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Abstract

Protein subcellular localization(PSL) is an important
task to study human cell functions and cancer pathogene-
sis. It has attracted great attention in the computer vision
community. However, the huge size of immune histochemi-
cal (IHC) images, the disorganized location distribution in
different tissue images and the limited training images are
always the challenges for the PSL to learn a strong gener-
alization model with deep learning. In this paper, we pro-
pose a deep protein subcellular localization method with
multi-marginal contrastive learning to perceive the same
PSLs in different tissue images and different PSLs within
the same tissue image. In the proposed method, we learn
the representation of an IHC image by fusing the global fea-
tures from the downsampled images and local features from
the selected patches with the activation map to tackle the
oversize of an IHC image. Then a multi-marginal attention
mechanism is proposed to generate contrastive pairs with
different margins and improve the discriminative features
of PSL patterns effectively. Finally, the ensemble prediction
of each IHC image is obtained with different patches. The
results on the benchmark datasets show that the proposed
method achieves significant improvements for the PSL task.

1. Introduction
The protein subcellular localization(PSL) is essential to

interpret and identify the functions of the proteins for re-

vealing the pathology, which can provide valuable infor-

mation in the target identification process for drug discov-

ery [33, 42]. Analyzing the spatial distributions of human

proteins at the subcellular level can help us understand hu-

man biology and diseases [14, 27, 32]. For example, the

proteins localizing at mitochondria are likely to have the
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Figure 1. IHC images from liver and kidney show that general

structures from two tissues are quite different. The same proteins

are displayed on both images using chemical dyes. The PSL labels

of both images are nuclear membrane and cytoplasmic. Due to

the dyed proteins in cytoplasmic, most of the images are brown.

The below detailed image shows that proteins also exist on nuclear

membranes.

functions of cellular aerobic respiration and energy produc-

ing [13]. It also has demonstrated that the abnormalities of

subcellular locations of protein are potentially involved in

the pathogenesis of many human diseases [8, 22]. More-

over, studying the occurrence of the protein mislocalization

under normal and cancer states can help discover and define

cancer markers [10].

However, methods that rely on human experts to recog-

nize PSLs, such as wet-lab biological approaches, are time-

consuming and expensive. Machine learning is widely used

in subcellular pattern recognition to make annotations ef-

ficiently. In the past two decades, many studies have fo-

cused on PSL in combination with machine learning tech-

niques [21]. According to the data type for PSL, the related

researches can be roughly divided into two categories: a)

models based on the amino acid sequence and b) models
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based on protein high-throughput microscopic images.

Considering that protein functions depend on the amino

acid sequence [1, 3, 7], sequence information is obtained to

predict protein subcellular locations [15,19]. However, such

methods have low sensitivity in the detection of the dynamic

protein translocation, which has been proven to be essential

in identifying cancerous biomarkers [2, 4, 16].

Image-based methods usually learn protein distributions

with high-throughput microscopic images. Proteins are dis-

played on images by using chemical dyes or fluorescence,

which clearly and concisely reflects protein distributions

and spatial expression information [40]. The immunofluo-

rescence (IF) images [24] or immunohistochemistry (IHC)

images are two popular images for PSL task. IF images

usually need to segment cell cultures or tissue images into

single cells, and this task is remarkably challenging [26].

Tissue-based IHC images can show protein distributions

from the tissue level to the cell level. Hence, IHC image

has been the important source data for PSL task [34]. Com-

pared to the sequence data, IHC images are conducive to

studying PSL in healthy and diseased tissues [9].

We show the IHC images from the liver and kidney with

the same dyed proteins in Figure 1. From Figure 1, we note

that the morphological structures of cells in different tis-

sues are very different despite they having the same PSL.

It also should note that the different PSLs in a tissue image

may have similar morphological structures. In the light of

the fact that nearly 20% of human proteins coexist in more

than one subcellular location, many methods are developed

for the PSL problem based on multi-label learning [28, 38].

However, the morphological structures with the same PSL

cross tissue images and the subcellular differences within

a tissue image make it hard to distinguish the distributions

of different PSLs, and it is still a challenge to improve the

performance of the multi-label PSL methods [26].

