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Figure 1. Each pair left: The standard approach to multi-object tracking is to detect, track and possibly segment objects that correspond
to specific, pre-defined semantic classes, such as cars and pedestrians [78]. Each pair right: The output of our tracking baseline, that can
track objects, such as child stroller, that was not labeled in the model training set. The significant contribution of this paper is the first
benchmark, designed for studying the performance of object trackers in such open world conditions, in which trackers are only given a
partial knowledge about the visual world, embracing the fact that one could never train object detectors for every possible semantic class.

Abstract

Tracking and detecting any object, including ones never-
seen-before during model training, is a crucial but elusive
capability of autonomous systems. An autonomous agent
that is blind to never-seen-before objects poses a safety haz-
ard when operating in the real world – and yet this is how
almost all current systems work. One of the main obstacles
towards advancing tracking any object is that this task is no-
toriously difficult to evaluate. A benchmark that would al-
low us to perform an apples-to-apples comparison of exist-
ing efforts is a crucial first step towards advancing this im-
portant research field. This paper addresses this evaluation
deficit and lays out the landscape and evaluation method-
ology for detecting and tracking both known and unknown
objects in the open-world setting. We propose a new bench-
mark, TAO-OW: Tracking Any Object in an Open World,
analyze existing efforts in multi-object tracking, and con-
struct a baseline for this task while highlighting future chal-
lenges. We hope to open a new front in multi-object tracking
research that will hopefully bring us a step closer to intelli-
gent systems that can operate safely in the real world.

* These authors contributed equally to this work.

1. Introduction
Understanding common scenarios is easy. Vision systems,
trained on millions of examples of cars and pedestrians,
work pretty well at detecting these objects, determining
what and where they are, and tracking them through a
scene. Understanding never-seen-before scenarios is ex-
tremely hard. What happens when a plane lands on the road
in front an autonomous vehicle? Or a new children’s toy is
thrown onto the road? How will current vision systems be
able to handle these previously unseen and unknown situa-
tions? Will a system designed to detect and track potentially
hazardous objects pick up on these at all? Or will they be
completely ignored with disastrous consequences (such as
a vehicle hitting the child stroller in Fig. 1, bottom-left)?

Tracking and detection methods work reasonably well
for objects that have a huge amount of data collected on
them. But without building systems that can deal with
never-seen-before objects, vision systems will never be safe
enough to work in the real world and collecting more data
can never scale up to address the infinite variety of possible
unknown things that can happen. Many anecdotal exam-
ples indicate that current vision systems perform poorly in
previously unseen scenarios [60], but we cannot quantita-
tively measure this phenomenon, or even evaluate progress,
because there are no benchmarks on which to evaluate.
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Figure 2. TAO-OW Benchmark class distribution in the valida-
tion set, showing known classes for which training data is given,
and the unknown classes which serve as a proxy for the infinite
variety (unknown unknowns) of objects which may appear in an
open-world. Note the y-axis is log-scaled.

In this paper we present a new benchmark (TAO-OW:
Tracking Any Object in an Open World) for measuring de-
tection and tracking performance in an open-world setting.
Closed-world multi-object tracking benchmarks [16,18,24]
and methods [7,40,78] focus on tracking object classes that
belong to a predefined set of frequently observed classes. In
contrast, in our Open-World Tracking (OWT) task, all ob-
ject must be tracked, and methods are specifically evaluated
on how well they can track object classes that they weren’t
allowed to train on (unknown objects), as well as objects
which were in the training set (known objects).

Open-World evaluation is inherently difficult. One has
to restrict the set of objects that algorithms are allowed to
train on. These known objects should be varied and diverse
enough to represent the set of objects that could typically be
expected to have data collected for, but there should be plen-
tiful examples of further unknown objects, not presented as
labeled samples to the models being evaluated. We base
our work upon the recently introduced TAO dataset [16]1,
which contains a large corpus of videos from many diverse
scenarios such as driving, movies, and everyday scenes.
Such a wide diversity is important in order to be able to
capture a wide range of unknown objects. For known classes
we use the 80 classes from COCO [42], which cover a wide
range of common objects, while leaving over 700 unknown
object categories to evaluate the performance of algorithms
on objects for which they have not been trained. In Fig. 2
we show our TAO-OW benchmark, with its inherently long
tailed distribution of object categories, its known and un-
known split, and a comparison to previous tracking bench-
marks [18,24,64,75,88,91], which are all limited to closed-
world evaluation on a small number of categories.

