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Abstract

Object detection plays a key role in many security-critical
systems. Adversarial patch attacks, which are easy to im-
plement in the physical world, pose a serious threat to
state-of-the-art object detectors. Developing reliable de-
fenses for object detectors against patch attacks is critical
but severely understudied. In this paper, we propose Seg-
ment and Complete defense (SAC), a general framework
for defending object detectors against patch attacks through
detection and removal of adversarial patches. We first train
a patch segmenter that outputs patch masks which provide
pixel-level localization of adversarial patches. We then pro-
pose a self adversarial training algorithm to robustify the
patch segmenter. In addition, we design a robust shape com-
pletion algorithm, which is guaranteed to remove the entire
patch from the images if the outputs of the patch segmenter
are within a certain Hamming distance of the ground-truth
patch masks. Our experiments on COCO and xView datasets
demonstrate that SAC achieves superior robustness even
under strong adaptive attacks with no reduction in perfor-
mance on clean images, and generalizes well to unseen
patch shapes, attack budgets, and unseen attack methods.
Furthermore, we present the APRICOT-Mask dataset, which
augments the APRICOT dataset with pixel-level annotations
of adversarial patches. We show SAC can significantly re-
duce the targeted attack success rate of physical patch at-
tacks. Our code is available at https://github.com/
joellliu/SegmentAndComplete.

1. Introduction

Object detection is an important computer vision task that
plays a key role in many security-critical systems including
autonomous driving, security surveillance, identity verifi-
cation, and robot manufacturing [42]. Adversarial patch
attacks, where the attacker distorts pixels within a region
of bounded size, pose a serious threat to real-world object
detection systems since they are easy to implement physi-

Figure 1. We adopt a “detect and remove” strategy for defend-
ing object detectors against patch attacks. Left: Predictions on a
clean image; middle: predictions on an adversarial image; right:
predictions on SAC masked image.

cally. For example, physical adversarial patches can make
a stop sign [40] or a person [41] disappear from object de-
tectors, which could cause serious consequences in security-
critical settings such as autonomous driving. Despite the
abundance [9, 22, 23, 25, 29, 39–41, 43, 45, 51] of adversar-
ial patch attacks on object detectors, defenses against such
attacks have not been extensively studied. Most existing
defenses for patch attacks are restricted to image classifica-
tion [16, 17, 24, 32, 34, 44, 46, 49]. Securing object detectors
is more challenging due to the complexity of the task.

In this paper, we present Segment and Complete (SAC)
defense that can robustify any object detector against patch
attacks without re-training the object detectors. We adopt
a “detect and remove” strategy (Fig. 1): we detect adver-
sarial patches and remove the area from input images, and
then feed the masked images into the object detector. This
is based on the following observation: while adversarial
patches are localized, they can affect predictions not only
locally but also on objects that are farther away in the image
because object detection algorithms utilize spatial context
for reasoning [38]. This effect is especially significant for
deep learning models, as a small localized adversarial patch
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can significantly disturb feature maps on a large scale due
to large receptive fields of neurons. By removing them from
the images, we minimize the adverse effects of adversarial
patches both locally and globally.

The key of SAC is to robustly detect adversarial patches.
We first train a patch segmenter to segment adversarial
patches from the inputs and produce an initial patch mask.
We propose a self adversarial training algorithm to enhance
the robustness of the patch segmenter, which is efficient and
object-detector agnostic. Since the attackers can potentially
attack the segmenter and disturb its outputs under adaptive
attacks, we further propose a robust shape completion al-
gorithm that exploits the patch shape prior to ensure robust
detection of adversarial patches. Shape completion takes the
initial patch mask and generates a “completed patch mask”
that is guaranteed to cover the entire adversarial patch, given
that the initial patch mask is within a certain Hamming dis-
tance from the ground-truth patch mask. The overall pipeline
of SAC is shown in Fig. 2. SAC achieves 45.0% mAP under
100× 100 patch attacks, providing 30.6% mAP gain upon
the undefended model while maintaining the same 49.0%
clean mAP on the COCO dataset.

