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Abstract

We present a new neural representation, called Neural
Ray (NeuRay), for the novel view synthesis task. Recent
works construct radiance fields from image features of in-
put views to render novel view images, which enables the
generalization to new scenes. However, due to occlusions,
a 3D point may be invisible to some input views. On such a
3D point, these generalization methods will include incon-
sistent image features from invisible views, which interfere
with the radiance field construction. To solve this problem,
we predict the visibility of 3D points to input views within
our NeuRay representation. This visibility enables the ra-
diance field construction to focus on visible image features,
which significantly improves its rendering quality. Mean-
while, a novel consistency loss is proposed to refine the vis-
ibility in NeuRay when finetuning on a specific scene. Ex-
periments demonstrate that our approach achieves state-
of-the-art performance on the novel view synthesis task
when generalizing to unseen scenes and outperforms per-
scene optimization methods after finetuning. Project page:
https://liuyuan-pal.github.io/NeuRay/

1. Introduction

Novel View Synthesis (NVS) is an important problem in
computer graphics and computer vision. Given a set of in-
put images with known camera poses, the goal of NVS is to
synthesize images of the scene from arbitrary virtual camera
poses. Recently, neural rendering methods have achieved
impressive improvements on the NVS problem compared
to earlier image-based rendering methods [14,19,30]. Neu-
ral Radiance Field (NeRF) [31] shows that photo-realistic
images of novel views can be synthesized by volume ren-
dering on a 5D radiance field encoded in a neural network
which maps a position and a direction to a density and a
color. However, these methods cannot generalize to unseen
scenes as they learn scene-specific networks, which usually
take hours or days for a single scene.

Recent works [5, 55, 56, 63] propose NeRF-like neural
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Figure 1. (a) Without occlusions, local image features are consis-
tent on the surface point. (b) Local image features are inconsistent
on a surface point due to occlusions. (c) Local image features
are inconsistent on a non-surface point. Generalization methods
will correctly assign a large density to the surface point in (a) due
to the feature consistency. However, when features are not very
consistent in (b) and (c), it is relatively hard for these methods to
correctly determine the density.

rendering frameworks that can generalize to unseen scenes.
Given a set of input views, they construct a radiance field
on-the-fly by extracting local image features on these views
and matching multi-view features to predict colors and den-
sity on 3D points. This is similar to traditional stereo match-
ing methods [47, 60] that check the multi-view feature con-
sistency to find a surface point, as shown in Fig. 1 (a). How-
ever, when features are not consistent on a point, it is rela-
tively hard for these methods to correctly determine whether
such inconsistency is caused by occlusions as shown in
Fig. 1 (b) or this point is a non-surface point as shown in
Fig. 1 (c), leading to rendering artifacts.

To address this problem, we introduce a new neural rep-
resentation called Neural Rays (NeuRay) in this paper. Neu-
Ray consists of pixel-aligned feature vectors on every input
view. On a camera ray emitting from a pixel on the input
view, the associated NeuRay feature vector on this pixel is
able to predict visibility to determine whether a 3D point
at a specific depth is visible or not. With such visibility,
we can easily distinguish the occlusion-caused feature in-
consistency from the non-surface-caused feature inconsis-
tency in Fig. 1, which leads to more accurate radiance field
construction and thus better rendering quality on difficult
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scenes with severe self-occlusions.
A key challenge is how to estimate the visibility in an

unseen scene. This is a chicken-and-egg problem because
the estimation of visibility requires knowing the surface lo-
cations while the estimated visibility is intended for bet-
ter surface estimation in the radiance field construction.
To break this cycle, we propose to apply well-engineered
multi-view stereo (MVS) algorithms, like cost volume con-
struction [60] or patch-matching [47], to reconstruct the
scene geometry and then extract the pixel-aligned feature
vectors of NeuRay from the reconstructed geometry. In the
end, NeuRay will be used in the computation of the visibil-
ity to improve the radiance field construction.