Another inherent difficulty with open-world evaluation is
dealing with the fact that it is impossible to exhaustively an-
notate the complete set of objects which should be detected
and tracked (by definition, we do not want to penalize track-
ers for tracking unknown, unannotated objects). To tackle
this issue, we propose a new evaluation metric called Open-
World Tracking Accuracy (OWTA) which naturally decom-
poses detection and tracking evaluation components allow-

1License available at taodataset.org.

ing the evaluation of tracking accuracy in the setting where
extra unannotated object detections are not penalized. Such
evaluation is enabled by the constraint that proposed objects
must be supplied as non-overlapping segmentation masks.

Armed with our Open-World Tracking benchmark and
evaluation methodology, we analyze several methods which
have attempted this task but have lacked a common eval-
uation protocol [17, 47, 56]. A significant contribution of
this paper is our thorough analysis of a wide variety of ap-
proaches. This analysis leads us to propose an open-world
tracking approach which currently performs the best on our
Open-World Tracking Benchmark, while also performing
very competitively on previous closed-world benchmarks,
even though it was not designed or tuned for these.

In summary, the main contribution of this work is to
open up a new direction in vision-based multi-object track-
ing that goes beyond current closed-world benchmarks. We
formalize the Open-World Tracking problem, (i) propose a
benchmark with a suitable recall-based evaluation to mea-
sure progress, (ii) analyze existing design paradigms, pro-
viding a large collection of baselines based on state-of-
the-art approaches from the closed-world setting, and (iii)
present a strong method which works well for both open-
and closed-world tracking. Our experiments show that
closed-world detectors work surprisingly well for localizing
even unknown objects. However, tracking unknown objects
remains more challenging than known objects.

2. Related Work

Related tasks and benchmarks. Multi-object tracking
(MOT) is a challenging task which involves localizing ob-
jects in both space and time, often in dense, crowded envi-
ronments. Existing MOT datasets focus on closed-set track-
ing on video [18, 24, 83, 90] or LiDAR streams [14, 75].
Recent efforts move towards pixel-precise segmentation of
tracked objects in video [36, 48, 78, 82, 90] or LiDAR se-
quences [3], and study performance in the long tail of ob-
ject classes [16]. Closer to our work is unsupervised video
object segmentation (UVOS) [13] and motion segmenta-
tion [9, 30, 71], where multiple objects that are present
throughout the video and exhibit dominant motion need to
be tracked and segmented. However, almost all classes in
these benchmarks exist in COCO, and almost all methods
[2,47] achieve excellent performance by training on COCO.
Our work explicitly evaluates on classes beyond COCO.

Multi-object tracking. Early methods in vision-based
tracking [27,59,85] and robotic perception [54,76] utilized
class-agnostic, bottom-up segmentation as a tracking cue,
e.g., based on LiDAR point cloud clustering [53, 79] or
background modeling and foreground grouping [32,73,85].
A step forward in vision-based MOT was the tracking-by-
detection paradigm, which relies on pre-trained object de-
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tectors. Early effort focused on developing strong data as-
sociation techniques [11,39,41,50,63,65] and hand-crafting
appearance [23, 49, 52] and motion cues [15, 38]. More re-
cent efforts are largely data-driven, learning strong appear-
ance models [35, 37], learning to regress targets [7] and to
associate detections using graph neural networks [10]. This
progress in closed-set multi-object tracking is largely thanks
to efforts in releasing new datasets, benchmarks, and eval-
uation metrics. However, MOT is currently only evaluated
in well-controlled, closed-set domains, where object classes
are known a priori and are present in training sets.

Beyond closed-world tracking. Tracking-by-detection
approaches have been generalized to generic objects [17,
56, 58] and UVOS [17, 46, 47, 87], using object proposal
methods trained in a category-agnostic manner [28, 62].
However, until recently, there was no suitable evaluation
methodology for the open-world domain, making it unclear
how such methods generalized to arbitrary objects.

Recent parallel work [80] focuses on labeling a variety
of object classes in human-centric Kinetics400 dataset [34].
This work focuses on data collection and proposes to use
the existing closed-world Track mAP [90] metric for evalu-
ation. This metric has recently been heavily criticized [45]
due poor interpretability, lack of sensitivity and a lack of
error-type differentiability, which are especially problem-
atic for evaluating tracking in the open world. Furthermore,
by default, this metric requires exhaustively labeling all ob-
jects, which is infeasible in practice. The data is also lim-
ited to human-centric activities. In contrast, we study open-
world tracking in a significantly more diverse setting includ-
ing videos from multiple different domains, which is cru-
cial for studying open-world problems, resulting in less bias
and more generalization (e.g. avoiding that objects always
appear in the center of frames). Finally, we analyze prior
work on open-world tracking and identify building blocks
of these methods to perform a thorough evaluation of these
efforts and devise a new baseline, shown to work very well
in both, open- and closed-world conditions.

