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Abstract

Current attention-based methods for semantic segmen-
tation mainly model pixel relation through pairwise affin-
ity and coarse segmentation. For the first time, this paper
explores modeling pixel relation via Class Activation Map
(CAM). Beyond the previous CAM generated from image-
level classification, we present Partial CAM, which sub-
divides the task into region-level prediction and achieves
better localization performance. In order to eliminate the
intra-class inconsistency caused by the variances of local
context, we further propose Partial Class Activation Atten-
tion (PCAA) that simultaneously utilizes local and global
class-level representations for attention calculation. Once
obtained the partial CAM, PCAA collects local class cen-
ters and computes pixel-to-class relation locally. Apply-
ing local-specific representations ensures reliable results
under different local contexts. To guarantee global con-
sistency, we gather global representations from all local
class centers and conduct feature aggregation. Experimen-
tal results confirm that Partial CAM outperforms the pre-
vious two strategies as pixel relation. Notably, our method
achieves state-of-the-art performance on several challeng-
ing benchmarks including Cityscapes, Pascal Context, and
ADE20K. Code is available at https://github.com/
lsa1997/PCAA.

1. Introduction

Scene parsing is a pixel-wise prediction task which aims
to assign a class label to each pixel in a given image. The
difficulty of this task is that the features of pixels belong-
ing to the same category may vary dramatically due to the
differences in texture, lighting, and position. Hence, in or-
der to achieve precise segmentation, we need to eliminate
this local specificity and generate features with global con-
sistency. In recent years, models based on Convolutional
Neural Networks (CNNs) have adopted various strategies
to handle this problem like pyramid pooling [40], dilated
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Figure 1. Different methods to model pixel relation. Here, H×W
denotes the spatial size of inputs and K is the number of classes.
Non-local uses dot product to calculate pairwise affinity, while
OCRNet adopts coarse prediction to obtain class-level relation.
This paper first introduces CAM to model pixel-to-class relation
and proposes Partial CAM to subdivide the prediction task for bet-
ter localization performance. Best viewed in color.

convolution [2], and self-attention [9, 14, 34, 44].
Among these methods, attention-based models often

show considerable performance. They generally include
two steps: first calculate pixel relation, and then augment
features via a weighted aggregation based on the relation
maps. Current works mainly follow two strategies for pixel
relation calculation: pairwise affinity and coarse segmenta-
tion. The non-local models [26] use dot product as pairwise
affinity to construct pixel-to-pixel relation. These methods
are computationally intensive, and pixel-level aggregation
can not guarantee the global consistency of the same cate-
gory. In the first two attention maps of Fig. 1(d), the two
pixels marked by red dots both belong to building but focus

16836



on different areas. Features in these areas may differ, which
will lead to intra-class inconsistency after aggregation. On
the other hand, models like ACFNet [36] and OCRNet [32]
introduce coarse segmentation maps to collect global class
centers and model pixel-to-class relation. For each class,
applying a global representation improves the intra-class
consistency but ignores the local specificity. If features vary
due to different local contexts, a single global center may be
unable to model pixel relation of the whole image correctly.

Based on the analysis above, this paper focuses on two
issues: (i) is there another way to model pixel relation in ad-
dition to pairwise affinity and coarse segmentation, and (ii)
how to improve global consistency while considering local
specificity. For the first issue, our motivation comes from
Class Activation Map (CAM). The CAM method [41] is
widely used in weakly supervised segmentation with only
image-level annotations to localize objects for each class.
Intuitively, it can be used to represent pixel-to-class rela-
tion similarly to coarse segmentation. However, as shown
in Fig. 1(e), it is far from sufficient enough for attention cal-
culation. Localizing objects from the whole image is rather
difficult because image-level classification completely ig-
nores spatial information. Therefore, we propose Partial
CAM as a subdivision of the original CAM. An input image
is split into non-overlapped patches, and the activation maps
will be generated from region-level prediction. Each partial
CAM can thus be seen as a smaller-scale CAM within one
patch. Note that the region-level ground truth is available
since pixel-wise annotations are provided for segmentation.
Compared with the conventional CAM, partial CAM forces
the network to learn more spatial information and can pro-
vide more reliable localization results. Fig. 1(f) illustrates
partial CAMs with 4× 4 patches.