Besides digital domains, patch attacks have become a se-
rious threat for object detectors in the physical world [9, 23,
39–41, 43, 45]. Developing and evaluating defenses against
physical patch attacks require physical-patch datasets which
are costly to create. To the best of our knowledge, APRI-
COT [6] is the only publicly available dataset of physical
adversarial attacks on object detectors. However, APRICOT
only provides bounding box annotations for each patch with-
out pixel-level annotations. This hinders the development
and evaluation of patch detection and removal techniques
like SAC. To facilitate research in this direction, we create
the APRICOT-Mask dataset, which provides segmentation
masks and more accurate bounding boxes for adversarial
patches in APRICOT. We train our patch segmenter with
segmentation masks from APRICOT-Mask and show that
SAC can effectively reduce the patch attack success rate
from 7.97% to 2.17%.

In summary, our contributions are as follows:

• We propose Segment and Complete, a general method
for defending object detectors against patch attacks
via patch segmentation and a robust shape completion
algorithm.

• We evaluate SAC on both digital and physical attacks.
SAC achieves superior robustness under both non-
adaptive and adaptive attacks with no reduction in per-
formance on clean images, and generalizes well to un-
seen shapes, attack budgets, and unseen attack methods.

• We present the APRICOT-Mask dataset, which is the
first publicly available dataset that provides pixel-level
annotations of physical adversarial patches.

2. Related Work

2.1. Adversarial Patch Attacks

Adversarial patch attacks are localized attacks that al-
low the attacker to distort a bounded region. Adver-
sarial patch attacks were first proposed for image classi-
fiers [7, 14, 20]. Since then, numerous adversarial patch
attacks have been proposed to fool state-of-the-art object
detectors including both digital [22, 25, 29, 38, 51] and phys-
ical attacks [9, 23, 39–41, 43, 45]. Patch attacks for object
detection are more complicated than image classification due
to the complexity of the task. The attacker can use different
objective functions to achieve different attack effects such
as object hiding, misclassification, and spurious detection.

2.2. Defenses against Patch Attacks

Many defenses have been proposed for image classifiers
against patch attacks, including both empirical [16, 17, 32–
34, 44] and certified defenses [24, 46, 49]. Local gradient
smoothing (LGS) [33] is based on the observation that patch
attacks introduce concentrated high-frequency noises and
therefore proposes to perform gradient smoothing on re-
gions with high gradients magnitude. Digital watermarking
(DW) [17] finds unnaturally dense regions in the saliency
map of the classifier and covers these regions to avoid their
influence on classification. LGS and DW both use a similar
detect and remove strategy as SAC. However, they detect
patch regions based on predefined criteria, whereas SAC
uses a learnable patch segmenter which is more powerful
and can be combined with adversarial training to provide
stronger robustness. In addition, we make use of the patch
shape prior through shape completion.

In the domain of object detection, most existing de-
fenses focus on global perturbations with the lp norm con-
straint [8,10,50] and only a few defenses [19,38,47] for patch
attacks have been proposed. These methods are designed
for a specific type of patch attack or object detector, while
SAC provides a more general defense. Saha [38] proposed
Grad-defense and OOC defense for defending blindness at-
tacks where the detector is blind to a specific object category
chosen by the adversary. Ji et al. [19] proposed Ad-YOLO
to defend human detection patch attacks by adding a patch
class on YOLOv2 [35] detector such that it detects both the
objects of interest and adversarial patches. DetectorGuard
(DG) [47] is a provable defense against localized patch hid-
ing attacks. Unlike SAC, DG does not localize or remove
adversarial patches. It is an alerting algorithm that uses an
objectness explainer that detects unexplained objectness for
issuing alerts when attacked, while SAC solves the problem
of “detection under adversarial patch attacks” that aims to
improve model performance under attacks and is not limited
to hiding attacks, although the patch mask detected by SAC
can also be used as a signal for issuing attack alerts.

14974



Patch  
Segmenter

Shape 
Completion

Object  
Detector

Figure 2. Pipeline of the SAC approach. SAC detects and removes adversarial patches on pixel-level through patch segmentation and shape
completion, and feeds the masked images into the base object detector for prediction.