In this paper, we propose a new deep learning algorithm,

termed the DeePSLoc, to identify protein subcellular loca-

tions by using IHC images. To handle the huge size of IHC

images, we propose to extract the feature of IHC images

with downsampled images and cropped patches. The down-

sampled image is used to keep the global features of IHC

image while the cropped patches are used to keep the de-

tails of the structures in the IHC image. Specifically, we

use the downsampled image to generate an activation map.

Since the activation maps focus on the different morpholog-

ical structures of the tissues, we select the cropped patches

with the highest activation values. Then the global features

and the local features can be effectively obtained to capture

the morphological and subcellular differences.

To learn the discriminative features of different PSLs,

we propose a multi-marginal contrastive learning method

in the DeePSLoc architecture, denoted as multi-marginal

attention mechanism. The multi-marginal attention mech-

anism is derived from the self-attention mechanism. We

use the contrastive loss with different margins to train such

a mechanism. For each margin, we obtain an assignment

matrix in which the elements represent how much does

the sample pair improve the discriminative ability of fea-

tures with contrastive learning. With all the positive sam-

ples that have the same labels as the anchor sample, we

can obtain a positive assignment matrix. Then we gener-

ate a positive sample by the weighted average of the orig-

inal positive samples for contrastive learning and the ele-

ments in the assignment matrix are treated as weights. With

different margins, we can generate a set of positive sam-

ples as well as negative samples for contrastive learning.

In fact, these generated contrastive samples have consid-

ered the different distributions by learning with different

margins. Hence, the contrastive structure effectively re-

duces the influence of different tissue morphologies whose

proteins have the same subcellular locations. The code

and models of DeePSLoc are made publicly available at

https://github.com/ziniBRC/DeePSLoc. The

main contributions of the paper can be summarized as:

• DeePSLoc develops an exciting framework to solve

the huge size challenge of IHC images for PSL. It

can learn the morphological and subcellular features

of IHC images effectively.

• Inspired by the self-attention mechanism, we propose

a novel multi-marginal contrastive learning method to

generate the contrastive pairs, which can greatly im-

prove the robustness and performance of deep network

for PSL. To the best knowledge, this is the first time

to weightly aggregate original samples for generating

contrastive pairs using attention mechanism.

• The proposed method outperforms the state-of-the-art

methods significantly in both single- and multi-label

datasets.

The rest of the paper is organized as follows. Related work

is discussed in Section 2. Details of the proposed deep

learning approach are described in Section 3. The experi-

mental settings and results are presented in Section 4. Con-

clusions are shown in Section 5.

2. Related Work
2.1. Human Protein Atlas

The Human Protein Atlas(HPA) is a publicly avail-

able dataset containing millions of high-resolution IHC im-

ages [35]. The IHC images from HPA are brightfield mi-

crographs of two mixed stains that reflect certain protein

(brown) and DNA (purplish color) information. Datasets

[26] and [39] selected from the HPA usually contain 0–6

images of each protein in dozens of tissues. Figure 1 shows

that the effective information of the IHC images from the
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HPA. The size of each IHC image is 3000×3000. The com-

position of datasets brings unavoidable challenges to PSL.

2.2. Tradictional Methods for PSL

Due to the limited classification ability of the tradi-

tional classifier, traditional methods often process both

DNA channel and protein channel images to integrate more

diverse features [18, 25]. iLocator extracted Haralick tex-

ture features, DNA distribution features, and LBP features

from the separated channels, which characterizes the spa-

tial structure of local image texture and micropatterns [38].

Most PSL algorithms by using IHC images focus on ex-

tracting subcellular location features (SLFs) from images

[29]. Differing from single-label predictors, multi-label al-

gorithms are used for protein submodular localization by

integrating multiple classifiers [28]. The method in [26]

attempts to extract the distribution features of protein and

DNA in IHC images.

Such methods have some evident limitations. Replacing

the original images with the estimated images obtained by

the unmixing algorithms will lose image information. In-

appropriate selection algorithms may not be able to filter

out effective SLFs. The performance of the previous step

directly affects the accuracy of the next step. Besides, the

framework is not robust enough to the differences in protein

distribution across different tissue images.