To handle the second issue, we propose Partial Class Ac-
tivation Attention (PCAA). In contrast to the previous works
simply using pixel features or global centers, PCAA utilizes
local and global representations simultaneously. Specifi-
cally, it first gathers local class representations based on the
partial CAMs and computes pixel-to-class similarity maps
inside each patch. For each class, all local representations
are then aggregated into one global class center which is
used as the basis for feature augmentation. PCAA consid-
ers the variances of local contexts by calculating pixel re-
lation locally and ensures the consistency of final features
through global class centers, which fits our purpose to im-
prove global consistency while considering local specificity.

To the best of our knowledge, we are the first to intro-
duce the CAM method to the attention mechanism for se-
mantic segmentation. Extensive experiments demonstrate
that our partial class activation attention outperforms the
previous models based on pairwise affinity and coarse seg-
mentation. It achieves state-of-the-art results on three chal-
lenging public benchmarks including Cityscapes [5], Pascal

Context [20], and ADE20K [42]. We hope it can provide a
different perspective for the attention mechanism.

Our main contributions are summarized as follows:

• We propose Partial Class Activation Map as a new
strategy to represent pixel relation. It improves CAM
generation by subdividing the image-level classifica-
tion task into region-level prediction.

• We design Partial Class Activation Attention to en-
hance feature representation. It simultaneously con-
siders local specificity and global consistency through
local and global class centers.

• We validate the effectiveness of the proposed method
through extensive experiments. Specifically, our ap-
proach achieves 82.3% on Cityscapes, 55.6% on Pas-
cal Context, and 46.74% on ADE20K.

2. Related Work
Semantic Segmentation. This is a long-standing computer
vision task and CNN becomes the dominant method since
fully convolutional network (FCN) [19]. To enlarge the
receptive fields and capture long-range information, vari-
ous strategies are proposed. One common method is multi-
scale context like PSPNet [40] and Deeplabv3 [3]. GFFNet
[17], ACNet [10] and CCL [6] utilize gating mechanism
to control information propagation across different levels.
In order to capture shape-variant context, methods based
on dynamic convolution are proposed [7, 8, 11]. Recently,
attention-based models show considerable performance and
become a popular strategy for semantic segmentation.
Attention Models. The self-attention is first proposed for
machine translation [25]. The non-local network [26] intro-
duces this mechanism to computer vision tasks. DANet [9]
designs a parallel structure to calculate both spatial and
channel attention. Various strategies [14, 44] are proposed
to reduce the computational cost. DNL [29] proves that the
basic attention can be improved by decoupling non-local
calculation into a pairwise term and a unary term. ACFNet
[36] and OCRNet [32] take the class-level information into
account. They obtain global class centers through coarse
segmentation maps and use these class representations to
calculate pixel-to-class relation. The proposed method in
this paper also models class-level similarity but provides a
new strategy through class activation maps.
Class Activation Map. CAM [41] is a widely-used strat-
egy to generate pseudo labels for weakly supervised seman-
tic segmentation. Recent works study different strategies to
enhance CAM prediction. Methods like [23, 28] propose
region erasing to enlarge the activated area in each CAM.
AffinityNet [1] proposes to refine CAM through random
walk based on pixel-level semantic affinity. [15] designs
the online attention accumulation strategy to progressively
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accumulate the representative regions into integral objects.
SEAM [27] adopts a self-supervised approach to improve
the equivariance to affine transforms of CAMs. In this pa-
per, we utilize CAM to model pixel relation in attention
mechanism and further subdivide it as the Partial CAM.