Another problem is how to parameterize such visibility
in NeuRay. A direct way is to predict the densities along the
camera ray from the view to the 3D point and then accumu-
late these densities to compute the transmittance as the vis-
ibility like NeRF [31]. However, computing visibility with
this strategy is computationally impractical because given
N input views and a 3D point, we should accumulate the
density along all N camera rays from every input view to
this 3D point, which means we need to sample K points on
every camera ray and evaluate the density on all N × K
sample points. To reduce the computation complexity, we
directly parameterize the visibility with a Cumulative Dis-
tribution Function (CDF) in NeuRay, which avoids density
accumulation along rays and only requires N network for-
ward passes to compute the visibility of all N input views.

NeuRay not only help the radiance field construction on
unseen scenes but also be able to refine itself by finetun-
ing on a specific scene with a novel consistency loss. Since
both the NeuRay representation and the constructed radi-
ance field depict the scene geometry, we propose a loss to
enforce the consistency between the surface locations from
the NeuRay representation and those from the constructed
radiance field. This loss enables NeuRay to memorize the
scene geometry predicted by the radiance field. At the same
time, the memorized scene geometry in NeuRay will in turn
improve the radiance field construction by providing better
occlusion inference.

We conducted extensive experiments on the NeRF syn-
thetic dataset [31], the DTU dataset [18] and the LLFF
dataset [30] to demonstrate the effectiveness of NeuRay.
The results show that 1) without scene-specific optimiza-
tion, our method already produces satisfactory rendering
results that outperforms other generalization methods by
a large margin; 2) finetuning NeuRay produces much su-
perior results than finetuning other generalization models
and achieve even better rendering quality than NeRF [31].
Moreover, we can speed up rendering with the help of
NeuRay by caching features on input views and predicting
coarse surface locations, which costs ∼3 seconds to render
an image of size 800× 600.

2. Related works

2.1. Image-based rendering

Many works [3,11,14,15,19,21,22,41] have focused on
blending input images with geometry proxies to synthesize
novel views. Conventional light field-based methods [7,11]
reconstruct a 4D plenoptic function from densely sampled
views, which achieve photo-realistic rendering results but
typically have a limited renderable range. To extend the
renderable range, some works [3, 37] seek the help of 3D
proxy geometry from multi-view stereo (MVS) methods
[47]. With the development of deep learning techniques,
some methods [6, 14, 19, 41, 42, 54, 59] introduce convolu-
tional neural networks (CNNs) to replace hand-crafted com-
ponents of the image-based rendering (IBR). One common
challenge for the IBR methods is the sensitivity to the qual-
ity of estimated depth maps [6]. Our method also belongs
to the category of image-based rendering and also uses cost
volumes or estimated depth from MVS methods. However,
our method can be trained from scratch without the help
of external MVS algorithms and also can be finetuned on a
scene to remedy reconstruction errors of MVS.

2.2. Neural scene representation

Recently, instead of estimating an external 3D proxy ge-
ometries, some methods have attempted to construct ex-
plicit trainable 3D representations from input images with
differentiable renderers, such as voxels [28, 48], textured
meshes [12, 25, 26, 53], and point clouds [1, 21, 43, 58].
Then, novel view can be synthesized from the constructed
3D representations. To further improve the rendering res-
olution, some methods [20, 23, 27, 31, 34, 36, 49] resort to
pure neural fields encoded by neural networks to represent
3D scenes. Our method represents a scene by a ray-based
representation for the NVS task. PIFu [44] and its follow-
ups [13,16,45] also use ray-based representations to recon-
struct human shapes. NeRF [31] renders photo-realistic im-
ages by volume rendering on a radiance field. Many fol-
lowing works [9, 23, 24, 29, 33, 35, 39, 50, 57, 62] have at-
tempted to improve NeRF in various aspects. Among these,
NeRV [50] also uses a visibility prediction for efficient re-
lighting. In comparison, visibility in our method is used in
efficiently constructing a radiance field on-the-fly.

