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Abstract

The industry practice for night video surveillance is to
use auxiliary near-infrared (NIR) LEDs, usually centered
at 850nm or 940nm, for scene illumination. NIR LEDs are
used to save power consumption while hiding the surveil-
lance coverage area from naked human eyes. The captured
images are almost monochromatic, and visual color and
texture tend to disappear, which hinders human and ma-
chine perception. A few existing studies have tried to con-
vert such NIR images to RGB images through deep learn-
ing, which can not provide satisfying results, nor generalize
well beyond the training dataset. In this paper, we aim to
break the fundamental restrictions on reliable NIR-to-RGB
(NIR2RGB) translation by examining the imaging mecha-
nism of single-chip silicon-based RGB cameras under NIR
illuminations, and propose to retrieve the optimal LED mul-
tiplexing via deep learning. Experimental results show that
this translation task can be significantly improved by prop-
erly multiplexing NIR LEDs close to the visible spectral
range than using 850nm and 940nm LEDs.

1. Introduction
A visual surveillance system should ensure continuous

and stable capture of high-quality images all day long.
However, images of a scene will appear quite different due
to the change of ambient illumination. During the daytime,
the camera works well under sufficient daylight, while the
result is not satisfactory when the visible light is little. In
order to improve the imaging quality, one general idea is
to utilize additional illumination to enhance images, akin to
the case for ordinary cameras that add a flash unit to in-
crease lighting or lengthen the exposure time. However,
the long exposure can cause motion blur [4], and the usage
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of white light will easily reveal the surveillance coverage,
which is unwanted in many application cases.

Since human eye is not sensitive to light with a wave-
length above 720nm, near-infrared (NIR) LEDs have been
widely used for night-time surveillance. NIR LEDs take
advantage of the sensitivity of the camera’s silicon sensor
around the NIR band, making it possible to obtain visual
information in the absence of visible light. Specifically,
850nm and 940nm narrow-band NIR LEDs are commonly
used in surveillance device. But in most cases, the ac-
quired images with NIR LEDs will still lose much color
and texture information even if issues regarding brightness
and noise do not exist. The reasons can be in two folds:
1) Camera spectral sensitivity (CSS) of three RGB chan-
nels almost overlap around both 850nm and 940nm, so it is
hard to record ’color’ (RGB three-channel variance). 2) Re-
flectance spectra of many materials become indistinguish-
able beyond 850nm. It makes one-to-one mapping difficult.

There are recent works [11, 14, 22, 23] trying to recover
RGB directly from NIR images, but the quality of recovered
RGB images is limited. The fundamental restriction lies in
the fact that the mapping between NIR and RGB becomes
ambiguous when using existing 850nm and 940nm LEDs
for illumination. Therefore, a natural question is how to find
a combination of LEDs such that the NIR2RGB translation
task will be more well-posed. In this paper, we propose to
retrieve the optimal LED multiplexing to reasonably maxi-
mize the distinguishability of different materials in the NIR
band, and finally to achieve stable NIR2RGB restoration.

Based on the principle of camera imaging, we estab-
lish two criteria for finding the optimal LED spectral mul-
tiplexing: First, based on typical spectral curves, we set
the goal of maximizing the number of distinguished col-
ors, and the optimal LED spectral multiplexing should max-
imize the overall three-channel color variations. Second,
more directly, the optimal LED combination should corre-
spond to the smallest NIR2RGB image reconstruction er-
ror. Through deep learning, we directly minimize the re-
construction loss of NIR2RGB, and get the LED spectral
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multiplexing that might be physically realized by lighten-
ing a set of LEDs. The main highlights of this work are:

1) Rather than simply developing another network for
NIR2RGB translation, we bring a novel perspective to the
community on how to robustify this task by engineering on
the illumination multiplexing of existing NIR LEDs.

2) We propose two optimization schemes for retrieving
the optimal LED spectral multiplexing: i) maximizing the
number of distinguishable colors based on the variance of
typical reflectance spectra; ii) minimizing NIR2RGB trans-
lation error directly. To our best knowledge, this is the
first work on optimal LED spectral selection for NIR2RGB
translation. As such, the translation is achieved in a more
lightweight way to achieve effective nighttime imaging
compared with the majority line of works [5, 13, 25–27, 29]
on developing complex enhancement models.