3. Methodology

In this section, we first describe the concept of partial
CAM, which is specially designed for the fully supervised
semantic segmentation task with pixel-level annotations.
Then, we introduce the calculation of partial class activation
attention in detail. Finally, we present the overall network
structure to integrate the proposed modules.

3.1. Partial Class Activation Map

Before introducing the partial CAM, we first review the
procedure of CAM generation.
CAM Generation. It is first proposed by [41] to gener-
ate class activation maps through global average pooling
(GAP). After getting features Xin from convolutional net-
works, a GAP layer is used to reduce the spatial resolution.
The outputs are then fed into a fully-connected layer to pro-
duce the probability scores for classification. To generate
CAM, we need to compute a weighted sum of Xin based on
the weights of the fully-connected layer. Clearly, it requires
extra operations after a forward pass and can not be used
in an end-to-end way. Note that the above two layers are
linear operations and the fully-connected layer is equivalent
to a 1× 1 convolutional layer, [39] proposes the strategy of
one-step CAM generation as follows:

Ac = Conv1×1(Xin), (1)

Sc = Sigmoid(AvgPool1×1(Ac)), (2)

where Ac ∈ RK×H×W is the activation maps and Sc ∈
RK×1×1 is the classification scores. Here K denotes the
number of classes for segmentation. AvgPool1×1 illus-
trates that the average pooling layer generates outputs with
size 1× 1, i.e., global pooling.
Partial CAM. The CAM approach can localize objects
from a classification model. This is of vital importance for
weakly supervised tasks, since usually only image-level la-
bels are provided. The global pooling layer becomes the
bridge between segmentation and classification, but com-
pletely ignores spatial relation. As shown in Fig. 1(e), gen-
erated activation maps often focus on the most discrimina-
tive parts or activate background pixels incorrectly. For the
fully supervised segmentation task, however, the pixel-level
annotations enable us to introduce spatial information for
preciser CAM generation. Specifically, we replace the GAP
operation with adaptive average pooling to divide the whole
image into several parts, which are non-overlapped patches

here. The network then predicts probability scores and gen-
erates partial CAMs inside each patch:

Sc = Sigmoid(AvgPoolS×S(Ac)). (3)

Here, the activation map Ac is divided into S×S parts and
Sc ∈ RK×S×S . Fig. 2(a) provides an example of S = 4.

The partial CAM can be seen as a subdivision of the orig-
inal CAM, which is generated from each part instead of the
whole image. The ground truth labels for partial CAM pre-
diction can be calculated from pixel-level annotations. First,
the segmentation labels are converted into one-hot vectors
Lc ∈ RK×H×W for K classes. Then, we use max pooling
with output size S × S to generate labels for each part:

L̂c = MaxPoolS×S(Lc), (4)

where L̂c ∈ RK×S×S . In this way, partial CAM prediction
is formulated as a multi-label classification task inside each
part. Compared with image-level labels, the patch-wise la-
bels provide more fine-grained supervision with spatial in-
formation for the network. Partial CAM thus shows preciser
localization performance than the original CAM.

3.2. Partial Class Activation Attention

It has been demonstrated in [32, 36] that learning class-
level representation is an effective way to improve atten-
tion mechanism for segmentation. In contrast to those ap-
proaches using coarse prediction, we utilize partial CAM
to achieve this goal. Fig. 2(b) illustrates the whole process
of partial class activation attention (PCAA). The patch-wise
prediction enables us to calculate local class centers inside
each part. Since these local representations are collected
from a smaller scale than the whole image, they can repre-
sent local specificity better under various local contexts.
Local Class Center. The adaptive pooling layer in Eq. (3)
is designed to split the whole image into non-overlapped
patches according to the output size S. Given an input of
size H ×W , it will be split into NP × h × w, where h =
H/S,w = W/S and NP = S × S denotes the number of
regions. After getting the partial CAM for each part, we
calculate local class centers through a weighted-sum:

F̂
(i)
l = S̃(i)

c · [σs(Ã
(i)
c )⊤ × X̃

(i)
in ]. (5)

We use (̃·) to denote features that are split and flattened.
Hence Ã

(i)
c ∈ RN×K , X̃

(i)
in ∈ RN×C , where N = h × w.

i ∈ {0, . . . , NP − 1} represents the index of each patch.
σs(·) performs softmax normalization along the spatial di-
mension N . Besides, we utilize the probability scores from
Eq. (3) to deactivate local centers for those non-existing
classes and ensure that only class-relevant features are gath-
ered. Here, Sc is reshaped to RNP×K×1.

From Eq. (5), we obtain F̂l ∈ RNP×K×C . Local cen-
ters are expected to be specific for local contexts, but also
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Figure 2. Detailed architecture of the proposed approach. The overall network structure is shown in (a), where the pooling size of the
Partial Class Activation Attention (PCAA) module is set to 4. (b) illustrates the process of partial class activation attention calculation. It
utilizes local class centers to compute similarity maps and uses global representations for feature aggregation.

should be general enough to represent semantics for each
class. Therefore, we adopt the graph convolution unit [4]
to construct interactions among local centers. Treating each
local center as a node, we first conduct information diffu-
sion across nodes, and then update features for each node.
As shown in Fig. 3, it can be achieved as follows:

Fl = Linear(Conv1×1(F̂l)), (6)

where Conv1×1(·) and Linear(·) perform node-wise and
channel-wise operations respectively.
Global Class Representation. Since local class centers are
calculated inside each region, representations for the same
class may be different due to local specificity. To improve
intra-class consistency of the whole image, we need to ob-
tain global class representations. Local centers from all re-
gions are fused through a weighted aggregation:

Fg =
∑
i

fiF
(i)
l , (7)

where fi is a learnable weight for each part and Fg ∈
R1×K×C denotes the global center for each class.
Feature Aggregation. Once the local and global class cen-
ters are obtained, we apply both types of features to atten-
tion calculation. First, the local centers are used to calculate
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Figure 3. Illustration of gathering local class centers and fusing
them as global representations.

pixel similarity maps inside each region:

P(i) = σc(Wq(X̃
(i)
in )×Wk(F

(i)
l )⊤), (8)

here P ∈ RNP×N×K represents pixel-to-class relation.
σc(·) performs softmax normalization along the class di-
mension K. The enhanced features after aggregation are
calculated as follows:

X̃
(i)
out = P(i) ×Wv(Fg). (9)
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Finally, X̃out is recovered to H ×W × C as the output of
attention calculation. Wq,Wk,Wv perform linear transfor-
mations as done in the non-local module [26].

PCAA uniquely adopts partial CAM to model pixel re-
lation and utilizes different types of class centers in the two
steps of attention calculation. In comparison with the whole
image, features belonging to the same class are often with
smaller variances inside each part. Therefore, we alleviate
the influence of local specificity by calculating similarity
maps with different local class centers. Meanwhile, adopt-
ing the global representations for feature aggregation guar-
antees the intra-class consistency of the final output.

3.3. Network Architecture

Following the common practice of segmentation ap-
proaches [14, 29], we construct our network based on the
dilated ResNet [12]. The extracted features as Xin are first
reduced to 512 channels through a 3×3 convolutional block
and then fed into the PCAA module to calculate partial class
activation attention. The enhanced features are concate-
nated with Xin to generate the final segmentation maps.
Module Design. We can adjust the output size S of the
adaptive pooling layer or integrate multiple PCAA mod-
ules to fit different input sizes. For attention calculation,
we adopt the bottleneck structure to reduce computational
cost as done in most works [32, 44]. Specifically, the num-
ber of channels C is halved after the linear projections
Wq,Wk,Wv . The enhanced features Xout is fed into an-
other 1 × 1 convolutional block to recover the channel di-
mension. Finally, it is summed with the input features
through a residual connection.
Loss Function. We adopt cross entropy as the basic seg-
mentation loss lseg . Following [40], an auxiliary branch is
added to the third layer of the backbone to provide deep su-
pervision laux. When training the partial CAM, we choose
focal loss [18] lfocal to enhance the learning of hard sam-
ples. If there are multiple PCAA modules, the losses of each
module are equally summed. The final loss can be formu-
lated as follows:

lfinal = λ1lseg + λ2laux + λ3lfocal. (10)

λ1,2,3 are set to 1, 0.4, 1 respectively.

4. Experiments

We validate the effectiveness of the proposed method on
Cityscapes [5], Pascal Context [20], and ADE20K [42]. In
the following subsections, we first give a brief introduction
to the datasets and implementation details. Then compre-
hensive ablation experiments and visual analysis are pro-
vided. Finally, we compare our results with state-of-the-art
methods on three datasets.

4.1. Datasets

Cityscapes. The dataset is a large-scale dataset for ur-
ban scene understanding, containing 19 classes for semantic
segmentation task. It provides 5,000 images with pixel-wise
annotations in total, which are divided into 2,975/500/1,525
images for training, validation, and testing.
Pascal Context. The dataset contains 4,998 images for
training and 5,105 images for validation/testing. Follow-
ing [13, 31], we evaluate the performance on the most fre-
quent 59 classes, without considering the background.
ADE20K. It provides 20K training images and 2K valida-
tion images. With up to 150 classes, it is considered to be
one of the most challenging benchmarks for segmentation.

4.2. Implementation Details

We implement our method on PyTorch [21]. Stochastic
gradient descent (SGD) [22] optimizer is used for training
with momentum 0.9 and weight decay 0.0001. The initial
learning rate is set to 0.001 for Pascal Context, and 0.01
for the other two datasets. Following [9], we employ the
“poly” learning rate policy. The initial learning rate is mul-
tiplied by (1 − iter

max iter )
0.9. For multi-GPU training, we

use synchronized Batch Normalization as done in [37].
To avoid over-fitting, we choose data augmentation

strategies including random cropping (crop size 768 × 768
for Cityscapes and 512× 512 for the others), random hori-
zontal flipping, random photometric distortion and random
scaling. The batch size is set as 8 on Cityscapes and 16 on
the others. Networks are trained for 60K, 40K, and 160K
iterations on Cityscapes, Pascal Context and ADE20K re-
spectively. By default, we adopt mean Intersection over
Union (mIoU) as the evaluation metric.

4.3. Ablation Study

We conduct ablation study on the Cityscapes validation
set. If not specified, each network is trained for 40K itera-
tions with ResNet-50.
Pooling size in PCAA module. We first study the influence
of different pooling sizes in PCAA module. The results are
shown in Tab. 1. When using only one module, We find
that the network yields the best performance of 79.22% with
S = 4. Note that S = 1 means the global average pooling
layer, i.e., the original CAM. Its mIoU is 1.75% lower than
S = 4. When S goes larger than 1, the mIoU increases.
We infer the main reason is the improved class activation
maps. While the original CAM is unable to provide suf-
ficient guidance for attention calculation, our partial CAM
can significantly improve the precision by region-level pre-
diction. We also notice that performance drops if we use
S larger than 4. One possible reason is that the number of
pixels drops dramatically when increasing S. As a result,
one region can not provide enough context information to
represent class centers, which is harmful to segmentation.
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S=1 S=2 S=4 S=8 S=16 mIoU(%)
✓ 77.47

✓ 78.68
✓ 79.22

✓ 79.00
✓ 78.25

✓ ✓ 78.46
✓ ✓ 79.29

✓ ✓ 78.70

Table 1. Ablation study on pooling size in PCAA module.