Generalization volume rendering. NeRF usually takes
a long time to train on each new scene. To address this, re-
cent works [4, 5, 38, 40, 55, 56, 63] introduce generalizable
rendering methods which construct a radiance field on-the-
fly. Also, some works speed up NeRF-training by meta-
learning [2,52] or voxel [32,51,61]. Our method also bases
on constructing radiance field on-the-fly to generalize to un-
seen scenes. The difference is that our method uses a ray-
based representation for occlusion inference which greatly
improves the rendering quality.
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Figure 2. Constructing a radiance field on-the-fly from input views
to synthesize the test view image by volume rendering. We first
sample points on the test ray, then aggregate local features of input
views to determine the alpha values and colors of sample points,
and finally accumulating colors by volume rendering to compute
the output color. Our method constructs NeuRay on input views to
predict the visibility to sample points so that it allows occlusion-
aware feature aggregation on these sample points.

3. Method

Given N input views of a scene with known camera
poses, our goal is to render images on arbitrary novel test
views. Before introducing NeuRay, we first review the vol-
ume rendering on a radiance field [31].

3.1. Volume rendering

In our method, images of test views are synthesized by
volume rendering as shown in Fig. 2. Assuming a camera
ray emitting from the test view, called a test ray, is parame-
terized by p(z) = o+zr, z ∈ R+, where o is the start point
at the camera center, and r is the unit direction vector of the
ray. First, we sample Kt points {pi ≡ p(zi)|i = 1, ...,Kt}
with the increasing values zi along the ray. Then, the color
for the associated pixel of this camera ray is computed by

c =

Kt∑
i=1

cihi, (1)

where c ∈ R3 is the rendered color for the pixel, ci ∈ R3

is the color of the sample point pi, and hi ∈ R the hitting
probability that the ray is not occluded by any depth up to
the depth zi and hits a surface in the range (zi, zi+1). Thus,
the hitting probability hi can be computed by

hi =

i−1∏
k=1

(1− αk)αi, (2)

where αi is the alpha value in the depth range (zi, zi+1). In
order to render a novel image using Eq. (1) and Eq. (2), we
construct a radiance field to compute αi and ci.

3.2. Occlusion-aware radiance field construction

Radiance field construction on-the-fly. In contrast to
NeRF [31] which learns a scene-specific neural radiance
field, generalization rendering methods [5, 55, 56, 63] con-
struct a radiance field on-the-fly by aggregating local fea-
tures. Given a 3D point pi ∈ R3 as shown in Fig. 2, these
methods first extract features on input views by a CNN and
then aggregate features of input views on this point by

fi = M({fi,j |j = 1, ..., N}), (3)

where fi,j is the local image feature of the sample point
pi projected on the j-th input view, M is a network which
aggregates the features from different views to produce a
feature fi. Then, the alpha value αi and color ci for this
point pi will be decoded from the aggregated feature fi by
other networks [5,55,56,63]. We provide more details about
this in the supplementary material.

Occlusion-aware construction. The proposed method
also constructs a radiance field on-the-fly as previous meth-
ods. Additionally, we predict a visibility term vi,j illustrat-
ing the j-th input view is visible or not to this 3D point pi

for the occlusion-aware feature aggregation

fi = M({fi,j , vi,j |j = 1, ..., N}). (4)

In this case, the aggregation network M is able to focus on
visible views in the aggregated feature fi and reduces the
interference from invisible views. In the following, we will
introduce our NeuRay for the computation of visibility vi,j .

3.3. NeuRay representation

Given a camera ray emitting from a input view, called an
input ray, NeuRay is able to predict the visibility function
v(z) indicating a point at depth z is visible or not for this
input ray as shown in Fig. 3. On every input view, NeuRay
is represented by a visibility feature map G ∈ RH×W×C .
Denoting g ∈ RC as a corresponding feature vector for the
given input ray on G, we will compute the visibility v(z) of
this input ray from g. Obviously, a valid visibility function
v(z) should be non-increasing on z and 0 ≤ v(z) ≤ 1. In
the following, we discuss how to parameterize the visibil-
ity function v(z) from g. Then, we will introduce how to
compute G in Sec. 3.4 and Sec. 3.5.