2.3. Deep Learning Methods for PSL

In recent years, some deep learning based methods have

attracted great attention in many fields as well as protein

submodular localization with IHC images. AnnoFly [41]

leverages CNN to learn the initial feature representations of

IHC images and then the RNN network is adopted. The

RNN network serves as a classifier by feeding the fea-

tures from CNN into it. Imploc [23] adopts the pre-trained

ResNet model which is trained on ImageNet [17] to extract

features from IHC images and then feeds the feature vectors

into the transformer network. Due to the huge size of im-

ages, all the above networks extract features from the pre-

trained backbone networks without fine-tuning. However,

there exist domain differences between images from Ima-

geNet and IHC images from HPA. Therefore, features ex-

tracted from the pre-trained models which are trained with

ImageNet will not adapt to the IHC images classification.

Although the performance with deep learning is better than

the traditional methods, the methods with satisfactory per-

formance still need to be deeply explored.

3. Methodology
We propose a deep learning model with multi-marginal

contrastive learning to predict the protein subcellular local-

ization. In Section 3.1, we introduce the overview of our

method. The detailed structures of multi-marginal attention

mechanism will be discussed in Section 3.3.

Given the origin IHC image X , we denote the images

and cropped patches as XI and XP , respectively. We rep-

resent the generated positve, anchor and negative samples

for image branch and patch branch as Xg+
I , Xa

I , Xg-
I , Xg+

P ,

Xa
P and Xg-

P , respectively. The model formulas of ResNet

backbones in image and patch branch are defined as BI and

BP , and the ASPP modules [5] in multi-marginal attention

mechanism are denoted as FI and FP . To make it clear, in

this paper, H is the count of the margins, N is the batch

size. Φ(∗) measures the Euclidean distance between two

samples.

3.1. Overview of the DeePSLoc

The flowchart of the DeePSLoc is shown in Figure 2.

Because of the huge size of the IHC images, it’s impossible

to feed the whole images into deep neural networks without

suffering from the out-of-memory problem. We design our

model into two branches. Both branches have the same con-

struction with downsampled and patched images inputs. In

the first phase, we downsample the original images to low

resolution so that we can directly process the IHC images.

We aim to train one branch of our network to predict the cor-

rect labels with downsampled images. The activation maps

are generated according to the output features of backbone

networks such as VGG and ResNet, reflecting the discrimi-

native patches for prediction. In the second phase, we crop

the discriminative patches with the top T largest activation

values. These patches are inputted to another branch of our

network to get the local representation. The global features

from the downsampled images and the local features from

the patched images are concatenated together for the final

prediction.

3.2. Data Generation

To avoid out-of-memory(OOM) errors, we downsample

the original images to the size of 512×512. Given the

trained downsampled images branch, we extract the activa-

tion map for each image from the output of the ResNet-18.

We calculate the channel-wise average pooling of the fea-

tures from the backbone. The size of the activation map

in DeePSLoc is 16×16. Thus, the original images can be

separated into 16×16 sections.

In the patch branch, we crop each original image into

several patches into a size of 256×256. When we train our

model, one patch serves as one instance for classification,

whose label is the same as the uncropped original image.

During testing, we crop each testing image into T patches

with the size of 256×256 according to the activation map.

As shown in Figure 2(d), we average the T predicted prob-

abilities to obtain the final prediction for the testing image.

In this way, the challenge of the training network on huge

IHC images is relieved, and the prediction that combines

the results of patches is enhanced.

For the downsampled images and cropped patches, we
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Figure 2. Architecture of DeePSLoc. (a) The original image with huge size is downsampled and cropped into patches. BI and BP are

backbone networks to extract features from downsampled image and patches respectively. Then the multi-marginal attention mechanism is

adopted to construct contrastive pairs of images and patches for contrastive learning. (b) is the detail pipeline of multi-marginal attention

mechanism. ψQ+, ψK+, ψQ− and ψK− represent the 1 × 1 convolution and global pooling layers. The positive or negative samples are

generated by the multiplication of the corresponding assignment matrix and anchor features. (c) shows the classification pipeline during

the training phase. (d) The selected T patches and downsampled images are used for prediction.

randomly rotate images between -15 and 15 degrees. Half

the images are also randomly horizontally flipped to im-

prove data diversity.

