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Abstract

Recently, table structure recognition has achieved im-
pressive progress with the help of deep graph models. Most
of them exploit single visual cues of tabular elements or sim-
ply combine visual cues with other modalities via early fu-
sion to reason their graph relationships. However, neither
early fusion nor individually reasoning in terms of multi-
ple modalities can be appropriate for all varieties of table
structures with great diversity. Instead, different modali-
ties are expected to collaborate with each other in different
patterns for different table cases. In the community, the im-
portance of intra-inter modality interactions for table struc-
ture reasoning is still unexplored. In this paper, we define it
as heterogeneous table structure recognition (Hetero-TSR)
problem. With the aim of filling this gap, we present a novel
Neural Collaborative Graph Machines (NCGM) equipped
with stacked collaborative blocks, which alternatively ex-
tracts intra-modality context and models inter-modality in-
teractions in a hierarchical way. It can represent the intra-
inter modality relationships of tabular elements more ro-
bustly, which significantly improves the recognition perfor-
mance. We also show that the proposed NCGM can mod-
ulate collaborative pattern of different modalities condi-
tioned on the context of intra-modality cues, which is vital
for diversified table cases. Experimental results on bench-
marks demonstrate our proposed NCGM achieves state-of-
the-art performance and beats other contemporary methods
by a large margin especially under challenging scenarios.

1. Introduction

Table structure recognition (TSR) aims to recognize the
table internal structure to the machine readable data mainly
presented in two formats: logical structure [18, 46] and
physical structure [2, 13, 20, 22, 27, 30, 31, 34, 35, 40, 45].
More concretely, logical structure only focuses on whether
two table elements belong to the same row, column or cells
(i.e., logical relationships), while the physical one contains
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Figure 1. Illustration of motivation of the proposed NCGM.
(a) Early fusion-based method. The multiple modalities of table
elements are fused before modeling their relationships. (b) Late
fusion-based method. The multiple modalities are modeled on
their intra-modality relationships which are then fused for final re-
sults prediction. Due to lack of collaboration, for a distorted table
case, previous methods cannot well extract the row relations (con-
nected by blue lines) for an anchor element (yellow) with some
true relation lost (green dotted line). (c) Our proposed NCGM.
Different modalities are built into graphs with collaboration, which
well accommodate the distorted table case.

not only logical relationships but also physical coordinates
of cell boxes. The recognized tabular structure is essential
to many downstream applications [12, 17]. Although many
previous algorithms [2,13,18,20,22,30,31,34,35,40,45,46]
have achieved impressive progress in the community, TSR
is still a challenging task due to two factors of complicated
tables. The interior factor is complex table structure where
spanning cell occupies at least two columns or rows, while
exterior one is table distortion incurred by capture device.

Intuitively, table elements (text segment bounding boxes
or table cells) commonly have inherent relationships and
natural graph structure. Therefore, recent methods [2,
30, 34] attempt to attack the problem via constructing vi-
sual cues of table elements as graphs and applying the
deep graph model, such as Graph Convolutional Networks
(GCN) [15] to reason their relationships. To introduce
richer table information, several methods [20, 30, 34] con-
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catenate the visual features with other modalities of fea-
tures, such as geometry features, as a whole input to the
graph model, as shown in Fig. 1 (a). Nevertheless, the re-
lational inductive biases of different modalities would be
highly discrepant, which makes naively early-fused modali-
ties unable to deal with all table structures of great diversity.
Besides, the intra-modality relationships would negatively
affect each other when reasoning specific table structures.
For example, the coordinates of table would dominate when
recognizing a regular table, but they would become unreli-
able when processing distorted table cases. Instead, another
alternative way is to individually model intra-modality re-
lationships between table elements and combine them by
a late-fusion strategy (Fig. 1 (b)). Unfortunately, the dis-
entangled reasoning in terms of intra-modality interactions
would introduce the curtailment of inter-modality interac-
tions. This dilemma leads to the following question: can
different modalities collaborate with each other rather than
interfering under different table scenarios? We define this
practical problem as heterogeneous table structure recogni-
tion (Hetero-TSR), which still lacks investigation.