Visibility from occlusion probability. We represent
the visibility function with a Cumulative Density Function
(CDF) t(z) by v(z) = 1− t(z) as shown in Fig. 3, which is
parameterized as a mixture of logistics distributions

t(z; {µi, σi, wi}) =
Nl∑
i

wiS((z − µi)/σi), (5)
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Figure 3. Visibility computation in NeuRay. NeuRay consists of a
visibility feature map G on every input view. Every feature vector
g on G can be decoded to a mixture of logistics distributions by an
MLP. The distribution illustrates the visibility function v(z) of the
input ray emitting from the location of g, which is the area under
the curve after the depth z.

where we mix Nl logistics distributions, µi is the mean of
i-th logistics distribution, σi the standard deviation, wi the
mixing weight with

∑
i wi = 1, S(·) a sigmoid function.

All parameters [µi, σi, wi] = F(g) are decoded from the
feature g by an MLP F . As a CDF, t(z) is non-decreasing,
so that 1− t(z) forms a valid visibility function.

t(z) actually corresponds to an occlusion probability that
the input ray is occluded before a depth z and we call
the corresponding probability density function (PDF) hit-
ting probability density. The visibility v(z) is actually the
area under the PDF curve after z. In general, a ray will
only hit one surface so one logistics distribution will be
enough. However, using a mixture of logistics distribu-
tions improves performance when the ray hits on semi-
transparent surfaces or edges of surfaces.

Discussion. Alternatively, we may parameterize visi-
bility with a NeRF [31]-like density. However, comput-
ing visibility with this strategy is too computationally in-
tensive. In this formulation, we directly decode a density
d(z) = ϕ(z; g) from g using a MLP ϕ. To compute the
visibility v(z), we need to first sample Kr depth {zk} with
zk < z, compute their densities d(zk) and the correspond-
ing alpha values αk = 1 − exp(−ReLU(dk)), and finally
get visibility v(z) =

∏Kr

k=1(1 − αk). Though the formula-
tion is a valid visibility function, it is computationally im-
practical because it requires Kr times evaluation of ϕ to
compute the visibility of a input view to a point.

3.4. Generalize with NeuRay

When rendering in unseen scenes, we extract the visibil-
ity feature maps G from a cost volume construction [60]
or a patch-match stereo [47]. In the cost volume construc-
tion on every input view, we use its Ns neighboring input
views to construct a cost volume of size H ×W ×D [60].
Then, a CNN is applied on the cost volume to produce the
visibility feature map G ∈ RH×W×C for this input view.
Alternatively, we can also directly extract feature maps G

from depth maps estimated by patch-match stereo [47], in
which the estimated depth map of size H ×W is processed
by a CNN to produce the visibility feature map G.

Pipeline. The whole pipeline of rendering with NeuRay
in an unseen scene is shown in Fig. 4. On all input views,
cost volumes or depth maps are estimated by MVS algo-
rithms [47, 60], which are processed by a CNN to produce
visibility feature maps G. Then, for 3D sample points on
test rays, we compute the visibility vi,j of input views to
these points (Sec. 3.3) and aggregate the local features fi,j

along with vi,j to compute the alpha values and colors on
these points (Sec. 3.2). Finally, the alpha values and colors
are accumulated along the test rays by volume rendering to
synthesize the test images (Sec. 3.1).

Loss. The whole rendering framework can be pretrained
on training scenes and then directly applied on unseen
scenes for rendering. To pretrain the rendering framework,
we randomly select a view in a training scene as the test
view and use other views as input views to render the se-
lected test view with a render loss

ℓrender =
∑

∥c− cgt∥2, (6)

where c is computed by Eq. 1, cgt is the ground-truth color.

3.5. Finetune with NeuRay

As done in previous works [5, 55, 56, 63], the proposed
rendering framework can be further finetuned on a specific
scene to achieve better rendering quality on this scene. In
the given scene, we randomly select an input view as a
pseudo test view and use the other input views to render the
pseudo test view for training. Additionally, we add trainable
parameters of NeuRay and a consistency loss in finetuning.

Trainable parameters of NeuRay. Fig. 5 shows the de-
tailed structure of the CNN in Fig. 4. On every input view,
an intermediate feature map G′ ∈ RH×W×C between the
constructed cost volume (or the estimated depth map) and
the visibility feature map G is treated as trainable param-
eters of NeuRay for this input view. We call the convolu-
tion layers before the G′ as an initialization network and
the convolution layers between G′ and G as a visibility en-
coder. Parameters G′ are not trained from scratch but ini-
tialized by the initialization network using the constructed
cost volume or the estimated depth map. Then, the initial-
ization network is discarded while G′ along with other net-
work parameters are optimized in finetuning.