3.3. Multi-marginal Attention Mechanism

Since the distributions of different PSLs across tissue im-

ages and within a tissue image have a great difference, the

difficulty to align the features between the same PSLs and

the different PSLs is also not the same. Hence, it is not rea-

sonable to select anchor samples with the assignment ma-

trix which is obtained with a fixed contrastive margin. To

deal with this problem, we train our model to generate easy

and hard positive/negative samples for contrastive learning.

The target loss for positive/negative samples generation is

shown in Figure 3. Lines of different colors denote the loss

with different margins. We aim to generate samples that can

keep the diversity and distinguishing features of the batch

data.

3.3.1 Attention Pipeline

Inspired by the multi-head attention [36], we introduce the

attention mechanism into the generation of positive and

negative samples with different margins. In multi-head at-

tention, the query, key and value are fed to calculate the

attention as:

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

For easy understanding, we follow the names of query,

key, and value in the multi-marginal attention mechanism.

Figure 3. The visualization of multi-marginal loss calculation.

The horizontal axis represents the value difference between the

Φ
(
X,X−) and Φ

(
X,X+

)
. Different colors denote the loss with

different margins. For each loss, we aim to train the assignment

matrix to learn the pairs around the margin set {m1, m2, m3},

which are boxed with different colors.

Take the generation of the positive in Figure 2 as an exam-

ple, the embeddings of the ResNet features are inputted to

the attention module, corresponding to the key and query.

We compute the dot products of query and key and apply a

softmax function to get the assignment matrices. Then, the

positive or negative assignment matrix M are calculated as:

M+
i = softmax

(
ψQ+
i (Bi(Xi))ψ

K+
i (Bi(Xi))

T

√
d

)
,

M−
i = softmax

(
ψQ−
i (Bi(Xi))ψ

K−
i (Bi(Xi))

T

√
d

)
,

(2)

where ψK+
i (∗), ψQ+

i (∗), ψQ-
i (∗), and ψQ-

i (∗) represent the

composite functions of 1×1 convolution and GAP layer for
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the positive and negative assignment matrces, d denotes the

dim of ψ ◦ B(X), Mi denotes the assignment matrix from

i(image or patch) branch.

3.3.2 Contrastive Pairs Generation
To keep positive/negative samples in the same feature space

as anchors, we compute the dot product of positive/nega-

tive assignment matrices and anchor features to generate

the positive/negative samples. Although the pipelines of

positive and negative assignment matrix proceeding are the

same, the attention masks of the matrix for further multi-

plication in Eq. 2 are different. For each anchor, we only

consider samples with the same label to generate positives

according to the positive assignment matrix. Meanwhile,

only samples with different labels are assigned as the nega-

tive samples. Thus, we mask the M according to the rules

as followed:

M+
ij =

{
M+

ij , if yi = yj
0, if yi �= yj

M -
ij =

{
0, if yi = yj
M -

ij , if yi �= yj

(3)

where M+
ij and M -

ij is the weight that the j th sample is

assigned to the ith positive and negative sample, yi denotes

the true label of the ith sample. To make contrastive fea-

tures the same space, we generate the positives and nega-

tives samples by:

Xg+
i,h = M h+Fi ◦Bi(Xi), i ∈ {I, P}

Xg-
i,h = M h-Fi ◦Bi(Xi), i ∈ {I, P} (4)

where Xg+
i,h and Xg-

i,h denotes the generate positive or neg-

ative samples from i(image or patch) branch by the hth as-

signment matrix.

3.3.3 Multi-marginal Optimization

For easy understanding, all the formulas below only con-

sider the one branch in our network, X is either from the im-

age branch or patch branch. To train the multi-marginal at-

tention mechanism, the contrastive loss with different mar-

gins to train is adopted. it can be represented as:

L(m) =

1

N

N∑
i=1

H∑
h=1

|Φ (Xa
i , X

g-
ih

)− Φ
(
Xa

i , X
g+
ih

)−mh|
(5)

where Xa
i is the anchor features, Xg+

ih and Xg-
ih are the gener-

ated positive and negative samples from assignment matrix

with hth margin mh, Φ(∗) measures the Euclidean distance

between two samples.