3) We have collected and released a Hyperspectral
Images (HSIs) dataset named IDH (Indoor-Darklight-
Hyperspectral images) to supplement the existing HSI
datasets in terms of quality and quantity. To the best of
our knowledge, IDH is the first wide-range HSI dataset that
simulates night surveillance imaging. The experimental re-
sults show that high-quality RGB image generation can be
effectively achieved with our method.

2. Related Work
Low-light Image Enhancement. Many methods have

been proposed to enhance low-light images in the visible
range. Histogram equalization [1] tries to broaden gray
scale distribution without denoising the image. Retinex [19]
can be used for low-light image enhancement through layer
separation and composition. Recently, researchers are
committed to applying Deep Learning to image enhance-
ment. Models like Low-light Net [12], Multi-Scale Retinex
Net [21] and Single Image Contrast Enhancement [3] all
have good experimental results, when the environment still
has weak illumination. Nevertheless, they tend to fail in
darker environment, e.g. wild field with sky light only,
where the captured RGB signals are almost indistinguish-
able from noise. We target at this challenging scenario but
introduce NIR LED illuminations to avoid the SNR issue.

Colorization. Current colorization methods are mainly
developed for RGB restoration from the grayscale images.
[6] implements gray-to-rgb restoration based on the op-
timization of Euclidean distance between prediction and
ground truth (GT). [27] shows better results in saturation
and color richness. In their methods, color prediction mod-
ule performs multi-mode modeling through utilizing Deep
Learning to increase choices of color predictions in each
pixel. In addition, methods of [8, 10, 26] also obtain ex-
cellent colorization results. All these work including ours
are translating colorless images to RGB ones. However,
colorization from gray scale images only needs to restore

chrominance information, since luminance is included in
the input already. In contrast, the NIR2RGB task is more
challenging, since it has to deal with chrominance and lu-
minance recovery from an input with domain gap.

NIR2RGB. NIR light is invisible to human eyes, yet can
be captured by silicon-based sensors. So it is appropriate for
low-light imaging. To recover RGB images, [11] proposes
a deep convolutional neural network (CNN) for NIR2RGB
translation. The idea is to train a direct transfer network
between RGB and NIR images without any guidance in
the recall phase. [22] puts forward NIR images coloriza-
tion method based on CNN and GANs. The model learns
three channels independently, and thus the convergence can
be faster. However, their results are insufficient in both con-
trast and luminance. The fundamental obstacle lies in the
ambiguity of the mapping, when dealing with NIR images
captured under the widely used 850nm and 940nm LEDs.

Very recently, [24] tries to enhance weak RGB singals
with the assistance of a bright image captured under deep
red flash illumination. Although the selection of 680nm
deep red light is rooted in the characteristic of human eye
sensitivity, a key factor that we rely on as well, this work
is fundamentally different from ours. Firstly, they assume
weak RGB signals for chrominance, yet we use NIR in-
formation only. Secondly, they assume that the IR-cut fil-
ter is equipped and thus can not receive any light longer
than 700nm. We work in the NIR range beyond 700nm,
for which the human eye sensitivity is weaker, and try to
translate the NIR image into RGB.

3. Methodology
As discussed above, existing solutions have difficulty in

achieving stability and effectiveness for NIR2RGB trans-
lation. To solve this problem, besides optimizing model’s
translation capability as done in previous works [9] and fur-
ther developed in our work, another key is to find an optimal
LED spectral multiplexing (LSM) to get NIR images which
refers to the major technical novelty of this paper.

In the following part, Sec. 3.1 introduces our proposals
for selecting optimal LSM. Sec. 3.2 presents the module for
NIR2RGB translation based on U-Net [20] and GANs. In
addition, more details are provided in Sec. 3.3. The whole
framework of the proposed method is shown in Fig. 1.

3.1. Optimal LSM Selection Module

We have tried to directly input a fixed combination of
LEDs for RGB translation. Different inputs lead to very dif-
ferent results, and better results have a tendency to choose
certain LEDs. Therefore, we believe that it is necessary to
design the selection modules for the optimal LSM search-
ing, which are based on different theories.