Key Fl Fl Fg Fl Fl

Value Fl Fl Fg Fg Fg

GCU ✓ ✓ ✓
mIoU(%) 75.36 78.89 78.68 78.93 79.22

Table 2. Ablation study on attention calculation.

Number of PCAA modules. We also explore the influence
of integrating multiple PCAA modules in Tab. 1. The net-
work with S = 4, 8 constructs a cascaded, coarse-to-fine
spatial pyramid and achieves the best 79.29% mIoU. How-
ever, this improvement is marginal compared with S = 4
while the computational cost increases. Hence, the struc-
ture is kept with S = 4 for the following ablation studies
for a better trade-off between performance and complexity.
Local or global class center. The proposed partial class
activation attention introduces both local and global class
centers. From the perspective of self-attention [25], we use
local centers as keys to compute similarity maps and aggre-
gate global centers as values. To examine the influence of
both types of class centers, we design different variants in
Tab. 2. When using local class centers for both keys and
values, it achieves 78.89%. This is even better than using
global centers only (78.68%). Simultaneously utilizing lo-
cal and global centers obtains the highest mIoU of 79.22%.
This validates the effectiveness of introducing two types of
class centers. If we remove the graph convolutional unit
(GCU) in local center generation, the performance of only
using local centers drops to 75.36%. In comparison, PCAA
without GCU achieves 78.93%. The interaction across lo-
cal centers in GCU improves the consistency of local repre-
sentations. It is helpful for calculating attention maps, and
essential for feature aggregation when directly enhancing
features with local centers.
Comparison with other methods. Tab. 3 provides com-
parisons with other methods. We set the baseline model by
simply removing the PCAA module and remaining other
convolutional blocks. The mIoU of PCAA is 4.54% higher
than the baseline, which strongly proves the improvement
of our method. When using a stronger backbone ResNet-
101, it boosts the mIoU to 80.70%. Moreover, we report the

Method Backbone mIoU(%)
FCN (Baseline) ResNet-50 74.68
+ASPP ResNet-50 78.34
+NL ResNet-50 78.65
+OCR ResNet-50 78.86
+PCAM ResNet-50 78.84
+PCAA ResNet-50 79.22
+PCAA ResNet-101 80.70

Table 3. Experimental results on the Cityscapes validation set.

Method Params (M) FLOPs (G)
NL 0.53 21.75
OCR 1.18 8.07
PCAA(S=4) 0.80 2.86
PCAA(S=4, 8) 1.60 6.23

Table 4. Comparison of computational complexity.

results of existing methods. All models are trained under
the same settings. The multi-scale method, Deeplabv3 [3],
achieves 78.34% mIoU. The basic Non-local model that
computes pairwise pixel relation via dot product performs
comparably with Deeplab (78.65%). OCRNet introduces
pixel-to-class relation through coarse segmentation and ob-
tains 78.86% mIoU. In comparison, our PCAA outperforms
all these methods. The results confirm that computing class-
level relation is helpful for semantic segmentation, and our
PCAA provides an effective way to model pixel-to-class re-
lation in addition to coarse segmentation. We also design
a variant that directly uses the partial CAM as the attention
map in Eq. (9). This model (denoted as PCAM) achieves
78.84% mIoU. It further confirms the efficacy of partial
CAM as pixel relation.
Computational Complexity. We report the computational
complexity of attention models in Tab. 4. To avoid the influ-
ence of different backbones or extra convolutional blocks,
we directly compare the modules for attention calculation.
The results are calculated based on input size 512×96×96
(8 times downsampled from 768× 768). Theoretically, the
non-local computes pixel-to-pixel relation with complex-
ity O(CH2W 2), while both OCR and our PCAA calculate
pixel-to-class relation with complexity O(CKHW ). Since
the number of classes is much smaller than the spatial size,
the computational cost can be reduced considerably. As
for the practical cost in Tab. 4, we adopt the same struc-
ture of linear transformations Wk,Wq,Wv for non-local
and PCAA. The parameters of PCAA is larger than non-
local since it uses additional blocks for CAM generation
and graph convolution. The difference of PCAA and OCR
is mainly because OCR uses more convolutional blocks for
Wk,Wq,Wv and concatenation for residual connection. ts
complexity is comparable with two cascaded PCAA.
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Ground Truth S=1 S=2 S=4 S=8 S=16