We should note that the pairs for contrastive learning are

obtained by generating. If we train the proposed architec-

ture with the end-to-end manner, it is hard to be conver-

gent due to that both the inputs and outputs of the multi-

marginal attention mechanism are always changing. Hence,

in the proposed method, we train the multi-marginal atten-

tion mechanism by freezing the backbone networks to guar-

antee that the features that are used to generate contrastive

samples are unchanged. In this way, the architecture of

the multi-marginal attention mechanism can be convergent

quickly.

3.4. Contrastive Representation Learning

The protein contents and protein distributions on differ-

ent tissues are different. Given many kinds of tissues, label-

ing the IHC images in each tissue is expensive. Besides, the

available labeled IHC images are usually limited, thereby

influencing learning discriminative features.

We define the generated anchor, positive, and negative

sample as (Xa
i , X

g+
i , Xg−

i ), i ∈ {1, 2, ..., N}, respectively.

In this paper, we apply the contrastive structure to the down-

sampled images and cropped patches.

The contrastive loss can be represented as:

Lcon =

1

N

N∑
i=1

H∑
h=1

max
(
Φ
(
Xa

i , X
g+
ih

)− Φ
(
Xa

i , X
g-
ih

)
+m, 0

)
(6)

where m is a margin, which represents the smallest interval

between Φ
(
Xa

i , X
g+
ih

)
and Φ

(
Xa

i , X
g-
ih

)
. N is the number

of pairs. From Eq. 6, we can observe that the Xa
i is always

close to Xg+
ih and far away from Xg-

ih. For easy distinction,

we denote the contrastive loss of downsampled images and

cropped patches as LI
con and Lp

con respectively.

The cross-entropy loss is used to train a classifier effec-

tively and further improve the classification for the single-

label prediction task. The cross-entropy loss can be repre-

sented as:

LC = − 1

N

N∑
i=1

c∑
j=1

yij log (gj (X
a
i )) (7)

We adopt the binary cross-entropy loss for each label in

the multi-label scenario. The classification loss can be rep-

resented as:

LC = − 1

N

N∑
i=1

c∑
j=1

yij · log (gj (Xa
i ))

+ (1− yij) · log (1− gj (X
a
i ))

(8)

where gj(X
a
i ) represents the predicted probability that

the i th sample belongs to the jth label, c is the number of

labels and yij denotes the true jth label of the ith sample.

We combine the contrastive loss and the cross-entropy

loss together with a tradeoff parameter to learn the repre-

sentation effectively, and the final loss function can be rep-

resented as:

L = (1− β) ∗ LC + β ∗ (LI
con + Lp

con) (9)

where β ∈ [0, 1] is a hyperparameter to balance the im-

portance between classification and contrastive loss.
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HPA-7 Acc Prec Recall F1 Score

S.C [26](2008) 66.79 67.31 66.98 66.95

V.C [26](2008) 75.85 76.41 76.05 76.05

ImPLo [23]c(2020) 89.09 89.25 89.09 89.07

Ours 97.95 97.98 97.96 97.96

HPA-8 Acc Prec Recall F1 Score

S.C [26](2008) 68.56 71.48 69.84 70.51

V.C [26](2008) 75.49 78.11 76.93 77.43

ImPLoc [23](2020) 84.19 85.06 85.53 85.19

Ours 95.19 96.13 95.57 95.83
Table 1. Single-label Classification Results on the HPA-7 and HPA-8 dataset. S.C and V.C denote simple classifer and voting classifer [26].

The bold font indicates the best among compared methods.