RGB Variance Maximization (RVM). Even if the im-
age taken in the NIR band has three-channel, it is similar
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Figure 1. Our approach combines optimal LSM selection and RGB translation into a unified CNN-based framework. The optimal LSM of
RVM (RGB Variance Maximization) and TLM (Target Loss Minimization) enter our translation module in parallel, which is abbreviated
as one pipe. The black and red arrow shows the training and testing stage, respectively.

to that of a single-channel gray scale image to human eyes.
The reason is that the RGB response values in the NIR band
are almost the same among the channels. For the reflectance
spectra of many objects, the corresponding RGB intensi-
ties are very close, so the captured image looks grayish. If
our selection module can make pixels of specific material
and color carry more information, it will definitely help the
effect and robustness of subsequent NIR2RGB translation.
We believe that such information can be shaped by a suffi-
ciently large intensity variance of the RGB channels.

With this idea, we need to determine the source of the
colors as the typical spectral curves (TSC). We compare two
schemes: 1) using the standard ColorCheck [15] to gener-
ate TSC; 2) clustering all spectra in the training set to ob-
tain TSC. Considering that the LSM obtained from a certain
dataset is susceptible to the distribution of the dataset, while
the standard ColorCheck with typical colors is more stable,
we choose to use ColorCheck to generate TSC.

The three-channel’s response I of light intensity is ob-
tained via photoelectric conversion. This process of acquir-
ing I can be formulated as:

Ii =

∫
NIR

(Ti,w · Lw · Cw)dw +Ni, i ∈ N, (1)

where Lw and Cw represent NIR LED spectrum (NLS) and
camera spectral sensitivity (CSS), respectively. Ti,w rep-
resents the spectral curve of the i-th color in ColorCheck.
Ni refers to the overall noise of the system, including the
dark current noise of the camera and Gaussian white noise,
and these two noise can be largely eliminated by averaging
several independent measurements.

Note that TSC and CSS are both fixed, then what deter-
mines I is the LED with a different spectrum Lw. Hence,
for each LSM, there is a response I of N typical colors. We
enumerate every possible LSM in a brute-force way, get the
corresponding I by Eq. 1, and calculate the variance of the
RGB three-channel intensity of each color. Direct summa-
tion of variance from different colors inevitably leads to the
loss of information, and makes it harder for the model to
restore more colors. Thus, we set a threshold k to count the
number of colors whose variance reaches the threshold in
each LSM. Pick the LSMs with the largest number and take
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Figure 2. The process of optimal LSM (LED spectral multiplex-
ing) selection based on TLM: 1) extract a set of NIR images from
HSIs with their respective LSM; 2) split the NIR images into three
channels; 3) use the same selection module on each channel’s im-
age set to select images; 4) synthesize the three channel’s selected
images into NIR images.

their mean as the final result:

MEAN(Ivar), Ivar =

{
lsm , var ≥ k

0 , others
(2)

Target Loss Minimization (TLM). In addition to RVM
selection based on intuition, we also design another selec-
tion module based on target loss, which can be integrated
with the subsequent translation module. The comparison
and integration of these two schemes are shown in Sec. 4.

In order to select the optimal LSM, NIR images for each
HSIs are synthesized under all LSM at the first of the cor-
responding dataset. Let Cj(j = 1, ..., J) represent the j-th
LSM. Then, the synthesized NIR image via the j-th LSM
and the t-th HSI of the training dataset can be given by:

Yj,t = CjXt. (3)

For each scene in the dataset, by stacking all the NIR images
with every LSM, the selection network gets the input:

yt = stack(Y1,t, ...Yj,t, ..., YJ,t). (4)

According to the imaging principle, synthesizing images
can be seen as adding the corresponding intensity of RGB
channels from NIR images. In the selecting procedure, we
design a module based on CNN for the optimal LSM selec-
tion. Notice that the weights in the layer of selecting should
be positive, as negative NIR in real life is meaningless.
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After the stack for the NIR images with all the LSM from
HSIs, the optimal LSM selection is equivalent to the NIR
images selection in yt, as shown in Fig. 2. The NIR image
channels are separated into three channel branches, which
are inputs of our selecting module V . The size of V is J ×
1 × Oi, where Oi = 1 is the number of the output in i-th
channel. Therefore, the output of V can be described as:

Yt = stack(V ∗ yt(R), V ∗ yt(G), V ∗ yt(B)), (5)

where yt(R), yt(G) and yt(B) denote all the channels in yt.
The weights in V can be determined by minimizing the

mean squared error under the positive sparse constraint be-
tween the selected NIR image Yt and the corresponding op-
timal multiplexing NIR images:

Ls(V ) =
1

T

T∑
t=1

∥Yt(V )− Ŷt∥2, s.t.V ≥ 0, (6)

where Yt is the t-th output, and Ŷt is the t-th corresponding
optimal LSM. V is the weights of the selection module here.