In this work, we propose a novel Neural Collaborative
Graph Machines (NCGM) tailored for this problem, as il-
lustrated in Fig. 1 (c). Concretely, we adopt text segment
bounding boxes as table elements in our method and ex-
tract their multi-modality feature embeddings from appear-
ance, geometry and content dimensionality separately. To
obtain the corresponding graph context and explore their
interactions, we go beyond the standard attention model
and propose a basic collaborative block with two successive
modules, i.e., Ego Context Extractor (ECE) and Cross Con-
text Synthesizer (CCS). Among, ECE plays a role that dy-
namically generates graph context for the samples of each
modality while the subsequent CCS is in charge of fus-
ing and modulating inter-modality interactive information
for different table cases. We stack this elemental block
multiple times. Through this way, the intra-modality con-
text generation and inter-modality collaboration can be con-
ducted alternatively in a hierarchical way, which enables
intra-inter modality interactions to be generated constantly
from the low layer to the top one. In other words, the low-
level contextual information in multiple modalities and the
high-level one can collaborate with each other throughout
the whole network, which is similar to the human percep-
tion process [1, 26]. The yielded collaborative graph em-
beddings enable our method to achieve better performance
compared to other TSR methods, especially under more
challenging scenarios, as clearly validated by extensive ex-
perimental results. To sum up, our contributions are in the
four folds:

• We investigate the importance of collaboration be-
tween different modalities in TSR and propose the
Hetero-TSR problem. To our best knowledge, we are

the first to research the collaborative patterns between
modality interaction for predicting table structure.

• We coin a novel NCGM tailored for Hetero-TSR prob-
lem, which consists of collaborative blocks alterna-
tively conducting intra-modality context extraction and
inter-modality collaboration in a hierarchical way.

• Experimental results on public benchmarks demon-
strate that our method significantly outperforms the
state-of-the-arts.

• We release a synthesizing method to augment existing
benchmarks to more challenging ones. Under more
challenging scenarios, our method can achieve at most
11% improvement than the second best method.

2. Related Work
2.1. Table Structure Recognition

Before the flourishing of deep learning, traditional table
structure recognition methods rely on pre-defined rules and
hand-crafted features [9–11, 14, 41]. With the development
of deep learning, table structure recognition methods have
recently advanced substantially on performance, which can
be classified into three categories: boundary extraction-
based [13, 22, 27, 35, 40], generative model-based [18, 46],
and graph-based [2, 20, 30, 34] methods.

Boundary extraction-based methods. To extract cell
boundaries, DeepDeSRT [35] and TableNet [27] are pro-
posed by utilizing semantic segmentation. Besides, an-
other technique [13] exploits bi-directional GRUs to estab-
lish row and column boundaries in a context driven man-
ner. However, these methods are struggled when identifying
cells spanning multiple rows and columns. SPLERGE [40]
splits the table into grid elements in which adjacent ones
are merged to restore spanning cells, whereas it still suf-
fers from boundary ambiguity problem. To tackle this is-
sue, the hierarchical GTE [45] leverages clustering algo-
rithm for cell structure recognition. Cycle-CenterNet [22]
exploits the cycle-pairing module to simultaneously detect
and group tabular cells into structured tables, which fo-
cuses on the precision of cell boundary of the wired table
in the wild. In the similar spirit, LGPMA [31] applies soft
pyramid mask learning mechanism on both the local and
global feature maps. Nevertheless, the subsequently heuris-
tic structure recovery pipeline cannot achieve decent perfor-
mance in complex scenarios.

Generative model-based methods. The method [18] uti-
lizes the encoder-decoder framework, which generates an
HTML tag sequence that represents the arrangement of
rows and columns as well as the type of table cells. More-
over, another generative algorithm [46], termed EDD, con-
sists of an encoder, a structure decoder and a cell decoder.
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Figure 2. The architecture of our proposed method. Best viewed in color.

The encoder captures visual features of input table images,
while the structure decoder reconstructs table structure and
helps the cell decoder to recognize cell content.

Graph-based methods. GraphTSR [2] employs graph at-
tention blocks to learn the vertex and edge representations
in the latent space, and classifies edges as horizontal, ver-
tical or unrelated. The method [30] introduces DGCNN to
predict the relationship between words represented by the
appearance and geometry features. Also based on DGCNN,
TabStruct-Net [34] proposes an end-to-end network training
cell detection and structure recognition networks in a joint
manner. Besides, FLAG-Net [20] leverages the modulat-
able dense and sparse context of table elements. However,
the above graph-based works are mostly designed for the
interaction between table elements but lack the cues of the
collaborative pattern of different modalities. In contrast to
these works, our proposed NCGM leverages modality inter-
action to boost the multimodal representation for complex
scenarios.