Open-set recognition, detection and segmenta-
tion. Open-set recognition methods [6, 31, 69, 70]
focus on minimizing the confusion between known object
classes, presented to the model during the training, and
unknown object classes, that may (only) appear in the
open world. Object detection has recently been studied
in open-set conditions [20, 51]. By contrast, open-world
recognition methods, as defined by [5, 43] must explicitly
recognize unknown object instances that were not observed
during training, and update object detectors to recognize
these unknown instances. Learning to detect unknown
objects in automotive scenarios was tackled in [55], where
object detectors were re-trained using clusters of unknown
object tracks [56, 57], mined from video. Similarly, [29]
learns to detect unknown object instances by sampling

and clustering object proposals from the void regions
from labeled images and using these clusters as pseudo-
labels during model training. Joseph et al. [33] propose
an extension to Faster R-CNN [66] for distinguishing
known/unknown classes by adding a contrastive objective,
that maximizes the margin between known and unknown
objects in feature space. Unlike these previous works,
we do not study how to minimize the confusion between
known or unknown semantic classes or tackle incremental
learning. We study how well we can identify and track
objects from both known and unknown classes, and we
do not require semantic interpretation of tracked objects.
Instead, we advocate for the view that any-object tracking
is a fundamental problem that should precede recognition.
We see our work as a basis for applying such techniques to
the video domain that intelligent agents observe.

3. Opening up Open World Tracking
Current trackers are limited to specific object classes,

such as people or cars, that are labeled in training datasets
(which we refer to as known objects). We wish to addi-
tionally evaluate trackers on unknown objects, which were
not labeled in the training set. An open-world tracker must
segment and track all objects (both known and unknown)
in videos. Evaluating trackers in this setting is notoriously
challenging. First, densely labeling every object in a video
is prohibitively expensive. Virtually no real-world dataset
labels all objects, typically limiting the labeling cost by la-
beling only a subset of classes (e.g. KITTI [24], MOTChal-
lenge [18]) or instances (e.g. TAO [16]). Second, defining a
generic but consistent notion of an object is difficult [1].

We address these two challenges simultaneously by re-
lying on a recall-based evaluation, inspired by early work
on object proposal evaluation [1, 22] and also adopted for
zero-shot object detection [4] and open-world LiDAR seg-
mentation [84]. Although a precise definition of an object
is difficult to specify, people have a general notion of what
an object is and can label arbitrary objects in a scene [26].
Therefore, we can obtain positive object instances as those
on which multiple human annotators reach a consensus that
something is an object. This allows us to measure how
many ground truth instances a tracker can recall.

Defining the notion of a false positive (FP) is non-trivial
as we can only expect a subset of objects to be labeled. If
we consider unlabeled regions as non-objects (FPs), we may
be penalizing the tracking system for tracking regions that
could still be considered to be valid objects. See Fig. 3 for
an example of objects not labeled in the TAO [16] dataset,
but correctly tracked by our baseline tracker.

Open-World Tracking Accuracy (OWTA). We propose
the OWTA (Open-World Tracking Accuracy) metric for this
task, which is a generalization of the recently proposed
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Figure 3. Unknown unknowns. Examples of unlabeled objects
outside of the TAO [16] vocabulary which are correctly tracked by
our tracker.

HOTA metric [45] for closed-world tracking. OWTA con-
sists of two intuitive terms, the association accuracy (AssA)
and detection recall (DetRe). Both terms are evaluated with
respect to localization threshold α, and the final OWTA
metric is integrated over localization thresholds α:

OWTAα =
√

DetReα · AssAα , DetReα =
|TPα|

|TPα|+ |FNα|
.

The recall term DetRe does not penalize false positives.
This recall-based evaluation is inspired by prior work for
evaluating tasks in the open-world such as zero-shot object
detection or LiDAR instance segmentation [4, 84].

The association accuracy AssA term was recently intro-
duced in [45]. It measures the number of frames in which
the predicted track overlaps with the matched ground truth
track. For each true positive detection in a predicted track
pt which is matched to a ground truth track gt, AssA com-
putes the number of TP associations (TPA, detections in pt
which overlap with gt), FP associations (FPA, detections
in pt which do not overlap with gt), and FN associations
(FNA, ground truth annotations in gt which do not overlap
with pt). AssA is evaluated as intersection-over-union over
TPA, FPA and FNA sets, and averaged over TPs:

AssAα =
1

|TPα|
∑
c∈ TPα

TPAα(c)
TPAα(c) + FPAα(c) + FNAα(c)

.

The adoption of this association term is built on the insight
that it is class-agnostic and does not require a densely la-
beled dataset. This is possible because the FPA term in AssA
is not affected by FP tracks that are not matched to ground
truth. Such a factorization is not possible with other metrics
such as Track mAP [90] and IDF1 [68].

