]
over two classes, that are applied on the main and progres-
sive classifier, respectively. y is the the label of anchor
which is assigned by anchor matching strategy [23]. The
weight γ aims to balance the loss between main and pro-
gressive classifiers (we find γ=1 has a best performance).
fc and f com

c represent the output of main classifier and pro-
gressive classifier, separately. yhc is dynamic discrepancy
supervision label, that is defined by following two steps: 1)
In each iteration of the training stage, we firstly mask the
position of correctly predicted positive anchors 6 and false
predicted negative anchors 7 according to the predicted clas-

5neighbour information takes the target anchor point as the center and
contains the surrounding N×N area, N is an integer greater than 0

6refer to the positive anchors which have high confidence classification
score

7refer to the negative anchors which have high confidence classification
score
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(c) Val: Hard
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(f) Test: Hard

Figure 4: Precision-Recall (PR) curves on Wider Face validation and testing subsets.

Method N Easy Medium Hard NFA
Baseline - 94.6 93.4 86.5 948
HCAM 3 94.9 94.0 86.8 532
HCAM 5 94.8 94.1 87.0 476
HCAM 3 and 5 95.1 94.2 87.4 192

Table 5: Results of our Hierarchical Context-Aware Module
on the Wider Face validation subsets.

4.3. Evaluation on Common Benchmarks

In this subsection, we compare our MogFace with state-
of-the-arts methods on the common face detection bench-
marks, including AFW [38], Pascal Face [30], FDDB [12]
and Wider Face [31]. We train the MogFace-E (Ali-AMS,
HCAM, SSE) and MogFace (Ali-AMS, HCAM) with some
excellent modules introduced by Hambox [21] detector on
the Wider Face training dataset, including SSH head [22],
Pyramid Anchor [26] and deep head [16].
AFW Dataset. This dataset contains 205 images with 473
annotated faces. As shown in Fig. 3(a), our Mogface sig-
nificantly outperforms other methods by 1.0% AP at least.
PASCAL Face Dataset. This dataset contains 851 images
with 1335 annotated faces. Fig. 3(b) shows that our method
achieves the state-of-the-art results by outperforming the
second one with 0.8% AP.
FDDB Dataset. This dataset has 2,845 images with 5,171
annotated faces. Most of them have low image resolutions
and complicated scenes . Fig. 3(c) shows that our MogFace
achieves the highest (99.2%) performance.
Wider Face Dataset. We test our MogFace and MogFace-

E with Multi-scale results ensemble strategy on the Wider
Face validation and test set. As shown in Fig. 4, we plot
a precision-recall curve according to the official tool on
the Wider Face validation set. As for Wider Face test set,
we submit the detection bounding boxes and correspond-
ing scores to the official server to get the precision-recall
curves that is shown in Fig. 4. Our method achieves
97.7% (Easy), 96.9% (Medium), 93.8% (Hard) AP per-
formance on the Wider Face validation set and 97.0 %
(Easy), 96.2% (Medium), 92.6% (Hard) AP performance
on the Wider Face test set. Comparing with other sota ap-
proaches [2,4,11,13,27,29,32,33,36,37], our method out-
performs them by 0.5% (Validation Easy), 0.5 % (Valida-
tion Medium), 0.4 % (Validation Hard), 0.3 % (Test Easy),
0.2 % (Test Hard). Such tremendous enhancement in all
scenarios demonstrates the superiority of our MogFace.

5. Conclusion
In this paper, we first point out that the success experi-

ence from generic object detection fails to provide effective
solutions on label assignment, scale-level data augmenta-
tion, and eliminating face alarms in the field of face de-
tection. Thereby, in order to advance the development of
face detectors, we resolve three aforementioned challenges
by proposing Adaptive Online Incremental Anchor Mining
Strategy, Selective Scale Enhancement Strategy, Hierarchi-
cal Context-Aware Module, respectively. Finally, benefiting
from prominent solutions of our MogFace, we achieve six
champions on the Wider Face dataset, which continues to
this day.
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