2.2. Transformer-based Multimodal Fusion

Transformer [42] architecture not only achieves signif-
icant performance gains in NLP community [5, 16, 21,
32, 39], but also gives birth to several pre-training meth-
ods [19, 23, 44] fusing various modalities for multimodal
tasks.

Multiple embeddings fusion. VL-BERT [38] inheriting
from BERT [5] introduces additional visual feature embed-
dings for visual-linguistic representations. LayoutLM [44]
is a document understanding pre-trained model, which
jointly models the interactions between text and layout in-
formation across scanned document images. However, the
above algorithms simply take early-fused multiple embed-
dings as inputs, which may ignore the interactions between
different modalities and result in discretization error and im-
portant details missing.

Co-attentional fusion. To better utilize visual-linguistic
representations, ViLBERT [23] processes both visual and
textual inputs in separate streams that interact through co-
attentional transformer layers. Moreover, SelfDoc [19] es-
tablishes the contextualization over a block of content via

cross-modal learning to manipulate visual features and tex-
tual features. Nevertheless, these previous co-attention
based methods can only handle two modalities. By com-
parison, our proposed NCGM focuses on modality collab-
oration rather than simple fusion. Further, NCGM can
not only process the interaction among more than two in-
dividual modalities, but also alternatively conduct intra-
modality context extraction and inter-modality collabora-
tion, which exploits more useful information provided by
different modalities.

3. Methodology
3.1. Overall Architecture

The overview of the proposed Neural Collaborative
Graph Machines (NCGM) is shown in Fig. 2. It mainly
consists of collaborative blocks, which have two succes-
sive Multi-head Attention-based [42] modules, i.e., Ego
Context Extractor (ECE) and the Cross Context Synthe-
sizer (CCS). First, three modalities of feature embed-
dings (F∼ ∈

{
FG,FA,FC

}
) in terms of table elements

are extracted, i.e., geometry, appearance and content em-
beddings. In each collaborative block, the extracted fea-
ture embeddings are built as context graphs which are sepa-
rately applied by the ECE to shape “intra-modality stream”.
Afterwards, the CCS selectively fuses individual contextual
information from different modalities as inter-modality in-
teractions maintained in “inter-modality stream”. Note, we
set M∼

(0) = F∼ as the initial input of CCS. The block is
stacked L layers to implement the intra-inter modality col-
laboration in a hierarchical way. To predict the final table
structure, the output collaborative graph embeddings from
the l-th layer of inter-modality stream are sampled as pairs
for cells, rows and columns classification.

3.2. Feature Extraction
In this component, a set of multi-modality features in

terms of table elements are extracted from table image, in-
cluding geometry embeddings FG ∈ RN×d, appearance
embeddings FA ∈ RN×d and content embeddings FC ∈
RN×d. N denotes the number of text segment bounding
boxes. A more detailed description is given in supplemen-
tary material.
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3.3. Collaborative Block

Ego Context Extractor. Now we elaborate on how to ex-
tract contextual interactions within each modality of table
elements with the help of the Ego Context Extractor (ECE).
Specifically, each extracted modality of features input to
the ECE is constructed as individual directed graph G∼ =
{V, E} ∈

{
GG,GA,GC

}
. In each decoupled modality

of graph, corresponding embedding of each text segment
bounding box is regarded as node X = {x1,x2, ...,xN} ⊆
V which is connected to each other by edges E ⊆ V ×V . In
the similar spirit with works [30, 34], we adopt the follow-
ing asymmetric edge function hΘ(xi,xj) = xi∥(xi − xj)
to combine graph edge features to each node, which can
be denoted as H∼

Θ ∈ R(N ·(N−1)/2)×d . In the constructed
graphs, each node can be either an anchor or one of context
of others. In previous works using DGCNN [30, 34], only
local context of each node is selected by k-Nearest Neigh-
bors algorithm (KNN) to be aggregated into node feature.
However, the local context is not versatile for representing
relationships of all modalities. Besides, the DGCNN-based
methods apply CNN to perform local context aggregation.
For graph representation, CNN with strong inductive bias
(e.g., local behavior) may not be the optimal choice. To
tackle the above problems, our proposed ECE instead ag-
gregates information of fully-connected graph for all three
modalities via Multi-head Attention (MHA) [42] module,
which has been verified that it makes few assumptions about
inputs and can learn to combine local behavior and global
information based on input content [3].
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Figure 3. The proposed Ego Context Extractor and Cross Context
Synthesizer modules in collaborative block. Best viewed in color.