3.2. RGB Translation Module

Strictly speaking, RGB here refers to the RGB image in
the visible light band. The main purpose of the translation
between the two image types is to learn the nonlinear map-
ping from NIR to RGB space. For this purpose, we build
the translation model based on conditional GANs with [9].

For the generator G in GANs, the input and output are
the same in resolution and structure, which means that G
should not only extract the feature of the input NIR image,
but also have to recover it to the RGB image with the same
structure and resolution. For the requirement of this sym-
metrical architecture, we design a U-Net with 16 layers as
the base structure. In the network G, the inputs pass through
8 layers of down sampling. After the middle of the network,
the process is reversed to up sampling. Besides, there is a
skip connection between layer i and layer 16-i, which con-
catenates every channel between these 2 layers and provides
more low-level information to help translation.

For the discriminator network D, it is used to give the
probability of whether the output of network G can be dis-
tinguished from the ground truth or not. We create an N×N
patch on the output image which is called PatchGAN . It
judges with L1-loss on every N ×N patch in the image and
tries to classify if the patch is real or not. After the patch
goes through the image via convolution, an average result
of responses is obtained as the output.

3.3. Learning Strategy

Selection and translation modules are two main parts of
our model. During the training process, the result of RVM
is input to the RGB translation module as one optimal LSM

ICVL TokyoTech IDH (ours)
Scale

(Scenes × wavelengths) 201×480 16×59 112×(36+3)⋆

Shooting Environment outdoor indoor indoor
Real Shot RGB† ✓ ✕ ✓

White Balance‡ ✕ ✕ ✓

Table 1. Dataset comparison. ⋆: 36 refers to the number of wave-
lengths used to synthesize NIR images (650nm-1000nm), and 3
refers to the RGB images of each scene obtained in the visible
light band with our 15S5C camera .†: Both ICVL and IDH have
real shot RGB images, while one has to use white light LED spec-
trum to generate RGB images in TokyoTech. ‡: Only IDH adjusts
the white balance, which can reduce the color shift.

choice. As for TLM, a large set of LSMs and HSIs are
given, whereby multiple NIR images can be synthesized
from the HSI sets with different LSMs. Then, put the NIR
image set into the network to search for the optimal LSM
and its corresponding NIR images for RGB translation. The
optimization of the discriminator promotes the images gen-
erated by the generator to be closer to the recovered RGB
images, and finally we can use the well-trained generator to
realize NIR2RGB translation. When testing, the input NIR
image is obtained under the selected LSM, and its corre-
sponding RGB image will be obtained by feeding NIR one
into the generator of translation module, which has already
been trained in the former process.

The parameters of the RGB translation module are de-
noted by α. For the generator G in GANs, its objective has
two parts: 1) L1 distance between the output of G and the
ground truth; 2) MSE of the discriminator D’s output with
the correct judgment. Thus the objective Lt is written as:

Lt(α) =
1

T

T∑
t=1

∥D(Gt(Yt, α))−1∥2+λL1(Gt(Yt, α), Zt),

(7)
where Gt is the t-th output, Yt is the corresponding selected
NIR image from the LSM selection module. Zt is the cor-
responding ground truth. λ is a predefined parameter.

The joint training of the entire network is by minimizing:

L = Ls(V ) + τLt(α), (8)

where τ is a predefined hyperparameter. Note that in
Eq. 6, Ŷt that corresponds to the selected optimal LSM has
no need to be labeled in the joint training process, hence
∥Yt(V ) − Ŷt∥2 can be ignored and we replace it with the
largest value in V as the corresponding LSM. With this se-
lection, the NIR image can be synthesized and be input to
the translation module to obtain the RGB image.