3. Preliminary
3.1. Faster R-CNN Object Detector

In this paper, we use Faster R-CNN [36] as our base object
detector, though SAC is compatible with any object detector
and we show the results for SSD [28] in the supplementary
material. Faster R-CNN is a proposal-based two-stage object
detector. In the first stage, a region proposal network (RPN)
is used to generate class-agnostic candidate object bounding
boxes called region proposals; in the second stage, a Fast
R-CNN network [15] is used to output an object class and
refine the bounding box coordinates for each region proposal.
The total loss of Faster RCNN is the sum of bounding-box
regression and classification losses of RPN and Fast R-CNN:

LFaster R-CNN = LRPN
reg +LRPN

cls +LFast R-CNN
reg +LFast R-CNN

cls (1)

3.2. Attack Formulation

In this paper, we consider image- and location-specific
untargeted patch attack for object detectors, which is strictly
stronger than universal, location invariant attacks. Let x ∈
[0, 1]H×W×3 be a clean image, where H and W are the
height and width of x. We solve the following optimization
problem to find an adversarial patch:

P̂ (x, l) = argmax
P∈{P ′ :∥P ′∥∞≤ϵ}

L(h(A(x, l, P )); y), (2)

where h denotes an object detector, A(x, l, P ) is a “patch
applying function” that adds patch P to x at location l, ∥·∥∞
is l∞ norm, ϵ is the attack budget, y is the ground-truth class
and bounding box labels for objects in x, and L is the loss
function of the object detector. We use L = LFaster R-CNN

for a general attack against Faster R-CNN. We solve Eq. (2)
using the projected gradient descent (PGD) algorithm [30]:

P t+1 =
∏
P
(P t + α sign(∇P tL(h(A(x, l, P t)); y))), (3)

where α is the step size, t is the iteration number, and
∏

is the projection function that projects P to the feasible set

P = {P : ∥P∥∞ ≤ ϵ and A(x, l, P ) ∈ [0, 1]H×W×3}. The
adversarial image xadv is given by: xadv = A(x, l, P̂ (x, l)).

We consider square patches P ∈ Rs×s×3, where s is the
patch size, and apply one patch per image following previous
works [20, 23, 29, 49]. We use an attack budget ϵ = 1 that
allows the attacker arbitrarily distort pixels within a patch
without a constraint, which is the case for physical patch
attacks and most digital patch attacks [7, 22, 25, 29, 38, 51].

4. Method
SAC defends object detectors against adversarial patch

attacks through detection and removal of adversarial patches
in the input image x. The pipeline of SAC is shown in Fig. 2.
It consists of two steps: first, a patch segmenter (Sec. 4.1)
generates initial patch masks M̂PS and then a robust shape
completion algorithm (Sec. 4.2) is used to produce the final
patch masks M̂SC . The masked image x̂ = x⊙ (1− M̂SC)
is fed into the base object detector for prediction, where ⊙
is the Hadamard product.

4.1. Patch Segmentation

Training with pre-generated adversarial images We
formulate patch detection as a segmentation problem and
train a U-Net [37] as the patch segmenter to provide initial
patch masks. Let PSθ be a patch segmenter parameterized
by θ. We first generate a set of adversarial images Xadv by
attacking the base object detector with Eq. (2), and then use
the pre-generated adversarial images Xadv to train PSθ:

min
θ

∑
xadv∈Xadv

LBCE(PSθ(xadv),M) (4)

where M is the ground-truth patch mask, PSθ(xadv) ∈
[0, 1]H×W is the output probability map, and LBCE is the
binary cross entropy loss:

LBCE(M̂,M) = −
H∑
i

W∑
j

[Mij · log M̂ij

+ (1−Mij) · log(1− M̂ij)].