Note that at test time, we require methods to output
tracks as non-overlapping masks, such that each pixel in
each frame must be uniquely assigned to a track or the back-
ground. Thus, to achieve high recall a method must cor-
rectly group and track pixels over time. A trivial solution
that would (theoretically) predict infinitely many tracks is
not possible, as the prediction of any track implies that no
other track can occupy the same pixels. This also aligns
our OWT task with the current trend in tracking research to
focus on tracking objects at a pixel-accurate segmentation
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Figure 4. Examples of known object categories (left) and unknown
object categories (right).

level, and to move away from coarse bounding-box level
tracking. Our task can be understood as an Open-World
version of MOTS (Multi-Object Tracking and Segmenta-
tion [78]) or VIS (Video Instance Segmentation [90]).

4. TAO-OW Benchmark
Defining a precise and reliable benchmark is critical for

enabling progress. Therefore, we propose the Tracking Any
Object in an Open World (TAO-OW) benchmark.

Dataset. Unlike most existing MOT benchmarks [64, 75,
78, 90, 91], the recently introduced TAO [16] dataset cov-
ers a wide range of classes . TAO contains almost 3, 000
videos (including 593 train, 988 validation and 1, 419 test),
comprising 100, 000 annotated frames and 800 object cate-
gories. Importantly, TAO is annotated without pre-defining
object classes: annotators were asked to tag any objects that
move in the video. This results in a long-tailed class distri-
bution (see Fig. 2), which serves as a proxy for the wide
range of objects that could appear in the real world. If we
can build trackers that can track every object in this large
video corpus, we can expect them to generalize to a large
variety of unconstrained and open-world scenarios.

By default, TAO focuses on a closed-world setting,
where all classes are defined with examples that are given
during training. We re-purpose this data for the open-world
setting, by holding out certain classes from training, while
still evaluating on them. We also evaluate on a further 143
classes which are only present in the test set and not the val-
idation set, which we refer to as unknown unknowns. This
enables evaluation in open-world conditions for classes that
were not used for validating model parameters.

The known and the unknown. When selecting a set of
classes for known and unknown sets there are several fac-
tors to consider: (i) there should be a large enough and
varied enough amount of data covering the known classes,
such that we can train models capable of generalizing to a
wider set of classes; (ii) there should be adequate number
of unknown classes remaining to perform a thorough analy-
sis of tracking results for these; and finally (iii), the known
classes should contain classes commonly used in closed-
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Figure 5. TAO-OW classes. Word cloud showing known (left) and
unknown (right) classes in our TAO-OW benchmark, with word-
size proportional to frequency.

world MOT, so trackers trained for the closed-world can
be directly evaluated in the open-world setting. Thus, we
define classes from the COCO [42] dataset as known, con-
taining 80 common classes, including people, animals, ve-
hicles, hand-held objects and appliances.

TAO validation contains 52 of COCO’s 80 classes, with
a total of 87, 358 distinct object tracks – we label these as
the known set of object tracks. TAO validation contains an
additional 209 classes which do not overlap with COCO,
consisting of 20, 522 distinct object tracks. Of these un-
known object classes not present in the COCO dataset, the
most common are fish, towel and pillow with 1274, 1128
and 688 tracks, respectively. This unknown set includes
many interesting and worthwhile-to-track classes; some of
the authors’ favorites include walrus, ice cream, drum, frog,
gift wrap and binoculars. Fig. 4 shows visual examples of
videos for both known and unknown objects. Fig. 5 presents
a word cloud of all known and unknown objects in the TAO-
OW validation set, where the word size is proportional to
the number of annotated tracks per class. To ensure evalu-
ation is not biased by classes similar to known classes, we
identify 41 related classes and mark them as ‘distractors’, as
done in closed-world tracking benchmarks [18, 24]. These
are not used for evaluation. Examples include cab (a special
case of car) and water bottle (a special case of bottle). We
provide details in the supplementary.

Additional considerations. TAO is not densely labeled,
there are many objects with no annotations. This re-
quires special handling for closed-set tracking, where met-
rics would penalize trackers for correctly predicting unan-
notated objects. However, this does not affect OWT,
which uses a recall-based OWTA metric (see Sec.3). Also,
TAO labels objects with bounding boxes, not segmentation
masks, while OWT requires methods to produce mask re-
sults. Since the ground truth boxes are non-amodal (only
cover the visible part of objects), we can evaluate by con-
verting masks to bounding boxes during evaluation.