Discussion. Alternatively, we may directly make G as
trainable parameters of NeuRay and discard both the ini-
tialization network and the visibility encoder. However, we
find that making G′ trainable and applying the visibility en-
coder on the trainable G′ improve the visibility prediction.
Because the convolution layers in the visibility encoder as-
sociate feature vectors of nearby pixels on G′ and these
nearby pixels usually have similar visibility.

7827



1. CNN

Input views

Cost volumes or
Depth maps

Visibility 
feature maps 𝐆

Local features 𝐟𝒊,𝒋

Visibility 𝑣𝑖,𝑗
Colors 𝐜𝑖

Alpha 
values 𝛼𝑖

Output 
color 𝐜

2. Visibility 
Computation

3. Occlusion-
aware

Radiance Field 
Construction

4. Volume 
rendering

…

Novel view 
image

Figure 4. Pipeline of rendering with NeuRay. 1. On input views, cost volumes or depth maps are estimated, which are used in predicting
visibility feature maps by a CNN (Sec. 3.4). 2. Visibility feature maps are used in the computation of the visibility of input views to 3D
points (Sec. 3.3). 3. For 3D points, we aggregate local features from input views along with the visibility to compute alpha values and
colors on these points (Sec. 3.2). 4. Volume rendering is applied to accumulate alpha values and colors to synthesize images (Sec. 3.1).
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Figure 5. When finetuning on a scene, we treat the intermedi-
ate feature map G′ as trainable parameters of NeuRay, which is
initialized by the initialization network. Then, the initialization
network will be discarded in finetuning.

Consistency loss. Besides the rendering loss, we ad-
ditionally use a consistency loss in finetuning. Since both
the constructed radiance field and the visibility of NeuRay
depict the scene geometry, we can enforce the consistency
between them in finetuning. Specifically, in finetuning, we
sample points pi ≡ p(zi) on a pseudo test ray and compute
the hitting probability hi on the sample points from the con-
structed radiance field. Meanwhile, the pseudo test view is
also an input view, on which there is a NeuRay represen-
tation to decode a distribution t(z) for this pseudo test ray.
Based on t(z), we compute a new hitting probability h̃i on
every sample point pi by

h̃i = t(zi+1)− t(zi), (7)

where zi is the depth of the point. Thus, we can enforce the
consistency between h̃i and hi to construct a loss

ℓconsist =
1

Kt

Kt∑
i=1

CE(h̃i, hi), (8)

where CE is the cross entropy loss.
Discussion. Similar to previous generalization meth-

ods [5, 55, 56, 63], finetuning on a specific scene refines our
network parameters for better feature aggregation and thus
better radiance field construction on the scene. Meanwhile,
further adding the trainable parameters of NeuRay and the
consistency loss enables our rendering framework to refine

the NeuRay representation, which brings better occlusion
inference and significantly improves the rendering quality.
This actually enables a memorization mechanism as illus-
trated in the supplementary material.

3.6. Speeding up rendering with NeuRay

On a test ray, most sample points pi have nearly zero
hitting probabilities hi and thus do not affect the output
color. However, most computations are wasted on feature
aggregation on these empty points. In the following, we
show that a coarse hitting probability ĥi on a test ray can be
directly computed from NeuRay using little computation.
Then, only very few fine points are sampled around points
with large ĥi for feature aggregation.