(5)
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Self adversarial training Training with Xadv provides
prior knowledge for PSθ about “how adversarial patches
look like”. We further propose a self adversarial training
algorithm to robustify PSθ. Specifically, we attack PSθ to
generate adversarial patch P̂s-AT ∈ Rs×s×3:

P̂s-AT(x, l) = argmax
P∈{P ′ :∥P ′∥∞≤ϵ}

LBCE(PSθ(A(x, l, P )),M),

(6)
which is solved by PGD similar to Eq. (3). We train PSθ

in self adversarial training by solving:

min
θ

[λEx∼DLBCE(PSθ(x),M)

+ (1− λ)Ex∼D,l∼T LBCE(PSθ(A(x, l, P̂s-AT(x, l))),M)
]
,

(7)

where T is the set of allowable patch locations, D is the
image distribution, M is the ground-truth mask, and λ
controls the weights between clean and adversarial images.

One alternative is to train PSθ with patches generated
by Eq. (2). Compared to Eq. (2), Eq. (6) does not require
external labels since the ground-truth mask M is determined
by l and known. Indeed, Eq. (7) trains the patch segmenter
in a manner that no external label is needed for both crafting
the adversarial samples and training the model; it strengthens
PSθ to detect any “patch-like” area in the images. Moreover,
Eq. (6) does not involve the object detector h, which makes
PSθ object-detector agnostic and speeds up the optimization
as the model size of PSθ is much smaller than h.

The patch segmentation mask M̂PS is obtained by thresh-
olding the output of PSθ: M̂PS = PSθ(x) > 0.5.

4.2. Shape Completion

4.2.1 Desired Properties

If we know that the adversary is restricted to attacking a
patch of a specific shape, such as a square, we can use this
information to “fill in” the patch-segmentation output M̂PS

to cover the ground truth patch mask M . We adopt a conser-
vative approach: given M̂PS , we would like to produce an
output M̂SC which entirely covers the true patch mask M . In
fact, we want to guarantee this property – however, if M̂PS

and M differ arbitrarily, then we clearly cannot provide any
such guarantee. Because both the ground-truth patch mask
M and the patch-segmentation output M̂PS are binary vec-
tors, it is natural to measure their difference as a Hamming
distance dH(M̂PS ,M). To provide appropriate scale, we
compare this quantity to the total magnitude of the ground-
truth mask ∥M∥H := dH(0,M). We therefore would like
a patch completion algorithm with the following property:

If
dH(M̂PS ,M)

∥M∥H
≤ γ then ∀i, j : M̂SC (i,j) ≥ M(i,j) (8)

Figure 3. Construction of M̂SC in Eq. (9): M̂SC is the union of
all candidate masks Ms,(i,j) which are γ-close to M̂PS . If M is
γ-close to M̂PS , this guarantees that M is covered by M̂SC .

4.2.2 Proposed Method

If the size of the ground-truth patch is known, then we can
satisfy Eq. (8), minimally, by construction. In particular,
suppose that M is known to be an s × s patch, and let
Ms,(i,j) refer to the mask of an s× s patch with upper-left
corner at (i, j). Then Eq. (8) is minimally satisfied by the
following mask:

M̂SC (i,j) :=


1 if ∃ i′, j′ : M

s,(i′,j′)
(i,j) = 1 and

dH(M̂PS ,Ms,(i′,j′))
s2 ≤ γ

0 otherwise.

(9)

where we have used that ∥M∥H = s2. In other words, we
must cover every pixel within any s× s patch Ms,(i′,j′) that
is γ-close to the observed mask M̂PS , because any such
patch may in fact be M : a mask consisting of only these pix-
els is therefore the minimal mask necessary to satisfy Eq. (8).
See Fig. 3 for an example. While Eq. (9) may appear daunt-
ing, there is a simple dynamic programming algorithm that
allows the entire mask M̂SC to be computed in O(H ×W )
time: this is presented in the supplementary material.