TAO-OW dataset split. We provide a train, validation and
test split for the TAO-OW dataset, which are adapted from
the original TAO dataset. For training we only retain an-
notations from known classes and remove all other objects.

…

(1) Proposal GenerationInput frames

…

(2) Association and
(3) Long-term Tracking

…

(4) Overlap removal

…

Figure 6. Open-world tracking baseline (OWTB) is inspired by
tracking-by-detection pipeline: we (1) obtain object proposals, (2)
compute cross-frame association scores, that are used to (3) form
and manage tracks, and finally, (4) ensure that conflicts with tracks
occupying same space-time volume are resolved.

The validation set contains all objects from TAO but are
further labeled as either known or unknown depending on
if they match a COCO class. The test set contains all ob-
jects, with classes which were present in the validation set
labeled as known or unknown respectively, and remaining
classes labeled as unknown unknowns. Since the unknown
classes in the validation set can be used to validate design
decisions, in order to test models in a truly ‘hold out’ sce-
nario, we require that the test set contains classes which are
not present in the validation set. These are the unknown un-
known classes. Only by such separation, can we consider
our test set as a valid proxy for the real open-world, beyond
all classes in both the train and validation sets.

5. Designing Open-World Trackers
No benchmark is complete without well thought through

and well-designed baselines. The most closely related
methods [17, 47, 56] are not directly applicable to the TAO-
OW domain: [56] require stereo video, [17] assume objects
move, while [47] assumes that all objects are present in ev-
ery frame.Therefore, a significant contribution of this paper
is the analysis of the principles underlying these methods to
distill a unified framework for open-world trackers.

To devise a strong baseline in such a challenging setting,
we first study the anatomy of tracking-by-detection (TBD)
methodology which has been the dominant MOT approach
for years [18], and study how it can be adapted for the task
of OWT tracking. We observe that standard TBD can be
decompose into four stages (Fig. 6): (1) First, we need to
obtain per-image object proposals. This is followed by (2)
short-term (cross-frame) proposal similarity estimation, a
direct cue for data association; (3) Based on estimated sim-
ilarities we need to associate proposals and manage tracks,
and finally, (4) we need to determine for each pixel a unique
track-to-pixel assignment. In the following we carefully an-
alyze each stage, using the best-performing decisions as in-
put for later stages to reduce the exponential design space.

5.1. Proposal Generation (1)
Following tracking-by-detection design we first need to

obtain image-level evidence the presence of potential ob-
jects. We build on intuition [17, 19, 56] that learned ob-
ject proposal mechanisms, such as Region Proposal Net-
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Overall Small size Medium size Large size

known/unknown 95.4/75.5 91.4/66.1 98.4/85.9 99.7/98.2

Table 1. Recall/size Analysis. Recall for varying object sizes (1k
proposals/image). While models work well for known objects, and
large unknown objects, they struggle on smaller unknown objects.

work [61,62,66] are explicitly trained to distinguish object-
like regions from the background and can thus generalize
beyond object classes observed in the training set, as al-
ready shown in [61, 62]. We base our analysis on the Mask
R-CNN [28] and study how well it generalizes to unknown
objects. We train our model using labels for 80 classes and
first study its performance on TAO-OW’s known and un-
known classes separately. We evaluate this detector as a
proposal generator by using a low score threshold and con-
sider the top 1000 proposals output by the model.

Proposal recall. Tab. 1 shows the recall for both known
and unknown objects of different sizes when disabling non-
maximum suppression and evaluating all 1000 proposals.
Object sizes are relative to the image size: Large (ratio ≥
0.3), Medium (0.03 ≤ ratio < 0.3), Small (ratio < 0.03).
The model performs well for large known and unknown ob-
jects, but significantly worse for small unknown objects.
This indicates that the proposals generalize well to unknown
objects when such objects are large and obvious but are not
able to find these objects as well when they are small.

Since using all 1000 proposals as a tracking cue is not
feasible, we next investigate how to distinguish unknown
objects from the background clutter. In Fig. 7 (left) we show
detection recall vs. number of object proposals for several
different scoring strategies and display area under the curve.
Fig. 7 show that the most confident known class prediction
score (score, ) is not a very reliable ranking cue (0.89
AUC for known and 0.59 AUC for the unknown). The ob-
jectness score (obj., ) estimated by the RPN provides a
significantly better cue (0.92 AUC for known and 0.67 AUC
for the unknown). The background score (bg, ), estimated
as score for none of the classes, e.g. the ‘c + 1’th class for
a c class detector, is reliable cue for unknown objects (0.67
AUC), but not for known objects (0.79AUC). We obtain
most reliable cue by combining the background and object-
ness scores (obj.+bg, ) using the arithmetic mean (0.93
AUC for known and 0.7 AUC for the unknown). We use this
scoring function for the remainder of our experiments. In
conclusion, 2-stage object detectors such as Mask R-CNN
generalize quite well to unknown classes, suggesting they
inherently have both an ‘any object’ detector built in (the
RPN) and an object vs. non-object classifier.