Since the value in V should be non-negative, all the
weights in the convolution layer are initialized as positive
by uniform distribution, and all the negative numbers calcu-
lated in the backward propagation later will be set to zero.
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Figure 3. Our equipment (left) and scene (right) of preparing IDH,
which is composed of 5 components marked with colored boxes.
A: IDS UI-3860CP Grayscale Camera; B: FLIR BFLY-13S2C
Color Camera; C: THORLABS Kurios-XE2 Tunable Filter (range
from 650nm to 1000nm with 10nm interval); D: Beam Splitter; E:
FLIR GS-U3-15S5C Color Camera.

4. Experiments
4.1. Setup and Protocols

Datasets. Three groups of spectral data are used for eval-
uation: 1) HSI. HSIs are stacked by the reflectance spec-
trum of the scene at different wavelengths. The wavelength
range covers from 420nm to 1000nm. According to the
light sensitivity of the human eye [24], 420nm-700nm is
used for the synthesis of visible light band (RGB) images,
and 700nm-1000nm is used for NIR image synthesis. The
main sources of HSIs we use are: ICVL [2], TokyoTech [17]
and Indoor-Darklight-Hyperspectral images (IDH). Details
of these three HSIs are shown below. 2) NIR LED Spec-
trum (NLS). We measure the spectrum of 14 narrow-band
LEDs, whose energy mainly concentrated between 700nm
to 1000nm. Our optimal LSM is the combination of these
LEDs. Besides, in the visible light band, we also test a white
light LED (Panasonic-PremiumX) for RGB image restora-
tion. 3) CSS. We measure the response curves of three cam-
eras after removing the IR-cut filter: FLIR GS3-U3-15S5C,
FLIR BFLY-U3-13S2C and EO 2113C. The CSSs are dif-
ferent as the silicon modules in these cameras are different.

Both ICVL and TokyoTech are public hyperspectral
datasets. HSIs in ICVL are taken in sufficient light by using
a Specim PS Kappa DX4 hyperspectral camera and a rotary
stage for spatial scanning, and most of them are captured
outdoors. HSIs in TokyoTech are captured indoor by using
a monochrome camera and two VariSpec tunable filters.

It requires reflectance spectrum in the NIR band, while
most open source datasets have only a narrow wavelength
range in the visible light band. ICVL and TokyoTech are
very few datasets that can meet our needs, but the ICVL
do not include indoor scenes, and the scale of TokyoTech
is not large enough. Thus, we have photographed IDH to
expand the scale/diversity of the broad-range hyperspectral
image dataset. See Tab. 1 for a more detailed comparison
among these datasets. Fig. 3 shows the equipment and scene
where images are collected for IDH. We use a fiber light
source with a halogen lamp that emits both visible and NIR

light. The UI-3860CP grayscale camera, together with the
Kurios-XE2 tunable filter, is used to record spectral images
from 650nm to 1000nm, at 10nm interval. The 15S5C cam-
era is used to record the RGB image. These two cameras
are accurately aligned through geometric calibration. The
13S2C camera is used to capture RGB images for test.

Data Processing. 1) The wavelength intervals of
datasets are different. The intervals of NLS and HSIs in
ICVL are 0.76nm and 1.25nm respectively, while the inter-
vals of CSS and HSIs in TokyoTech and IDH are 10nm due
to the sampling accuracy of tunable filter. We set all in-
tervals to 10nm for alignment. 2) Since the LEDs we use
are of narrow-band, the illumination intensity is mainly dis-
tributed near the crest (about 60nm) and is very low at other
wavelengths. Intensity lower than the detection threshold
turns out to be negative due to inaccuracies in dark com-
pensation. We set them to zero directly, as the value of
NLS will affect the weight of the corresponding LED in our
model, while negative response makes no sense to the ac-
tual situation. 3) When synthesizing NIR and RGB images,
the white balance is adjusted to prevent colors from shift-
ing too much, and all RGB images (except for the real shots
in IDH) are synthesized by the same white LED mentioned
above, so that the overall tone of the image is more stable.

Metrics. The quality of the restored image is the cri-
terion for evaluating the performance of both models and
LEDs. Peak Signal to Noise Ratio (PSNR), SSIM (Struc-
tural Similarity), and Root-Mean-Square Error (RMSE) are
utilized to quantify the difference between restored images
and ground truth. Delta-E is used to evaluate the color qual-
ity of restoration. Specifically, PSNR is the most common
and widely used objective measurement method for com-
paring within RGB images. SSIM shows the similarity of
brightness, contrast, and spatial structure. When the value
turns out to be 1, it means these two images are the same.
RMSE represents the square root of the differences between
predicted values and observed values. And the Delta-E in-
dicates the average chromatic aberration between ground-
truth and the restored image, the lower the score, the harder
for human to distinguish the two colors.