Multi-HPA
Subset

acc

Example

acc

Example

prec

Example

recall

Example

F1

Label

acc

Label

prec

Label

recall

Label

F1

CSF-CC [28](2018) 89.86 - - - - - - - -

CSF-BR [28](2018) 85.27 - - - - - - - -

ML-GCN [6](2019) 85.17 90.23 91.26 92.53 91.89 94.33 89.15 92.61 90.85

ImPLoc [23](2020) 87.93 89.94 90.68 90.80 90.75 94.43 91.83 90.69 91.26

C-Tran [20](2021) 91.38 94.72 95.69 95.92 95.80 97.29 95.89 95.11 95.50

Ours 95.86 96.98 97.41 97.36 97.39 98.37 97.65 96.66 97.15

HPA-18
Subset

acc

Example

acc

Example

prec

Example

recall

Example

F1

Label

acc

Label

prec

Label

recall

Label

F1

iLocator [38](2013) 30.3 35.4 40.8 35.6 38.0 77.2 31.1 24.9 27.7

AnnoFly [41](2019) 40.5 44.4 48.8 44.4 46.5 79.9 91.5 16.7 28.2

ML-GCN [6](2019) 60.3 68.0 74.8 68.9 71.5 89.0 75.6 36.7 49.3

ImPLoc [23](2020) 53.8 60.8 67.7 61.1 64.2 86.1 81.9 28.3 42.0

C-Tran [20](2021) 57.9 64.9 72.7 64.9 68.6 87.9 86.6 35.0 49.8

Ours 61.2 68.0 75.2 68.5 71.9 89.0 89.3 37.1 52.4
Table 2. Multi-label Classification Results on the Multi-HPA and HPA-18 dataset. The bold font indicates the best among compared

methods.

4. Experiments
We compare the DeePSLoc with single-label and multi-

label methods to evaluate the effectiveness of the proposed

method. In each scenario, several state-of-the-art meth-

ods are compared, including traditional methods like simple

voting classifier [26], CSF classifier [28], and iLocator [38].

For the deep learning methods, we some typical methods

for PSL tasks like AnnoFly [41] and ImPloc [23]. Besides,

we compare recent deep learning methods using natural im-

ages scenes for better clarification, including ML-GCN [6]

and C-Tran [20].

4.1. Datasets

To verify the effectiveness of the proposed method,

four popular IHC datasets from HPA for PSL tasks are

adopted. In the benchmark datasets, there are two single-

label datasets and two multi-label datasets in experiments.

We choose the HPA-7 [38] and HPA-8 [26] datasets as the

benchmark single-label datasets. The Multi-HPA [28] and

HPA-18 [23] datasets are used to measure the performance

of multi-label methods. More details of the datasets can be

found in the Supplementary Materials.

4.2. Implementation Details

In the proposed architecture, we use the widely used net-

work ResNet-18 [11] as the deep backbone network. For

each method, we run the experiments 3 times and report the

average results. For baseline methods, we set parameters

the same as their original papers.

For the parameters in the proposed method, m in Eq.

6 is set as 1, and β in Eq. 9 is set to 0.25. For multiple

margins m in Eq. 3, we set it as the set {±1,±0.6,±0.2}.

With these margins, we can select both the easy and hard

pairs for contrastive learning. In multi-label learning, we

choose the images that have totally same labels compare to

anchors as the positive samples, and the other images as the

negative samples. We choose the prediction labels for each

image when the probability is larger than 0.5. Meanwhile,

in the testing phase, the number T of patches for ensemble

prediction is set to 10.

To evaluate the performance of each method, we choose

some popular metrics, such as accuracy, precision, re-

call, and F1 score, for single-label classification task [31].

On multi-label dataset, label-based metrics(accuracy, pre-

cision, recall, F1 score) and example-based metrics(subset

accuracy, example-based accuracy, precision, recall and F1

score) are adopted as evaluation metrics [23, 37, 43]. The

formula definitions of these measures can be found in the

Supplementary Materials.

4.3. Results on Single-label dataset

Table 1 shows the classification results of each method

on the HPA-7 and the HPA-8 datasets, respectively. Results

illustrate that the DeePSLoc can distinguish the protein dis-
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tributions on different tissues at the subcellular level by us-

ing IHC images effectively. The methods that are trained

with SLFs performs much worse than the methods with

deep feature on datasets. This demonstrates that it is very

necessary to extract the deep features of IHC images for

PSL task. In the compared methods, traditional methods

like the voting classifier(V. C) perform poorly on HPA-7

and HPA-8, which indicates hows the weakness of tradi-

tional methods in extracting features. ImPloc extracts the

features of IHC images using pre-trained ResNet18 model.