More concretely, l-th ECE takes intra-modality features
C∼

(l-1) as queries Q and the graph edge combined features
H∼

Θ as keys K and values V as illustrated in Fig. 3(a).
Note, for the first layer, we input F∼ as C∼

(0). However,
the main limitation of using MHA is that the amount of in-
put K and V can be very large ( N · (N −1)/2 in our case),
which is infeasible to be trained. Given Q ∈ RN×dq ,K ∈
RM×dk ,V ∈ RM×dv and M = N · (N − 1)/2, the time
complexity of the attention operation is O(NM) and the
output is in N × dv dimensionalities, of which the num-
ber is only relevant to that of Q. Therefore, we can ex-
tend the MHA to a more memory-efficient Compressed

MHA (CMHA) by introducing memory compression mod-
ule which is utilized to reduce image pixel numbers in [43],
as depicted in Fig. 3(b). In detail, the compression opera-
tion can be implemented as:

MC(H) = Norm(Reshape(x, ϵ)Wh), (1)

where Reshape(H, ϵ) denotes the operation of reshaping
input x ∈ RM×d to x̃ ∈ RϵM×d/ϵ, and ϵ ∈ [0, 1] is the
compression ratio. Through this way, the complexity can
be quadratically reduced from O(NM) to O(NϵM). In de-
fault, we set ϵ = N/M , where N is the number of queries
Q. And Norm(·) is the layer normalization. Addition-
ally, we also equip the CMHA with residual connections in
our method to make the query information flow unimpeded,
which can be defined as:

Y = Add&Norm(FFN(P̃), P̃), (2)

P̃ = Add&Norm(Q,P), (3)
P = MHA(Q,MC(K),MC(V)), (4)

where “FFN(·)” is the feed-forward layer and
“Add&Norm(·)” denotes element-wise addition and
layer normalization, which is similar to the work [42].
Conclusively, the contextual graph information is baked
into graph node as C∼ ∈

{
CG,CA,CC

}
within each

modality through the CMHA in our ECE module.

Cross Context Synthesizer. Once heterogeneous context
graph embeddings are obtained, our goals are to fuse them
together in a collaborative way and to learn the collaborative
patterns between different modalities. Also based on the
CMHA, we design the Cross Context Synthesizer (CCS),
as is shown in Fig. 3(c). In detail, the CCS has three paral-
lel CMHA modules, and each of them takes one modality as
queries while the other two are jointly regarded as keys and
values. Take the first branch in Fig. 3(c) for example, the
CMHA takes “content” modality of context graph embed-
dings as Q, and the respective outputs of ECE for “geome-
try” and “appearance” are input as K and V. In Fig. 3(c),
“ U⃝” denotes the union of two modality sets. For the similar
purpose in ECE process, we also follow the similar rule to
compress the number of “memory” to N which equals to
that of Q. Essentially, the query modality explores helpful
information from another two modalities.

3.4. Table Structure Prediction

At the l-th layer of collaborative block, the outputs of
CCS are to further fused as collaborative graph embeddings,
which are denoted as E = {e1, e2, ..., eN} ∈ RN×de .
Based on the embedings E, our method constructs the i-th
and j-th samples as pairs and concatenate them along chan-
nel axis as vectors U = {u1,1,u1,2, ...,ui,j , ...,uN,N} ∈
RN2×2de . Then three groups of FC layers are separately ap-
plied for predicting binary-class relations of U, i.e., whether
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the pair of i-th and j-th sample is belong to the same row,
column or cell, as illustrated in Fig. 2. Each FC group
consists of three FC layers with 256 dimensions and a 2-
dimension FC with softmax layer.