Baselines. This part, we design multiple experiments for
comparison, and results are listed in Tab. 2. Note that all the
methods involved can be used for NIR2RGB translation.

In the first group, several colorization methods based on
deep learning are chosen for comparison. In addition to
[27] mentioned in Sec. 2, the work [5] trains a network with
the consistent reflectance of paired low/normal light images
and smoothness of illumination. MBLLEN [13] achieves
a good performance in the real night-time scene, since this
network can handle various factors simultaneously includ-
ing brightness, contrast, artifacts, and noise. The results
of all these methods are the mean of multiple experiments.
In [7], two low-light image enhancement techniques are

12656



GTSIG17 Retinex-Net MBLLEN LIME ECCV16 DUAL Random RVM TLMUNIT CUT FastCUTCycleGAN Colorization

Figure 4. Visual quality comparison on ICVL in typical scenes.

Methods PSNR (dB) ↑ SSIM ↑ RMSE ↓ Delta-E ↓
SIG17 [27] 12.52 0.52 10.55 10.49
Retinex-Net [5] 8.99 0.23 10.35 13.06
MB-v1 [13]† 11.11 0.56 10.32 11.05
MB-v2 [13]† 12.26 0.46 10.55 11.00
LIME [7] 8.51 0.33 10.45 13.83
ECCV16 [26] 12.96 0.52 10.54 10.54
DUAL [25] 11.86 0.39 10.52 11.95

CycleGAN [28] 22.31 0.76 8.42 8.18
Colorization [9] 16.95 0.55 9.85 14.97
UNIT [16] 21.58 0.70 9.05 11.14
CUT [18] 20.50 0.62 8.80 10.03
FastCUT [18] 19.47 0.59 9.35 11.19

850nm‡ 22.01 0.62 8.54 8.68
940nm‡ 21.85 0.65 8.46 8.61

Random⋆ 22.94 0.68 8.30 8.60
RVM (Ours) 24.21 0.80 8.01 7.33
TLM (Ours) 24.53 0.80 7.74 7.28

Table 2. Restoration of different methods under the CSS of FLIR
GS3-U3-15S5C. The first two groups contain various methods in
Sec. 4.1, all the model have been trained on ICVL, and the input
is the same with our model. The last two groups contain the re-
sults based on our translation module with industrial LEDs and our
LSM selection. †: For the compared method MBLLEN (MB), two
models v1 and v2 are trained using low-light images with Pois-
son noise and images without additional noise respectively. ‡: The
restoration process is done by our translation module. ⋆: Remove
the selection module of our model and replace it with a randomly
generated combination to put into translation module.

proposed via illumination map estimation. Both methods
are based on Retinex modeling, aiming to estimate the illu-
mination map by preserving the prominent structure of the
image while removing redundant texture details. In [26],
an approach is devised to produce vibrant and realistic col-
orizations, with promising results in both gray-scale images
and NIR images. And [25] uses automatic exposure correc-
tion to produce high quality results for low-light images.

The second group also contains several classical meth-

ods for image-to-image translation and colorization. Cy-
cleGAN [28] is a method for style translation between two
domains, which achieves the migration between source and
target without establishing one-to-one mapping between
NIR and RGB images. Colorization [9] aims to colorize a
grayscale image, that is, changing black-white images into
color ones. UNIT [16] makes a shared-latent space assump-
tion and proposes an unsupervised image-to-image transla-
tion framework based on Coupled GANs. CUT and Fast-
CUT [18] propose to directly establish a corresponding re-
lationship between two domains based on contrastive learn-
ing to maximize their mutual information. For fair compari-
son, we feed the synthesized images under the optimal LSM
with the TLM criteria for all methods. When evaluating, all
methods have been retrained on our data. The input image
is synthesized using the CSS of FLIR GS3-U3-15S5C with
the original hyperspectral data from ICVL. As the LSM of
TLM is already known, the input data can be synthesized
individually, and the input of these methods is the same as
TLM in our model. In addition, Colorization have to take
one more preprocess step, that is to translate the synthesised
NIR images and RGB images into Lab space to get the real
input and ground-truth respectively.