Track recall. In addition to proposal recall, we are inter-
ested in how well tracks are recalled. Fig. 7 (right) shows
the percentage of tracks recalled over different minimum
relative track lengths. Almost every unknown object (97%)
is recalled at least once during its track and over 80% of ob-
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Figure 7. Recall Analysis. Proposal generation recall vs number
of proposals for different scoring methods at IoU threshold 0.5 for
(left) known objects and (center) unknown objects. Right: Track
recall at varying % objects correctly recalled: e.g., 50% detected
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B. IoU + thresh 3 81.0 74.7
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n MaskRCNN euclidean 3 74.3 63.5

7 75.3 73.3

MaskRCNN cosine 3 73.0 64.4
7 75.0 74.2

PReMVOS euclidean * 7 82.3* 77.1*
PReMVOS cosine * 7 82.7* 77.5*

M
ix Flow-Box IoU +

MaskRCNN cosine 7 86.3 81.9

Table 2. Association Similarity Ablation. Top-1 accuracy on
1FPS proposal association classification for various approaches -
see text. Best performing methods colored: 1st, 2nd, 3rd, 4th,
5th. The Inter. column indicates whether ‘intermediate frames’
were used. *Non open-world oracle (trained on unknown classes)

jects are recalled more than half the time. Around 25% of
the unknown objects are recalled in every frame.

5.2. Association Similarity (2)
Tracking requires estimating proposal similarity across

frames to maintain object identity. Since this short-term as-
sociation based on similarity is critical for accurate long-
term tracking, we evaluate it in a controlled setting. We
pose short-term association as a relative classification prob-
lem: Given a proposal corresponding to a specific query
object in frame t, how well can the method identify the
object among N candidate proposals in frame t + k? We
set k to correspond to a 1 second gap, and systematically
evaluate several different approaches proposed in the com-
munity [7, 8, 17, 47, 56]. We outline our analysis in Tab. 2.
Note that all our methods are restricted to training on known
classes and have not seen unknown classes during training.

Appearance-free. We start with simple measures that ig-
nore image content, relying only on intersection-over-union
(IoU) in the ‘Appearance-free’ block. This includes ‘box
IoU’, ‘mask IoU’, and ‘generalized IoU‘ (GIoU) [67]. We
evaluate a strategy (‘box IoU w/ assoc. thresh’) of only
propagating through proposals which have box IoU over a
threshold (0.75) with the previous frame, skipping frames
with low quality matches. We also use a Kalman Filter (KF)
to forecast the box in frame t+k [8,16,17] (‘KF, Box IoU’),
following parameters from [8], before computing IoU.

Regression. To incorporate appearance information in the
motion estimation, we re-purpose an object detector’s re-
gressor [7] to regress the box in frame t+ k (‘Regression’).

19050



We also consider combining this with the KF, by using the
KF forecast as input to the regressor (‘KF, Regression’).

Flow-based. Next, we use optical flow to estimate proposal
motion, following [44, 47]. We use optical flow to warp a
proposal from one frame to the other and use this warped
proposal with varying ‘IoU’ criteria. We also use this flow
warp as input to the ‘Regression’ approach described above.

Re-Identification. We further investigate appearance-based
re-identification (ReID) for similarity estimation, ensuring
that the ReID is trained only on known classes. We re-
purpose the classification layer embedding (1024D) from
our detector for the ReID(‘MaskRCNN’). We also evalu-
ate a “non-open-world oracle” ReID which is not limited to
training on known objects [46] (‘PReMVOS’).

Intermediate frames. As TAO is annotated at 1 FPS, we
evaluate in two settings: direct (comparing frames 1 second
apart directly) and continuous, where the similarity is prop-
agated through intermediate frames (i.e., we estimate sim-
ilarity in one frame, select the most similar proposal, and
repeat for all intermediate frames; denoted ‘Inter. frames’).