3.5. Training Strategy

We train our proposed NCGM in an end-to-end way. The
whole loss function is defined as L = Lcell +Lcol +Lrow,
where Lcell, Lcol or Lrow represents cell, column and row
relationship losses. For each of them, we adopt the multi-
task loss L∼ = λ1Lclass + λ2Lcon to satisfy both the con-
trastive objective and to predict belonging classes of the out-
put embedding pairs. Lcon and Lclass are contrastive loss
and binary classification loss functions respectively. A more
detailed description is given in supplementary material.

4. Experiments
4.1. Datasets and Evaluation Protocol

Datasets. We perform extensive experiments on various
benchmark datasets. Among, ICDAR-2013 [8], ICDAR-
2019 [6], WTW [22], UNLV [36], SciTSR [2] and SciTSR-
COMP [2] are employed for physical structure recogni-
tion, while TableBank [18] and PubTabNet [46] are adopted
for evaluating logical structure recognition performance. It
should be noted that there is no training set in ICDAR-2013
and UNLV datasets, so we extend the two datasets to the
partial versions, which is similar to TabStruct-Net [34]. A
more detailed description about public benchmarks is given
in supplementary material.

To further investigate the capacity of our proposed
method under more challenging scenarios, we expand
“SciTSR-COMP” dataset to “SciTSR-COMP-A” by apply-
ing two kinds of distortion algorithms. A more detailed de-
scription is given in supplementary material.
Evaluation settings. Several existing works are only ap-
plicable to table images alone, while others utilize ad-
ditional information including text segment/cell bounding
boxes or text contents. To compare in a unified protocol, we
follow two different experimental setups in [34]: (a) Setup-
A where only table image is taken as input without addi-
tional information and (b) Setup-B where table image along
with additional features such as cell/text segment bounding
boxes and text contents. For a fair comparison, we also in-
corporate the result boxes of detection in FLAG-Net [20]
and the OCR results of Tesseract [37] as inputs in Setup-A.
Evaluation protocol. We employ precision, recall and
F1-score [7] as protocol to evaluate the performance of
our model for recognizing table physical structure includ-
ing vertical and horizontal relations. For the recognition
of table logical structure, BLEU score [28] used in [18]
and Tree-Edit-Distance-based Similarity (TEDS) proposed
in [46] are exploited.

4.2. Implementation Details

The framework is built on Pytorch [29]. We scale the
input table images to a fixed size 512 × 512 to introduce
scale invariance. In default, the layer number of collabo-
rative blocks is set to 3 and the hidden size d is set to 64.
Further, we set h = 8, dm = 64, dk = dv = 8 for both
Ego Context Extractor (ECE) and Cross Context Synthe-
sizer (CCS) of each collaborative block. During training,
the learning rate is initialized as 1e−4 and divided by 10
when the loss stops decreasing. For the training loss, we
empirically set all weight parameters λ1 = λ2 = 1. For all
experiments, the models are pre-trained on SciTSR for 10
epochs, and then fine-tuned on different benchmarks for 50
epochs, which is conducted on the platform with one Nvidia
Tesla V100 GPU and 32 GB memory.

4.3. Comparison with State-of-the-arts

Results of physical structure recognition. As is shown
in Tab. 1, our NCGM outperforms most of previous meth-
ods on different datasets for physical structure recognition.
Compared with the strong baseline FLAG-Net [20], NCGM
increases average F1-score on all datasets by round 2% un-
der both Setup-A settings and Setup-B settings. When pro-
cessing table images with complex distortions (“SciTSR-
COMP-A”), it is worth mentioning that our NCGM can
achieve about 11% and 12% higher F1-scores under Setup-
A and Setup-B than the second-best FLAG-Net [20] without
using distorted images as training data. If taking distorted
data as training set, the performance of NCGM still can sur-
pass it round 7% and 9% under both settings respectively.
We also visualize row and column physical relationships of
distorted table in Fig. 4. Note, the different color blocks
in it merely visualize the belonging relationship rather than
dividing the entire box. Taking right column of Fig. 4 for
example, “POS tagging information” is one whole text seg-
ment bounding box. In logical, one can observe that “POS
tagging information” box spans across five columns of word
bounding boxes below it in column dimension. Therefore,
the five columns attribute their respective colors to the “POS
tagging information” box. By comparison, our method cor-
rectly recognizes both relationships while the FLAG-Net
performs unsatisfactorily under distorted table scenes.