We compare our optimal LSM with the NIR LEDs as
commonly used in surveillance. We take out the 850nm and
940nm LEDs as the input of our translation module sepa-
rately. Finally, to verify whether the combination of trans-
lation module and selection module has better results, we
remove selection module and generate a random combina-
tion for translation, and this step can also be regarded as a
comparison with the efficient image translation model.

4.2. Main Results

Tab. 2 lists comparison of baselines and our method on
metrics, Fig. 4 and Fig. 5 are the corresponding visual dis-
plays. Results show that our method has advantage both in
terms of reconstruction metrics and image quality. Tab. 4 is
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Dataset ICVL TokyoTech IDH
Metrics PSNR SSIM RMSE Delta-E PSNR SSIM RMSE Delta-E PSNR SSIM RMSE Delta-E

15S5C RVM 24.2054 0.8005 8.0120 7.3325 16.5380 0.6247 9.1241 13.4263 26.0707 0.8006 6.1820 4.5289
TLM 24.5263 0.7938 7.8438 7.2782 16.3309 0.6408 9.2550 13.6712 25.0017 0.7871 6.4829 4.9443

13S2C RVM 25.5941 0.8343 7.6359 6.4647 17.8095 0.6946 9.1302 12.0473 25.3464 0.8063 6.1364 4.8523
TLM 24.9453 0.8064 7.7102 6.8793 17.0359 0.6885 9.4096 12.9665 25.9891 0.8164 6.2660 4.6960

2113C RVM 24.0810 0.7884 7.8578 7.4591 16.2189 0.6245 9.2569 13.6378 - - - -
TLM 24.2325 0.7884 7.8578 7.2572 16.2743 0.6547 9.3188 13.6128 - - - -

Table 3. Results of translation from NIR to RGB in different conditions by the proposed method.

LED 739 760 768 796 804 818 845 852 872 888 894 923 948 973

15S5C RVM 0.2465 0.3221 0.2869 0.0573 0.0221 0.0110 0.0072 0.0080 0.0066 0.0058 0.0058 0.0057 0.0053 0.0050
TLM 0.1538 0.4615 0.3846 0 0 0 0 0 0 0 0 0 0 0

13S2C RVM 0.2196 0.2945 0.2528 0.0820 0.0377 0.0217 0.0127 0.0141 0.0098 0.0089 0.0089 0.0095 0.0099 0.0095
TLM 0.0833 0.4861 0.4306 0 0 0 0 0 0 0 0 0 0 0

2113C RVM 0.1235 0.7059 0.1706 0 0 0 0 0 0 0 0 0 0 0
TLM 0.1266 0.4051 0.3544 0.1139 0 0 0 0 0 0 0 0 0 0

Table 4. The optimal LSM ratio of ICVL in selection module with different CSS. Values are all normalized and 0 denotes less than 10−4.

the optimal LSM in selection module after training. Tab. 3
and Fig. 6 show the results of our method based on differ-
ent camera and dataset, and the results show that our method
implements NIR2RGB efficiently and with good quality.

Does Selection Module Work? Fig. 5 shows the com-
parison between the commonly used LEDs in the industry
and our optimal LSM, both of them are individually trained.
Obviously, the output of selection module directly affect the
recovery performance of our model and our selection mod-
ule do find a better LSM. According to Tab. 2, the results of
TLM are slightly better than those of RVM. Note that TLM
is related to camera type and dataset while RVM only cam-
era, hence we can draw a conclusion that TLM gives better
results with specific dataset and camera, but RVM is more
robust when light condition changes.

Performance of Translation Module. Tab. 3 compares
RVM and TLM under the same conditions. We qualify the
performance of RGB translation within the datasets. A bet-
ter RGB recovery result corresponds to a better LSM as
shown in Tab. 4. After the joint training process, our method
successfully selects the optimal LSM based on the three dif-
ferent CSSs, and the results shows that the LSMs of both
methods in one CSS are slightly different.

4.3. Further Study and Analysis

Our model achieves good results under different cam-
eras, color distributions, and illumination conditions.