4.2.3 Unknown Patch Sizes

In Eq. (9), we assume that the ground-truth patch size s
is known; and is further parameterized by the distortion
threshold γ. Let M̂SC(s, γ) represent this parameterized
mask, as defined in Eq. (9). If we do not know s, but instead
have a set of possible patch sizes S such that the true patch
size s ∈ S, then we can satisfy Eq. (8) by simply combining
all of the masks generated for each possible value of s:

M̂SC(S, γ)(i,j) :=
∨
s∈S

M̂SC(s, γ)(i,j) (10)

Eq. (10) is indeed again the minimal mask required to satisfy
the constraint: a pixel (i, j) is included in M̂SC(γ) if and
only if there exists some Ms,(i′,j′), for some s ∈ S, such
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that (i, j) is part of Ms,(i′,j′) and Ms,(i′,j′) is γ−close to
M̂PS . In practice, this method can be highly sensitive to the
hyperparameter γ. To deal with this issue, we initially ap-
ply Eq. (10) with low values of γ, and then gradually increase
γ if no mask is returned – stopping when either some mask
is returned or a maximum value is reached, at which point
we assume that there is no ground-truth adversarial patch.
The details can be found in the supplementary material.

4.2.4 Unknown Patch Shapes

In some cases, we may not know the shape of the patch.
Since the patch segmenter is agnostic to patch shape,
we use the union of M̂PS and M̂SC as the final mask
output: M̂ = M̂PS

⋃
M̂SC . We empirically evaluate the

effectiveness of this approach in Sec. 5.3.4.

5. Evaluation on Digital Attacks

In this section, we evaluate the robustness of SAC on dig-
ital patch attacks. We consider both non-adaptive and adap-
tive attacks, and demonstrate the generalizability of SAC.

5.1. Evaluation Settings

We use COCO [27] and xView [21] datasets in our exper-
iments. COCO is a common object detection dataset while
xView is a large public dataset of overhead imagery. For
each dataset, we evaluate model robustness on 1000 test
images and report mean Average Precision (mAP) at Inter-
section over Union (IoU) 0.5. For attacking, we iterate 200
steps with a set step size α = 0.01. The patch location l
is randomly selected within each image. We evaluate three
rounds with different random patch locations and report the
mean and standard deviation of mAP.

5.2. Implementation Details

All experiments are conducted on a server with ten
GeForce RTX 2080 Ti GPUs. For base object detectors,
we use Faster-RCNN [36] with feature pyramid network
(RPN) [26] and ResNet-50 [18] backbone. We use the pre-
trained model provided in torchvision [31] for COCO
and the model provided in armory [1] for xView. For patch
segmenter, we use U-Net [37] with sixteen initial filters.
To train the patch segmenters, for each dataset we gener-
ate 55k fixed adversarial images from the training set with
patch size 100 × 100. Training on pre-generated adversar-
ial images took around three hours on a single GPU. For
self adversarial training, we train each model for one epoch
by Eq. (7) using PGD attacks with 200 iterations and step
size α = 0.01 with λ = 0.3, which takes around eight
hours on COCO and four hours on xView using ten GPUs.
For patch completion, we use a square shape prior and the
possible patch sizes S = {25, 50, 75, 100} for xView and

S = {25, 50, 75, 100, 125} for COCO. More details can be
found in the supplementary material.

5.3. Robustness Analysis

5.3.1 Baselines

We compare the proposed method with vanilla adversar-
ial training (AT), JPEG compression [13], spatial smooth-
ing [48], and LGS [33]. For AT, we use PGD attacks with
thirty iterations and step size 0.067, which takes around
twelve hours per epoch on the xView training set and thirty-
two hours on COCO using ten GPUs. Due to the huge com-
putational cost, we adversarially train Faster-RCNN models
for ten epochs with pre-training on clean images. More
details can be found in the supplementary material.

5.3.2 Non-adaptive Attack

The defense performance under non-adaptive attacks is
shown in Tab. 1, where the attacker only attacks the object
detectors. SAC is very robust across different patch sizes
on both datasets and has the highest mAP compared to base-
lines. In addition, SAC maintains high clean performance as
the undefended model. Fig. 4 shows two examples of object
detection results before and after SAC defense. Adversarial
patches create spurious detections and hide foreground
objects. SAC masks out adversarial patches and restores
model predictions. We provide more examples as well as
some failure cases of SAC in the supplementary material.