Results of logical structure recognition. In order to
evaluate our model on logical structure recognition task
benchmarks, i.e., TableBank and PubTabNet, we perform
lightweight post-processing (see supplementary material)
on the NCGM’s output results of row/column relationships
to convert them to the HTML representation. Tab. 2
presents that our method achieves significant improvement
compared with other methods for logical structure recogni-
tion task.
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Computational complexity. A more detailed description
is given in supplementary material.

ICDAR-2013-P

Method Train Dataset
Setup-A Setup-B

P R F1 P R F1
DGCNN [30] Sci. + IC13-P - - - 98.6 99.0 98.8
TabStr. [34] Sci. + IC13-P 93.0 90.8 91.9 99.1 99.3 99.2
GTE [45] Pub. + IC13-P 94.4 92.7 93.5 - - -
LGPMA [31] Sci. + IC13-P 96.7 99.1 97.9 - - -
C-CTRNet [22] WTW + IC19 95.5 88.3 91.7 - - -
FLAG-Net [20] Sci. + IC13-P 97.9 99.3 98.6 99.2 99.5 99.3
NCGM Sci. + IC13-P 98.4 99.3 98.8 99.3 99.9 99.6

ICDAR-2019
DGCNN [30] Sci. + IC19 80.3 77.8 79.0 - - -
TabStr. [34] Sci. + IC19 82.2 78.7 80.4 97.5 95.8 96.6
C-CTRNet [22] WTW - - 80.8 - - -
FLAG-Net [20] Sci. + IC19 85.2 83.8 84.5 96.1 96.3 96.2
NCGM Sci. + IC19 84.6 86.1 85.3 98.9 98.8 98.8

WTW
C-CTRNet [22] WTW 93.3 91.5 92.4 - - -
FLAG-Net [20] WTW 91.6 89.5 90.5 93.2 91.7 92.4
NCGM WTW 93.7 94.6 94.1 95.8 96.4 96.1

UNLV-P
DGCNN [30] Sci. + UNLV-P - - - 92.1 89.8 90.9
TabStr. [34] Sci. + UNLV-P 84.9 82.8 83.9 99.2 99.4 99.3
FLAG-Net [20] Sci. + UNLV-P 89.2 87.3 88.2 98.9 99.5 99.2
NCGM Sci. + UNLV-P 88.9 88.2 88.5 99.8 99.8 99.8

SciTSR
DGCNN [30] Sci. - - - 97.0 98.1 97.6
TabStr. [34] Sci. 92.7 91.3 92.0 98.9 99.3 99.1
LGPMA [31] Sci. 98.2 99.3 98.8 - - -
FLAG-Net [20] Sci. 99.7 99.3 99.5 99.8 99.5 99.6
NCGM Sci. 99.7 99.6 99.6 99.7 99.8 99.7

SciTSR-COMP
DGCNN [30] Sci. - - - 96.3 97.4 96.9
TabStr. [34] Sci. 90.9 88.2 89.5 98.1 98.7 98.4
LGPMA [31] Sci. 97.3 98.7 98.0 - - -
FLAG-Net [20] Sci. 98.4 98.6 98.5 98.6 99.0 98.8
NCGM Sci. 98.7 98.9 98.8 98.8 99.3 99.0

SciTSR-COMP-A
FLAG-Net [20] Sci. 70.7 66.2 68.4 83.3 81.0 82.1
FLAG-Net [20] Sci. + Sci.-C-A 82.5 83.0 82.7 88.8 87.5 88.1
NCGM Sci. 79.6 78.9 79.2 93.3 94.8 94.0
NCGM Sci. + Sci.-C-A 88.4 90.7 89.5 97.2 97.5 97.3

Table 1. Comparison results of physical structure recognition on
ICDAR-2013-P, ICDAR-2019, WTW, UNLV-P, SciTSR, SciTSR-
COMP and SciTSR-COMP-A dataset. “-P” means partial dataset
and “-A” represents augmented dataset by distortion. “P”, “R” and
“F1” stand for “Precision”, “Recall” and “F1-score” respectively.
“TabStr.” and “C-CTRNet” denote “TabStruct-Net” and “Cycle-
CenterNet” individually.

(a) Sample result of FLAG-Net on SciTSR-COMP-A dataset.