To compute the hitting probability ĥi defined on the test
ray, we first define the alpha value α̃ in depth range (z0, z1)
on an input ray by

α̃(z0, z1) =
t(z1)− t(z0)

1− t(z0)
. (9)

Then, we compute the ĥi on a sample point pi by

α̂i =

∑
j α̃i,j(zi,j , zi,j + li)vi,j∑

j vi,j
, (10)

ĥi =

i−1∏
k=1

(1− α̂k)α̂i, (11)

where zi,j is the depth of the point on j-th input view,
li = zi+1 − zi is the distance between the point pi and
its subsequent point pi+1 on the test ray. Computation of ĥ
is very fast because it only involves a simple combination of
t(z) on input views. We discuss the rationale behind the de-
sign of α̃, α̂ and ĥ and their connections to NeRF [31]-style
density in the supplementary material.
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Synthetic Object NeRF Real Object DTU Real Forward-facing LLFF
Settings Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Generalization

PixelNeRF [63] 22.65 0.808 0.202 19.40 0.463 0.447 18.66 0.588 0.463
MVSNeRF [4] 25.15 0.853 0.159 23.83 0.723 0.286 21.18 0.691 0.301
IBRNet [56] 26.73 0.908 0.101 25.76 0.861 0.173 25.17 0.813 0.200
Ours 28.29 0.927 0.080 26.47 0.875 0.158 25.35 0.818 0.198

Finetuning

MVSNeRF [4] 27.21 0.888 0.162 25.41 0.767 0.275 23.54 0.733 0.317
NeRF [31] 31.01 0.947 0.081 28.11 0.860 0.207 26.74 0.840 0.178
IBRNet [56] 30.05 0.935 0.066 29.17 0.908 0.128 26.87 0.848 0.175
Ours 32.35 0.960 0.048 29.79 0.928 0.107 27.06 0.850 0.172

Table 1. Quantitative comparison with baseline methods.

4. Experiment

4.1. Experimental Protocols

4.1.1 Datasets

We use two kinds of evaluation datasets, the object dataset
and the forward-facing dataset. The results are evaluated by
PSNR, SSIM [17] and LPIPS [64] as the metrics.

Object dataset. The object dataset includes the NeRF
synthetic dataset [34] and the DTU dataset [18]. The NeRF
synthetic dataset has 8 objects, each of which contains 100
images as input views and the other 200 images as test
views. For the DTU dataset, we select 4 objects (birds,
tools, bricks and snowman) as test objects. On each test
object, we leave out 1/8 images as test views and the rest
images as input views.

Forward-facing dataset. The forward-facing dataset is
the LLFF dataset [30] with 8 scenes. Each scene contains
20 to 62 images. We follow the same train-test set split
for each scene as previous methods [31, 56], which uses
1/8 images as test views. As done in [57], all images are
undistorted by COLMAP [46]. The evaluation resolution
are 1008×756 for the LLFF dataset, 800×800 for the NeRF
synthetic dataset and 800×600 for the DTU dataset. The
test images in two object datasets all use black backgrounds.

Training dataset. In order to train the generalization
model, we use three kinds of datasets: (1) the synthetic
Google Scanned Object dataset [10], which contains 1023
objects with 250 rendered images on each object; (2) three
forward-facing training datasets [8, 30, 65] and (3) the rest
training objects from the DTU dataset.

4.1.2 Implementation details

To render a test view, we do not use all input views but
Nw = 8 neighboring input views, called working views.
D = 64 planes are used in the cost volume while we use
COLMAP [47] for patch-match stereo. Nl = 2 logistics
distributions are mixed in t(z). We use the coarse-to-fine
sampling strategy as done in [31, 56] with 64 sample points
in both stages. Coarse and fine models share the same im-

age encoder, visibility encoder and initialization network,
but they use different decoder F and aggregation networks.
The aggregation networks follows similar design as [56] but
with additional visibility as inputs, which blends input col-
ors and applies a transformer along test rays. All experi-
ments are conducted on a 2080 Ti GPU. Details and archi-
tectures can be found in the supplementary material.

4.2. Comparison with baselines

Experiment settings. We compare with IBRNet [56],
PixelNeRF [63], MVSNeRF [4] and NeRF [31] in the gen-
eralization setting and the finetuning setting. In the gener-
alization setting, all generalization methods including our
method are pretrained on the same training scenes and
tested on unseen test scenes. In the finetuning setting, all
generalization methods including ours are further finetuned
on the input views of each test scene while NeRF [31] is
trained-from-scratch.