It is pretty hard for ImPloc to present images discrimina-

tively. From Table 1, we can observe that the proposed

method outperforms other state-of-the-art methods signif-

icantly on almost all the metrics on the HPA-7 and HPA-8

datasets. This demonstrates that compared with these state-

of-the-art methods, the proposed DeePSLoc is a promising

method for protein subcellular localization with IHC im-

ages and it can learn the discriminative features of different

PSLs effectively with deep networks.

4.4. Results on Multilabel dataset

Table 2 shows the performance of the methods in the

experiments for the multilabel protein subcellular localiza-

tion task. In the compared methods, the traditional method

called the Common-Sets of Features [28] develops two

multi-label learning modes: the Binary Relevance (BR) and

the Classifier Chain (CC). The CC is better than the BR

by considering the correlation between features of differ-

ent labels. ML-GCN and C-Tran are two state-of-the-art

methods by considering the label correlations. In the Multi-

HPA dataset, CSF combines the image-level and protein-

level features for prediction, while ImPloc and our methods

only process IHC images. Although CSF yields better per-

formance than Imploc in CC mode, DeePSLoc outperforms

CSF with less information, and the best performance on all

metrics is achieved. This demonstrates that the proposed

multi-marginal attention mechanism can generate the pos-

itive sample and negative sample for discriminative learn-

ing of different PSL effectively. In the HPA-18 dataset, all

the existing methods including iLocator perform prediction

only at the image-level. In general, deep learning meth-

ods show great advantages for PSL tasks with IHC images.

We should note that DeepSLoc obtains remarkable perfor-

mance improvement compared to the deep learning meth-

ods AnnoFly, ImPloc, ML-GCN, and C-Tran. All the re-

sults demonstrate that the proposed DeepSLoc with multi-

marginal contrastive learning can improve the discrimina-

tiveness of the features for each PSL.

4.5. Ablation Study

4.5.1 Ablation of Contrastive Learning

In Table 3, we show the deep architecture with and without

contrastive learning based on different backbone networks,

HPA-7 Acc Prec Recall F1

VGG-11 64.68 66.42 66.16 65.53

VGG-19 bn 74.95 77.17 75.70 75.82

VGG-19 bn+con 83.05 86.60 81.92 83.83

ResNet-18 71.02 73.77 71.94 71.79

ResNet-18+con 92.44 93.42 92.82 92.88
ResNet-101 70.75 73.24 71.75 71.38

ResNet-101+con 91.29 94.03 90.76 92.09

ResNet-152 69.20 71.62 68.67 68.15

ResNet-152+con 89.93 93.23 88.66 90.38

DenseNet-121 67.39 72.51 67.19 67.46

DenseNet-121+con 88.32 92.18 88.59 89.77

DenseNet-201 63.15 68.30 63.01 63.16

DenseNet-201+con 87.63 91.86 85.16 87.27

Table 3. Single-label Classification Results of DeePSLoc with

only cropped patch input using different backbones on the HPA-7

dataset. The bold font indicates the best among compared meth-

ods. The results of model using contrastive learning have been

underlined.

such as VGG (11 and 19 bn) [30], ResNet (18, 101, and

152 layers) [11], and DenseNet (121 and 201 layers) [12] to

verify the effectiveness of contrastive learning. The classifi-

cation results on the HPA-7 datasets show that the complex-

ity of a deep model has a remarkable effect on the perfor-

mance of the subcellular location prediction. The low per-

formance of the VGG-11 indicates that a shallow network

cannot learn enough effective features. In addition, the re-

sults of the deep DenseNet and the deep ResNet without

contrastive loss are not good, and deep networks with high

complexity do not improve the model accuracy. When the

loss function optimized by the network is combined with

the contrastive loss, the performances of all the models are

significantly improved. These results can strongly demon-

strate that contrastive learning is very effective to learn the

discriminative feature of different PSLs cross tissue IHC

images by cropping the IHC image into a certain of patches.