(b) Sample result of NCGM on SciTSR-COMP-A dataset.

Figure 4. Visualization of physical relationships of distorted table
between FLAG-Net and NCGM. The first and second column in-
dicate the predictions of rows and columns respectively. The boxes
belonging to the same relationships are filled in the same colors.
The boundaries of the text segment boxes with misrecognized re-
lationships are marked in red lines. Our NCGM shows better tol-
erance for the challenging scenarios compared with FLAG-Net.

TableBank

Method Train Dataset
Setup-A
BLEU

Image-to-Text [18] TableBank 73.8
TabStruct-Net [34] SciTSR 91.6
FLAG-Net [20] SciTSR 93.9
NCGM SciTSR 94.6

PubTabNet

Method Train Dataset
Setup-A
TEDS

EDD [46] PubTabNet 88.3
TabStruct-Net [34] SciTSR 90.1
GTE [45] PubTabNet 93.0
LGPMA [31] PubTabNet 94.6
FLAG-Net [20] SciTSR 95.1
NCGM SciTSR 95.4

Table 2. Comparison results of logical structure recognition on
TableBank and PubTabNet datasets.

4.4. Ablation Study

In this subsection, we perform several analytic exper-
iments under Setup-B settings on SciTSR-COMP bench-
mark to investigate the contributions of intra-modality and
inter-modality interactions in our proposed NCGM.

Effect of intra-modality interactions. For intra-
modality interactions, Tab. 3 compares the effectiveness
of various extractors, including DGCNN [30] and Trans-
former [42], with ECE in our method. “Mixed” means all
modality features are early-fused by concatenation as the
input and “Individual” denotes each modality is input into
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context extractor separately. Tab. 3 shows ECE can achieve
the best performance when taking either mixed features or
individual features as input while “Transformer” performs
the worst. For “DGCNN”, it only aggregates information
from top K similar nodes of each node instead of all ones.
Compared with “DGCNN”, although “Transformer” can
deploy the global information of nodes, it ignores the
directed edge effects between nodes. Encouragingly, our
CMHA-based ECE can not only consider the directed
relationships between nodes, but also extract the context
information from all nodes. Additionally, we can also
observe that individual features can yield better results
than the mixed ones, which proves that decoupling the
individual modality from each other is indeed a more
preferable way to solve the Hetero-TSR problem.

Fusion
Method

Input Intra. Inter. Setup-B
Mix. Ind. DG. Tr. ECE Con. CCS P R F1

Early
Fusion

✓ ✗ ✓ ✗ ✗ ✗ ✗ 96.3 97.4 96.8
✓ ✗ ✗ ✓ ✗ ✗ ✗ 95.1 95.6 95.3
✓ ✗ ✗ ✗ ✓ ✗ ✗ 97.8 98.3 98.0

Late
Fusion

✗ ✓ ✓ ✗ ✗ ✓ ✗ 96.9 98.2 97.5
✗ ✓ ✗ ✓ ✗ ✓ ✗ 94.9 96.1 95.5
✗ ✓ ✗ ✗ ✓ ✓ ✗ 98.4 98.2 98.3

NCGM ✗ ✓ ✗ ✗ ✓ ✗ ✓ 98.8 99.3 99.0

Table 3. Ablation studies of NCGM on SciTSR-COMP dataset.
“Intra.” and “Inter.” stand for intra-modality interactions and inter-
modality interactions respectively. “Mix.” and “Ind.” are short for
“Mixed” and “Individual”. “DG.” and “Tr.” denote “DGCNN”
and “Transformer”. “Con.” represents “Concatenation”.

Effect of inter-modality interactions. We compare the
proposed CCS with the “Concatenation” operation of multi-
modal features in Tab. 3. It can be observed that CCS
improves the accuracy of predicting adjacency relationship
compared with directly late-fused multiple model features
via concatenation. This confirms the benefits of CCS that
enables one modality to positively collaborate with the oth-
ers, and can capture the complex implicit modality relation-
ships. Moreover, it also proves that the CCS module com-
bined with ECE can further boost the performance.