Discussion. We find that ‘box IoU’ performs well for
both known (86.4) and unknown (70.7) objects, matching
GIoU and outperforming ‘mask IoU’, which is sensitive
to occlusions and articulated motion. Using a regressor
trained on known objects (‘Regression’) improves associ-
ation for known objects (88.2) but degrades for unknown
objects (65.9). Using a Kalman Filter does not improve
accuracy over Box IoU, and matches ‘Regression’ when
used with the regressor. Using intermediate frames gen-
erally improves known accuracy, but harms unknown ac-
curacy. This is because detectors have low recall for un-
known classes, which makes dense propagation prone to
drifting when propagating proposals across frames. We add
‘B. IoU + thresh’ entry that skips frames containing low
quality matches and increases unknown accuracy to 74.7.
Optical flow improves the results in almost all cases, and
appearance-based ReID with Mask R-CNN features slightly
improve results for known and unknown. The ‘oracle’ PRe-
MVOS ReID [46] improves known, but only slightly im-
proves unknown over flow methods. The most promising
method uses optical flow and box IoU. We hypothesize that
this method may be improved by using Mask R-CNN em-
beddings and evaluate a simple average of the similarity of
these two approaches (‘Mix’). This outperforms other ap-
proaches for unknown by a large margin. Not using interme-
diate frames works well (and is about 30× faster), therefore
we ignore intermediate frames for the rest of our analysis.

5.3. Long-term Tracking (3)
After obtaining object proposals and determining a

method for calculating similarity between proposals over
time, we must now combine all the proposals together into

long-term tracks. We compare (i) simple Hungarian match-
ing, (ii) Hungarian matching with a keep-alive mechanism
to keep tracks alive through occlusions or missing detec-
tions [17], and (iii) UnOVOST [47] that first builds tracklets
using Hungarian matching, and then merges these tracklets
in a second offline step. We observe that while keep alive
strategy (39.7 OWTA for unknown) increases association
recall over simple Hungarian matching (39.8 OWTA for un-
known), however it does so at the loss of the association
precision. Offline tracklet merging outperforms the two al-
ternative strategies (40.2 OWTA for unknown). We provide
detailed results and analysis in the supplementary.

5.4. Overlap Removal (4)
In open-world tracking scenarios we need to rely on ob-

ject proposals for tracking. Thus we can hypothesize several
possible explanations of the observed evidence (i.e., object
proposals overlap). However, OWTB tracking task requires
unique assignment of pixels in the video to one of objects
or background. First strategy (‘non-overlap then track‘) re-
solves overlaps on the proposal level, and then performs
tracking. The second approach (‘track then non-overlap‘)
follows [56] and performs tracking first on the set of (pos-
sibly) overlapping proposals. Each track as a whole is then
scored using the mean score of each proposal in a track and
track suppression is performed within the video volume. In-
tuitively, the second approach should perform better as it
can account for temporal context, however, the association
problem becomes significantly more complex. We observe
that differences between the two approaches are marginal
(we provide detailed results and analysis in the supplemen-
tary). The simpler ‘non-overlap then track‘ approach pro-
duces slightly better results. This is different to findings re-
ported in [56] and where (i) this strategy benefits from depth
information and (ii) relies on quadratic pseudo-boolean op-
timization [41] that is infeasible to apply at this scale.

6. Evaluation
After analyzing several design choices for open-world

tracking, we settle on a tracker that uses both optical flow
and re-id similarity scoring and combines these into final
tracks using tracklet merging. We call our final tracker
OWTB (Open-World Tracking Baseline).

Tab. 3 reports the final results of our OWTB tracker on
the TAO-OW validation set. First, we compare OWTB to
SORT [8] and Tracktor [7], both using same set of input
proposals as OWTB (see Sec. 5.1). As can be seen, OWTB
performs significantly better compared to SORT in terms of
detection recall (+9.6 for known and +3.9 for unknown),
association accuracy (+13.1 for known and +3.6 for un-
known) and, consequentially, OWTA (+13.2 for known and
+4.9 for unknown). This highlights that (i) a better tracking
mechanism leads to a larger number of unknown objects be-

19051



Known Unknown Unknown-Unknown
Method OWTA D.Re A.Acc A.Re A.Pr OWTA D.Re A.Acc A.Re A.Pr OWTA D.Re A.Acc A.Re A.Pr

Va
l

SORT [8] 46.6 67.4 33.7 39.7 56.4 33.9 43.4 30.3 34.2 57.5 – – – – –
Tracktor [7] 57.9 80.2 42.6 43.6 94.4 22.8 54.0 10.0 10.4 96.6 – – – – –

OWTB (Ours) 60.2 77.2 47.4 59.1 57.9 39.2 46.9 34.5 42.6 48.9 – – – – –
OWTB (w/o N.O.) † 60.8 82.0 45.5 57.3 56.3 42.4 58.9 31.5 39.5 46.8 – – – – –

AOA*† [21] 52.8 72.5 39.1 48.8 53.6 49.7 74.7 33.4 41.1 51.1 – – – – –
SORT-TAO*† [16] 54.2 74.0 40.6 45.0 67.3 39.9 68.8 24.1 28.9 51.6 – – – – –