Figure 4. Visualization of partial class activation maps with differ-
ent pooling sizes. By increasing S, networks are able to generate
preciser partial CAMs.

4.4. Visualization

We visualize partial CAMs in Fig. 4. S = 1 generates
the original CAM through global pooling. With the increase
of pooling size S, the network is able to generate preciser
partial CAM, which can provide more reliable guidance for
attention calculation. The partial CAM is quite clear when
it comes to S = 4. This also explains the high performance
of PCAA with the same S. In Fig. 5, we further visualize
the partial CAM and attention map for the corresponding
classes. The top two rows confirm that PCAA can conduct
class-wise feature aggregation based on the partial CAM,
similarly to OCRNet [32] using coarse segmentation maps.
A further discussion is provided in Sec. 4.5.

In Fig. 6, we visualize segmentation results of the base-
line and our PCAA on the Cityscapes validation set. The
white dashed boxes mark the improved regions by our
method. PCAA demonstrates significant improvements on
large-scale prediction, for instance, the truck in the last row.
It validates that our PCAA can indeed fit the purpose of al-
leviating local variances and improving intra-class consis-
tency for semantic segmentation.

4.5. Discussion

PCAA introduces CAM to attention mechanism for the
first time. It outperforms the previous attention models and
proves the significance of CAM as pixel relation. Neverthe-
less, visualization results also reveal some limitations and
properties of the partial CAM and PCAA. First, though im-
proved by subdividing the prediction task, partial CAM still
suffers from over-activation on background pixels like the
original CAM. From Fig. 4, we can see that this problem
can be relieved by using larger S. Note that this paper sim-
ply adopts the basic structure for CAM generation to val-
idate its effectiveness. Therefore, we believe partial CAM
can be further enhanced by strategies proposed in weakly
supervised segmentation models like [27].

Another interesting observation is that the high activa-

(a) (b) (c) (d)

Figure 5. Visualization of PCAA. (a): Input image. (b): Partial
CAM. (c): Attention Map. (d): Ground Truth. In the last row, the
red box highlights a failure case.

Image Ground Truth Baseline PCAA

Figure 6. Segmentation results on the Cityscapes validation set.
The white dashed boxes highlight the improved regions. Com-
pared with the baseline model, our method can significantly im-
prove the consistency of segmentation.

tion parts of generated CAMs often focus on object bound-
aries rather than interior areas. This property differs from
that of segmentation maps, since the latter is prone to trust
inner regions of objects [35]. We infer that features belong-
ing to different classes often show clear differences near the
boundary areas, which is essential for classification. This
might be helpful to precise segmentation on boundaries, but
also leads to some extreme cases. The last row of Fig. 5
highlights an instance in red box. In this case, for the class
car, the high activation area of partial CAM focuses on the
body. However, most pixels in this patch are on the window.
Hence, they are ignored by the attention map in (c), which
is harmful to feature aggregation. This is related to the spa-
tial normalization in Eq. (5), since softmax operation may
increase the distances among different activation values.
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Method Backbone Stride mIoU
PSPNet [40] † ResNet-101 8× 80.2
DANet [9] ResNet-101 8× 81.5
ANL [44] ResNet-101 8× 81.3
CCNet [14] ResNet-101 8× 81.4
ACFNet [36] ResNet-101+ASPP 8× 81.8
HRNet [24] HRNetV2-W48 4× 81.6
CPNet [31] ResNet-101 8× 81.3
DNL [29] † ResNet-101 8× 82.0
RGNet [30] ResNet-101 8× 81.5
OCRNet [32] ResNet-101 8× 81.8
MCIBI [16] ResNet-101+ASPP 8× 82.0
PCAA (ours) ResNet-101 8× 82.3

Table 5. Comparison with the state-of-the-arts on the Cityscapes
test set. † denotes training with extra coarse annotations.