5.3.3 Adaptive Attack

We further evaluate the defense performance under adaptive
attacks where the adversary attacks the whole object detec-
tion pipeline. To adaptively attack preprocessing-based base-
lines (JPEG compression, spatial smoothing, and LGS), we
use BPDA [4] assuming the output of each defense approxi-
mately equals to the original input. To adaptively attack SAC,
we use straight-through estimators (STE) [5] when backprop-
agating through the thresholding operations, which is the
strongest adaptive attack we have found for SAC (see the
supplementary material for details). The results are shown in
Tab. 1. The performances of preprocessing-based baselines
drop a lot under adaptive attacks. AT achieves the strongest
robustness among the baselines while sacrificing clean per-
formance. The robustness of SAC has little drop under
adaptive attacks and significantly outperforms the baselines.
Since adaptive attacks are stronger than non-adaptive attacks,
we only use adaptive attacks for the rest of the experiments.

5.3.4 Generalizability of SAC

Generalization to unseen shapes We train the patch seg-
menter with square patches and use the square shape prior
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Table 1. mAP (%) under non-adaptive and adaptive attacks with different patch sizes. The best performance of each column is in bold.

Dataset Method Clean Non-adaptive Attack Adaptive Attack
75×75 100×100 125×125 75×75 100×100 125×125

COCO

Undefended 49.0 19.8±1.0 14.4±0.6 9.9±0.5 19.8±1.0 14.4±0.6 9.9±0.5
AT [30] 40.2 23.5±0.7 18.6±0.8 13.9±0.3 23.5±0.7 18.6±0.8 13.9±0.3

JPEG [13] 45.6 39.7±0.3 37.2±0.3 33.3±0.4 22.8±0.9 18.0±0.8 13.4±0.7
Spatial Smoothing [48] 46.0 40.4±0.6 38.1±0.6 34.3±0.1 23.2±0.7 17.5±1.0 13.5±0.6

LGS [33] 42.7 36.8±0.1 35.2±0.6 32.8±0.9 20.8±0.7 15.9±0.5 12.2±0.9
SAC (Ours) 49.0 45.7±0.3 45.0±0.6 40.7±1.0 43.6±0.9 44.0±0.3 39.2±0.7

Dataset Method Clean Non-adaptive Attack Adaptive Attack
50×50 75×75 100×100 50×50 75×75 100×100

xView

Undefended 27.2 8.4±1.6 7.1±0.4 5.3± 1.1 8.4±1.6 7.1±0.4 5.3± 1.1
AT [30] 22.2 12.1±0.4 8.6±0.1 7.2±0.7 12.1±0.4 8.6±0.1 7.15±0.7

JPEG [13] 23.3 19.3±0.4 17.8±1.0 15.9±0.4 11.2±0.3 9.5±1.0 8.3±0.3
Spatial Smoothing [48] 21.8 16.2±0.7 14.2±1.1 12.4±0.8 11.0±0.7 7.9±0.6 6.5±0.2

LGS [33] 19.1 11.9±0.5 10.9±0.3 9.8±0.5 8.2±0.8 6.5±0.4 5.4±0.5
SAC (Ours) 27.2 25.3±0.3 23.6±1.2 23.2±0.3 24.4±0.8 23.0±0.9 22.1±0.6

(a) Ground-truth on clean image. (b) Predictions on clean image. (c) Predictions on adversarial im-
age with a 100× 100 patch.

(d) Predictions on SAC masked
image.

Figure 4. Visualization of object detection results with examples from COCO dataset (top) and xView dataset (bottom). Adversarial patches
create spurious detections, and make the detector ignore the ground-truth objects. SAC masks out the patch and restores model predictions.

in shape completion. Since adversarial patches may not al-
ways be square in the real world, we further evaluate square-
trained SAC with adversarial patches of different shapes
while fixing the number of pixels in the patch. The details
of the shapes used can be found in the supplementary ma-
terial. We use the union of M̂PS and M̂SC as described
in Sec. 4.2.4. The results are shown in Fig. 5. SAC demon-
strates strong robustness under rectangle, circle, diamond,
triangle, and ellipse patch attacks, even though these shapes

mismatch with the square shape prior used in SAC.