The quantitative results are shown in Table. 1 and the
qualitative results are shown in Fig. 6. Table 1 shows that
our method generalizes well to unseen scenes and outper-
forms all other generalization models. After scene-specific
finetuning, our method clearly outperforms all baselines
on two object datasets but achieves similar performance
as IBRNet [56] on the LLFF dataset [30]. The reason is
that the LLFF dataset contains very dense forward-facing
input views so that every 3D point is visible to a large num-
ber of input views. In this case, even one or two views
are occluded, there are still enough visible views to pro-
vide feature consistency for IBRNet [56] to render cor-
rectly. In comparison, in the Synthetic NeRF dataset, im-
ages are sparsely captured around the object in 360◦, which
brings more severe feature inconsistency to reduce the per-
formance of IBRNet [56]. In contrast, our rendering is
occlusion-aware so that our model performs much better on
the NeRF synthetic dataset. Furthermore, we show that our
method outperforms IBRNet by a large margin with sparse
working views on the LLFF dataset in the supplementary.

By comparing MVSNeRF [4] with our method in Fig. 6,
we notice that finetuning MVSNeRF [4] leads to noisy arti-
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Generalization Finetuning
Image GT MVSNeRF IBRNet NeuRay MVSNeRF IBRNet NeuRay

Figure 6. Qualitative results of different methods. Please refer to the supplementary materials for more results.

NeRF [31] NeuRay-Ft

Figure 7. Our method renders details more clearly than NeRF [31].

GT Single Mixture

Figure 8. Comparison between the mixture logistics distribution
Nl = 2 and the single logistics distribution Nl = 1 as the occlu-
sion probability. Mixture logistics distribution improves the results
on the edges with abrupt depth changes (red rectangle).

facts when the test view is far from the input view on which
the cost volume is built. By comparing NeRF [30] with our
method in Fig. 7, we find that NeRF needs more optimiza-
tion steps to recover subtle details like surfaces of the bricks
and textures on the Lego while it is relatively more easy for
our method to render these details by blending colors of in-
put views, which is the reason that our method can achieve
better rendering quality than NeRF.

4.3. Ablation studies

How effective is the visibility from init-NeuRay? To
validate this, in Table 2, we test the IBRNet [56] (ID 1),
the model with only image feature aggregation (ID 2), the
model aggregating images features with estimated depth

ID Description Setting Lego Fern

1 IBRNet Gen 25.64 24.16
2 Only aggregation Gen 25.61 22.25
3 Aggregation with depth features Gen 26.45 22.43
4 Aggregation with init-NeuRay Gen 28.41 24.02

5 mixture logistics Nl = 2 Ft 32.97 25.93
6 mixture logistics Nl = 2 Sc 33.07 25.89
7 single logistics Nl = 1 Sc 33.05 25.58
8 Only aggregation Sc 29.61 24.40
9 NeuRay without ℓconsist Sc 31.46 25.24

Table 2. Ablation studies. PSNRs on the “Lego” from the NeRF
synthetic dataset and the “Fern” from the LLFF dataset are re-
ported. “Gen” means the generalization setting, “Ft” means fine-
tuning on the scene and “Sc” means training from scratch.

from COLMAP [47] (ID 3) and the model aggregating im-
age features with visibility of NeuRay initialized by cost
volumes (ID 4). Since our image encoder is shallower than
IBRNet, the performance with only image feature aggrega-
tion is worse than IBRNet. Simply adding estimated depth
only brings slight improvement while using visibility of ini-
tialized NeuRay significantly improves the quality.

Can NeuRay be trained from scratch? To show Neu-
Ray can be constructed on a scene from scratch without ini-
tialization from cost volumes, we follow exactly the same
process as finetuning to train our method but the raw visi-
bility feature maps G′ and parameters of all networks are
randomly initialized. Results in Table 2 (ID 5 and 6) show
that training our method from scratch is also able to achieve
similar results as finetuning the initialized pretrain model.

Single or mixture logistics distributions? As discussed
in Sec. 3.3, the choice of t(z) can be a single logistics distri-
bution or a mixture of logistics distributions. We compare
these two choices in Table 2 (ID 6 and 7) and show quali-
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Figure 9. (Left) Curves of PSNR of different models with different training steps. PSNR is computed on a validation set of the “Lego”.
(Right) Qualitative results of models with 10k training steps. Due to the limitation of GPU memory, the batch size for IBRNet [56] and our
method is 512 while the batch size for MVSNeRF [4] and NeRF [31] is 1024.