Method Backbone Stride mIoU
DANet [9] ResNet-101 8× 52.6
ANL [44] ResNet-101 8× 52.8
HRNet [24] HRNetV2-W48 4× 54.0
CPNet [31] ResNet-101 8× 53.9
SPNet [13] ResNet-101 8× 54.5
DNL [29] ResNet-101 8× 54.8
RGNet [30] ResNet-101 8× 53.9
OCRNet [32] ResNet-101 8× 54.8
OCNet [33] ResNet-101+ASPP 8× 54.0
PCAA (ours) ResNet-101 8× 55.6

Table 6. Comparison with the state-of-the-arts on the Pascal Con-
text test set.

4.6. Comparison with State-of-the-Art

In this subsection, we compare our method with the
state-of-the-arts on the Cityscapes test set, Pascal Context
test set, and ADE20K validation set.
Cityscapes. Following the common practice [30, 44], we
train the network with finely annotated data for 100K iter-
ations and validate the performance on the test set. Results
are shown in Tab. 5. We do not adopt any extra modules
like ASPP used by [16, 36]. Our PCAA model achieves
82.3%, outperforming the previous attention-based models
like DANet [9], ACFNet [36] and ANL [44]. Notably, it is
also superior to DNL [29] without using coarse annotations.
Pascal Context. Different from Cityscapes, Pascal Context
provides more various scenes. Generally, there is a typical
target covering most regions in one image. Therefore, it is
essential to capture context information from a larger scale.
This can benefit from smaller pooling size and we find using
S = 2 performs better than S = 4. Finally in Tab. 6, our
method achieves 55.6% mIoU on the Pascal Context test
set, better than OCRNet [32] utilizing coarse segmentation

Method Backbone Stride mIoU
DANet [9] ResNet-101 8× 45.22
ANL [44] ResNet-101 8× 45.24
CFNet [38] ResNet-101 8× 44.89
SPNet [13] ResNet-101 8× 45.60
DNL [29] ResNet-101 8× 45.97
OCRNet [32] ResNet-101 8× 45.28
CPNet [31] ResNet-101 8× 46.27
OCNet [33] HRNetV2-W48+ASPP 4× 45.50
STLNet [43] ResNet-101+ASPP 8× 46.48
PCAA (ours) ResNet-101 8× 46.74

Table 7. Comparison with the state-of-the-arts on the ADE20K
validation set.

to model pixel relation. It also outperforms OCNet [33],
which is based on pairwise affinity and integrates the ASPP
module. This result once again confirms the efficacy of our
partial class activation attention.
ADE20K. This is a challenging dataset containing 150
classes and we adopt PCAA with S = 4. Tab. 7 reports
the results on the validation set. Without ASPP, our method
based on ResNet-101 achieves 46.74% mIoU, which is a
significant improvement compared with the previous works.
We believe this validates the superiority of our method on
generating more consistent features under complex scenes.

5. Conclusion
In this paper, we present a novel partial class activation

attention which is the first to utilize CAM for attention cal-
culation. In order to generate more reliable activation maps,
we propose to subdivide CAM prediction and generate par-
tial CAM. We then design a strategy to obtain both local and
global class centers for feature aggregation. It alleviates the
influence of local variances and improves intra-class con-
sistency. Extensive experiments on several benchmarks val-
idate the effectiveness of our method. Hopefully, this work
can provide a new perspective for the research of attention
mechanism in semantic segmentation.
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