4.5.2 Ablation of Multi-marginal Mechanism

In Figure 4, we attempt to verify the effectiveness of the pro-

posed multi-marginal attention mechanism on HPA-8 and

HPA-18 datasets. We compare the proposed method with

the methods normal and Batch-hard. Normal is the ap-

proach to train the deep architecture with all the triplet pairs

while batch-hard trains the deep architecture by selecting

the positive samples that are farthest from the anchor sam-

ple and the negative samples that are closest to the anchor

sample.

From Figure 4, we can observe that the method using

multi-marginal attention mechanism, denoted as attention,

yields the best performance both in HPA-8 and HPA-18.

Compared with Normal, we can observe that Attention has

achieved the best performances in almost all the cases. This

demonstrates that the mechanism attention mechanism can
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Figure 4. Results of downsample and patch branch in HPA-8

and HPA-18 datasets using multi-marginal attention loss, normal

triplets and batch-hard triplets loss. SA, EA, EP, ER, EF, LA, LF,

LR, LF represent subset accuracy, example-based accuracy, preci-

sion, recall, F1 score, and label-based accuracy, precision, recall,

F1 score, respectively.

S
in

g
le

-L
ab

el HPA-7 Acc Prec Recall F1

D 96.18 96.28 96.17 96.19

P 95.36 95.59 95.29 95.37

D+P 97.95 97.98 97.96 97.96

M
u

lt
i-

L
ab

el HPA-18
Subset

acc

Example

acc

Example

F1

Label

acc

Label

F1

D 57.02 63.64 67.15 87.33 43.85

P 59.50 66.53 67.38 87.33 44.71

D+P 61.12 68.04 71.90 88.98 52.39

Table 4. Classification results of our method using downsam-

ple images, cropped patches and both on the HPA-7 and HPA-18

dataset. D + P denotes that both downsample images and cropped

patches are fed into network. The bold font indicates the best

among compared methods.

generate contrastive samples that can improve the discrim-

inative representation ability of different PSLs. Compared

with Batch-hard, Attention performs a little poorly on LP.

The reason is that Batch-hard predicts all samples with the

same labels. This demonstrates that the multi-marginal at-

tention mechanism can improve the generalization ability of

deep networks. All these results demonstrate that the multi-

marginal attention mechanism is essential in the proposed

method.

4.5.3 Ablation of Global and Local Features

Three models are compared in Table 4, denoted as D, P,

and D + P, which represent the model only with downsam-

pled images, cropped patches, and both respectively. On

the single-label HPA-7 and multi-label HPA-18 datasets,

(a) Results of different  in HPA-7 (b)  Results of different  in Multi-HPA
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Figure 5. Classification results with different values of β in Eq. 9.

The subset accuracy and the hamming loss are metrics for multi-

label subcellular localization.

the models that only use downsampled images or cropped

patches yield similar performance. When both the down-

sampled images and cropped patches are used, the proposed

method can achieve significant improvements on single-

label and multi-label datasets respectively. The results show

that the features from downsampled images and cropped

patches are complementary, which are both beneficial for

classification. More detailed experiment results can be

found in the Supplementary Materials.

4.6. Sensitivity Analysis for Parameter β

Figure 5 shows the sensitivity of DeePSLoc in single-

and multi-label scenarios with different values of β in

single-label and multi-label datasets. Figure 5 clearly shows

that When β is larger than 0.25, the performance of DeeP-

SLoc is decreasing quickly. Although contrastive learning

is very important, it should be weighted with a proper value

for good performance. Hence, we can set β as 0.25 for the

practical application.

5. Conclusion
In this paper, DeePSLoc is proposed for protein sub-

cellular localization with IHC images. In DeePSLoc, the

global features from downsampled images and the local fea-

tures from cropped patches are fused for prediction. Acti-

vation maps are generated from the downsampled images to

select the important patches. The local features are learned

effectively and efficiently with these patches. We nov-

elly propose a multi-marginal attention mechanism to softly

generate positive and negative samples for better contrastive

training at image-level and patch-level, which improve the

PSLs across different tissue-based images. Experimental

results show that DeePSLoc is promising for PSL.
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