Method ĥ Kt,1 Kt,2 PSNR Time(s)

IBRNet ✗ 64 64 34.00 31.46
NeRF ✗ 128 128 33.65 31.51

NeuRay ✗ 64 64 35.33 30.03
NeuRay ✓ 64 8 34.57 3.95
NeuRay ✓ 32 4 33.73 2.57

Table 3. Rendering time and PSNR of the “birds” from the DTU
dataset. Kt,1 and Kt,2 are numbers of points used in coarse and
fine sampling respectively, ĥ means using the probability ĥ to con-
duct coarse sampling, “Time” means the time cost on rendering
one 800×600 images on a 2080Ti GPU.

Method Train Step Train Time PSNR

NeRF [31] 200k ∼9.5h 30.27
MVSNeRF [4]-Ft 10k ∼28min 23.77
IBRNet [56]-Ft 5k ∼41min 28.38

NeuRay-Ft 5k ∼32min 30.63

Table 4. PSNR and training steps/time on NeRF synthetic dataset.

tative comparison in Fig. 8, which demonstrates that using
a mixture of logistics distributions improves the rendering
quality in regions with abrupt depth changes.

How effective is NeuRay in per-scene optimization?
In Table 2, we compare three models, the full model (ID 6),
the model with only image feature aggregation (ID 8) and
the model with NeuRay but without ℓconsist (ID 9). The
results show that adding a NeuRay as a backend in per-
scene optimization already brings improvements and fur-
ther adding ℓconsist enables memorization of geometry thus
greatly improves the rendering quality.

4.4. Analysis

Speed up rendering with NeuRay. As discussed in
Sec. 3.6, we can efficiently estimate a coarse ĥ from the
NeuRay to perform the coarse sampling and only sample
few fine points based on the coarse sampling. To validate
this, we conduct an experiment on the “birds” from the DTU
dataset [18]. As shown in Table 3, only 4 or 8 subsequent
sample points are enough for our method to achieve high-

quality renderings, which speeds up the rendering 10 times
from 30s to ∼3s. Further speeding up by baking out a mesh
or occupancy voxels from alpha values ê is possible, which
we leave for future works.

Convergence speed. To show how the rendering qual-
ity of different models improves in the scene-specific opti-
mization process, we train different models on the “Lego”
and plot the curves of PSNR on a small validation set in
Fig. 9 (left). The curves show that finetuning our method
produces consistently better rendering results than training
all baseline methods with the same training steps. In Fig. 9
(right), we show the qualitative results on 10k training steps.
With only 10k training steps, NeRF [31] and MVSNeRF [4]
are still far from convergence thus produce blurred images,
IBRNet [56] produces artifacts on regions with occlusions
while our method already produces high-quality renderings.

Only finetune few steps with NeuRay. Table 4 reports
PSNR and time of different models with only few finetun-
ing steps on the NeRF synthetic dataset. Note that fine-
tuning both IBRNet [56] and our method requires image
feature extraction which costs more time on one training
step than neural fields MVSNeRF [4] and NeRF [31]. Since
our image encoder is shallower than IBRNet, finetuning our
method is slightly faster. The results show that our method
is able to be finetuned limited time (32min) to achieve sim-
ilar quality as NeRF [31] with long training time (9.5h),
which is significantly better than the other generalization
methods with similar finetuning time.

5. Conclusion

In this paper, we proposed a novel neural representation
NeuRay for the novel view synthesis task. NeuRay rep-
resents a scene by occlusion probabilities defined on input
rays and is able to efficiently estimate the visibility from
arbitrary 3D points to input views. With the help of Neu-
Ray, we are able to consider the visibility when constructing
radiance fields by multi-view feature aggregation. Experi-
ments on the DTU dataset, the NeRF synthetic dataset and
the LLFF dataset demonstrate that our method can render
high-quality images without any training on the scene or
with only few finetuning steps on the scene.
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