4.5. Further Analysis on Collaborative Block

What does ECE learn from the intra-modality? As
suggested by recent works [24, 25, 33] on interpreting at-
tention mechanism, separate attention heads may learn to
look for various relationships between inputs and intro-
ducing more sparsity and diversity for attention may im-
prove performance and interpretability. To explore the
intra-modality interactions learned by ECE in collaborative
block, we in Fig. 6 visualize the multi-head attention maps
from last blocks of ECE. For comparison, we also visualize

the multi-head self-attention maps from the last blocks of
“Transformer-Mixed” [42] and KNN (K = 5) selection heat-
maps of all layers in DGCNN [30], where a lighter color in-
dicates a closer relationship. The KNN results of DGCNN
show that the feature aggregation of one node only pays at-
tention to the top K similar features of other nodes instead
of all the nodes, and relies on the choice of K. The atten-
tion maps of Transformer-Mixed present equilibrium sta-
tus, which lacks sparsity and diversity. Comparatively, our
“ECE-Mixed” taking mixed features presents more diversi-
fied attention maps in eight heads, which indicates ECE can
more effectively capture context information. Moreover, the
attention maps generated by “ECE-Individual” show differ-
ent intriguing focus patterns for different features. Specif-
ically, ECE prefers to extract interactions for appearance
and geometry features in global scope while content fea-
tures bring more local focus patterns.
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Figure 5. Diversities of attention maps for different modalities
with or without CCS. Solid lines (∼ w/ CCS) represent the diver-
sity distributions of attention in CCS when one modality features
are regarded as queries and others as keys/values. Dashed lines (∼
w/o CCS) present diversity of attention weights in ECE for each
modality.

How do different modalities collaborate with each
other? To investigate the working pattern of CCS, we
adopt Jensen-Shannon Divergence [4] (see supplementary
materials) to measure the average diversity of attention map
in CCS when the model also takes input table image shown
in Fig. 6. As shown in Fig. 5, solid lines (∼ w/ CCS) repre-
sent the diversity distributions when one modality features
are regarded as queries and others as keys/values. After re-
moving CCS, diversity of attention weights in ECE for each
modality is also presented by dashed lines (∼ w/o CCS).
For those with CCS, the higher value indicates the query
modality is in a closer collaboration with the other modal-
ities. Particularly, appearance modality has the strongest
collaborative relationship with others while geometric one
requires the least collaboration. By comparison, the diversi-
ties of attention weights in ECE also follow a similar trend,
but with lower values on average.
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Figure 6. Visualization of the heat-maps generated by DGCNN and multi-head attention maps from the Transformer and ECE. Y-axis (red)
and X-axis (blue) are “probes” and “candidates” respectively. For ECE, probes are graph node features and candidates are edge combined
features. For Transformer and DGCNN, probes and candidates are both non-graph features. The heat-maps of DGCNN show a local hard
selection way in terms of context. And Transformer yields attention maps lacking sparsity and diversity. In contrast, ECE-Mixed presents
more diversified attention maps and ECE-Individual extracts interactions in global or local pattern conditioned on different features. Best
viewed in color.
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Figure 7. The relationship between block number of NCGM and
F1-score on SciTSR-COMP dataset.

The more collaborative blocks, the better performance?
To further explore the effect of the collaborative block num-
ber on the NCGM performance, we conduct a set of exper-
iments setting block numbers from 1 to 9, respectively. It
can be seen from Fig. 7 that it is a trade-off problem. Small
block number can render faster convergence to the model.
As the number increases, the performance keeps improv-
ing until block number increases to 5, but the convergence

speed of the network keeps slowing down. In particular, we
observe that the F1-score decreases sharply when NCGM
with more than 7 blocks is trained over round 50 epochs,
which indicates more blocks are easier to cause model train-
ing collapse problem. Based on the above observation, we
set it to 3 as default number.

5. Conclusion and Limitation

We present a novel graph-based method for heteroge-
neous table structure recognition through learning intra-
inter modality collaboration. Extensive experiments on
public benchmarks demonstrate its superiority over state-
of-the-art methods, especially under challenge scenarios.
However, there exist two limitations could be improved in
future. The first one is the inevitable problem of computa-
tional complexity increase brought by introducing multiple
modalities and decoupled processing. The second one lies
in the fact that NCGM with deeper blocks is easier to suf-
fer from the training collapse problem. We may introduce
more inductive bias into the attention model to tackle it.
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[4] Gonçalo M Correia, Vlad Niculae, and André FT Mar-
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