Te
st

SORT [8] 46.6 67.1 33.7 39.5 56.0 32.0 42.2 26.0 30.3 53.7 34.3 44.7 28.2 32.5 56.5
Tracktor [7] 57.9 79.7 42.9 43.9 94.5 23.8 53.8 11.0 11.4 96.2 26.3 57.9 12.4 12.8 96.2

OWTB (Ours) 60.3 76.8 47.8 59.4 58.1 38.5 45.9 33.8 42.4 49.0 41.5 48.9 36.5 45.4 52.3

Table 3. Results of our OWTB on the TAO-OW val. and test set. We report results in terms of our proposed OWTA metric, and addi-
tionally compare methods in terms of Detection Recall (D.Re), Association Accuracy (A.Acc), Association Recall (A.Re) and Association
Precision (A.Pr). On the val set we compare our final Open-World Tracking Baseline (OWTB) to previous SOTA trackers on TAO-OW
val. For the test set, Unknown classes are the same as those present in the val set, while Unknown-Unknown classes are further unknown
classes only present in the test set. *: Non open-world (trained on unknown classes), †: contains overlapping results.

ing tracked, and (ii) that our method produces longer tracks
in these challenging scenarios due to a higher association
recall. Association precision slightly drops (for unknown
objects) compared to SORT, which is not surprising, as we
are tracking a larger number of objects. Tracktor [7] almost
doesn’t incorrectly merge objects at all (high A.Pr), but also
doesn’t merge them correctly very often either (low A.Re),
resulting in an overall worse A.Acc. score than OWTB, es-
pecially for unknown objects. Tracktor, however, gets a
boost in D.Re over OWTB because it is able to produce
more proposals in each frame than the ones given to OWTB.

As an oracle, we compare to two methods (AOA [21]
and SORT-TAO [16]) that are state-of-the-art on closed-
world TAO. These comparisons are for reference only, as
these methods are trained on unknown classes, and thus are
not open-world trackers. They also do not produce non-
overlapping results. To analyze the impact of the non-
overlapping constraint, we also evaluate OWTB without
forcing non-overlaps. This results in slightly better scores
for both known and unknown classes, with the detection-
recall improving significantly, while the association recall
and precision slightly drop. OWTB performs much better
than both previous SOTA closed-world trackers for known
classes due to its strong design. However, it falls behind
for unknown objects, since both oracle methods have been
trained to both detect and track these unknown objects, re-
sulting in higher detection recall and association accuracy.
This highlights the open challenges in open-world tracking.

TAO-OW Test-set Evaluation. We evaluate and analyze
OWTB on the TAO-OW validation set, where we have cho-
sen the best design decisions via tuning. To test our tracker
truly in the open-world, we further evaluate OWTB on the
TAO-OW test set, which contains both known, unknown and
unknown unknown classes (unknown classes that are not
present in the validation set). Tab. 3 shows that our OWTB
performs similarly between the validation and test sets for
known and unknown objects. Most importantly, our method
performs similarly on the set of unknown unknown classes
(unique to the test set) as it does on classes present in vali-

dation. We hope our result will be the first of many on the
TAO-OW benchmark for Open-World Tracking.

OWTB vs. previous closed-world trackers. Does a
tracker designed for performing well in open-world track-
ing also work in the traditional closed-world scenario? To
test this, we evaluate our OWTB on two previous track-
ing benchmarks, DAVIS unsupervised [13] and KITTI-
MOTS [78]. We summarize our findings and provide de-
tailed results discussion in the supplementary. For DAVIS
we use our own proposal-generation method and rank sec-
ond (65.5 J & F), outperforming several recent meth-
ods [2, 25, 72, 77, 81, 92], except UnOVOST, all fine-tuned
for segmenting dominantly moving regions (67.9 J & F).
On KITTI-MOTS we use public detections supplied by the
benchmark and compare to TrackR-CNN [78] (56.5/41.9
HOTA) and recent PointTrack [89] (61.9/54.4 HOTA), that
use the same detection set. Our OWTB outperforms both
methods for the car class (64.0 HOTA) and ranks second
for the pedestrian class (52.7 HOTA) All other methods are
specifically tuned for the benchmarks and the classes, rein-
forcing the strong generalization capability of our method.

7. Conclusion
With this paper, we hope to light a spark in the heart

of the tracking community, by opening up the potential
of Open-World Tracking. We have defined Open-World
Tracking as a task, motivated its importance, and presented
a benchmark and precise evaluation procedure. We propose
a general paradigm for tackling open-world tracking and an-
alyze a wide range of design decisions within this paradigm.
Our analysis results in a tracker that works well for both
open-world and closed-world tracking. We are excited to
announce that Open-World Tracking is open for business.
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