Specifically, we use different CSS of three cameras to
synthesize NIR and RGB images. The results in Tab. 3 and
Fig. 6 show that the output of our selection module is chang-
ing with the CSS, while the final recovery images are sat-
isfactory in terms of metrics and intuitive perception of the
human eye. It means that our model has strong tolerance
and can be applied to various cameras. Moreover, accord-
ing to Tab. 1, the three datasets have a large discrepancy
in color distribution and illumination conditions. Scenes in
ICVL are under abundant light, and its corresponding out-
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Figure 5. Visual comparison with widely used NIR LEDs.

puts are excellent. Similarly, in our IDH, even with the lacks
of visible light, our model can still restore the NIR images
very well. This not only verifies that our model is effective
for image restoration of the night-time surveillance system,
but also shows its robustness against color distribution and
illumination conditions change.

We further give several examples on the RGB translation
module to see its performance. In addition, the effect of the
optimal LSM selection is also discussed.

NIR2RGB Translation. Our method mainly focuses
on the search of the nonlinear mapping between two types
of images, which have intrinsic relationship in the physi-
cal world. We employ the input NIR image to guide the
RGB information translation, which is modeled by stack-
ing the input NIR images. Fig. 4 and Tab. 2 show that our
designed network structure for nonlinear mapping performs
better than other low-light enhancement, colorization and
domain transfer methods in Sec. 4.1.

LSM Selection. To evaluate the effectiveness of the se-
lection module, we remove it and then put a fixed random
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Figure 6. Visual comparison of three cameras in 2 multiplexing
scheme on five typical scenes on the studied datasets ICVL and
IDH. The first row is the ground-truth, the rest rows are divided
into two parts: RVM and TLM, in each part, from top to bottom is
the result of 15S5C, 13S2C and 2113C respectively.

multiplexing of LEDs into the translation model, so that the
model becomes a pure image-to-image translation model.
The results of the last three lines in Tab. 2 show that the
addition of selection modules makes the results much bet-
ter. It demonstrates that the NIR2RGB conversion can be
improved by selecting the appropriate LEDs. Besides, as
shown in Fig. 5, the optimal LSM outperforms the most
commonly used LEDs in industry.

Tab. 3 further shows that in the scenarios of experimen-
tal settings, RVM and TLM tend to choose LEDs which are
close to the visible light band. The value of CSS is nearly
the same in three channels when the wavelength exceeds
800nm, which means that the use of LED in this range can
cause the lack of information for mapping into the RGB
space. The reduction of information is related to the per-
formance of color restoration, and TLM tends to choose
the LSM which can generate more distinguishable message
for restoration due to the decrease of loss. Meanwhile, the
results of RVM is close to those of TLM, which proves
that our color variance maximization scheme in Sec. 3.1 do
work. Specifically, the results of RVM are related to the

740nm

760nm

770nm

Figure 7. Using narrow-band LEDs to realize the spectrum corre-
sponding to the LSM. Left is the instrument for adjusting the LED
power to fit the target spectrum. Right is the fitting result.

GTNIR Output

Figure 8. The restoration result when applying the optimal LSM
of TLM on camera 13S2C and dataset IDH in real world.

camera type only as TSC is a fixed standard, the change of
the dataset will not affect the output of the module. As for
TLM, the LED model is stable when changing dataset, only
the weights change slightly. That is, our selection module
can be well applied to night-time surveillance under a vari-
ety of illumination conditions, as the optimal LSM in selec-
tion module is stable enough when camera is fixed.

On-device Verification. We choose the LSM based on
TLM selection module and camera 13S2C to verify its ap-
plicability on device. The fitting result in Fig. 7 shows
that the realized LED spectrum is basically the same as the
LSM. We capture several NIR images with realized LEDs
as the illumination source, and put them into our model.
Fig. 8 indicates that our model works well in real scenes.

5. Conclusion

We have explored the fundamental hurdle towards sta-
ble NIR-to-RGB translation. The industry practice for night
video surveillance inspires us to retrieve better spectral mul-
tiplexing of narrow-band NIR LEDs, which is realized by a
novel selection module, so as to maximize the accuracy and
stability of the translation task. Two strategies are devised
for multiplexing optimization, whose performance has been
verified using existing spectral datasets and a newly cap-
tured one. We also have noticed that the quality of different
datasets is uneven, which may lead to inconsistent perfor-
mance in different scenarios. A thorough investigation on
this is left as our future work.
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