Generalization to attack budgets In Eq. (2), we set ϵ =
1 that allows the attacker to arbitrarily modify the pixel
values within the patch region. In practice, the attacker may
lower the attack budget to generate less visible adversarial
patches to evade patch detection in SAC. To test how SAC
generalizes to lower attack budgets, we evaluate SAC trained
on ϵ = 1 under lower ϵ values on the xView dataset. We set
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Figure 5. Performance of SAC under adaptive attacks with different
patch shapes and sizes. SAC demonstrates strong robustness under
rectangle, circle and ellipse patch attacks, even though these shapes
mismatch with the square shape prior used in SAC.
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Figure 6. SAC performance under different attack budgets on
xView dataset. SAC is trained with ϵ = 1.

iteration steps to 200 and step size to ϵ/200. Fig. 6 shows
that SAC remains robust under a wide range of ϵ. Although
the performance of SAC degrades when ϵ becomes smaller
because patches become imperceptible, SAC still provides
significant robustness gain upon undefended models. In
addition, SAC is flexible and we can use smaller ϵ in training
to provide better protection against imperceptible patches.

Generalization to unseen attack methods In the previ-
ous sections, we use PGD (Eq. (3)) to create adversarial
patches. We further evaluate SAC under unseen attack meth-
ods, including DPatch [29] and MIM [12] attack. We use
200 iterations for both attacks, and set the learning rate to
0.01 for DPatch and decay factor µ = 1.0 for MIM. The per-
formance is shown in Tab. 2. SAC achieves more than 40.0%
mAP on COCO and 21% mAP on xView under both attacks,
providing strong robustness upon undefended models.

5.4. Ablation Study

In this section, we investigate the effect of each compo-
nent of SAC. We consider three models: 1) patch segmenter
trained with pre-generated adversarial images (PS); 2) PS
further trained with self adversarial training (self AT); 3) Self

Table 2. mAP (%) under adaptive unseen attack methods with
different patch sizes.

Attack Method 75×75 100×100 125×125

C
O

C
O DPatch [29] Undefended 33.6±0.8 29.1±0.6 25.0±1.7

SAC (Ours) 45.3±0.3 44.1±0.6 42.1±0.8

MIM [12] Undefended 20.1±1.2 14.2±0.8 10.5±0.2
SAC (Ours) 42.2±0.9 43.5±1.0 40.0±0.2

Attack Method 50×50 75×75 100×100

xV
ie

w DPatch [29] Undefended 16.0±0.5 13.4±0.9 11.1±0.9
SAC (Ours) 25.3±0.5 22.7±1.1 21.8±0.5

MIM [12] Undefended 8.3±0.4 7.3±0.8 6.5±1.5
SAC (Ours) 24.7±0.7 23.0±0.9 22.1±0.6

Table 3. mAP (%) under adaptive attacks of ablated models.

Method 75×75 100×100 125×125

C
O

C
O

Undefended 19.8±1.0 14.4±0.6 9.9±0.5
PS 23.3±0.7 18.7±0.3 13.1±0.3
+ self AT 41.5±0.2 40.5±0.6 36.6±0.1

+ SC 43.6±0.9 44.0±0.3 39.2±0.7

Method 50×50 75×75 100×100

xV
ie

w

Undefended 8.4±1.6 7.1±0.4 5.3± 1.1
PS 16.8±0.6 13.6±0.4 11.1±0.3
+ self AT 20.6±0.4 17.6±0.5 15.4±0.6

+ SC 24.4±0.8 23.0±0.9 22.1±0.6

AT trained PS combining with shape completion (SC), which
is the whole SAC defense. The performance of these models
under adaptive attacks is shown in Tab. 3. PS alone achieves
good robustness under adaptive attacks (comparable or even
better performance than the baselines in Tab. 1) thanks to the
inherent robustness of segmentation models [3, 11]. Self AT
significantly boosts the robustness, especially on the COCO
dataset. SC further improves the robustness. Interestingly,
we find that adaptive attacks on models with SC would force
the attacker to generate patches that have more structured
noises trying to fool SC (see supplementary material).

6. Evaluation on Physical Attack
In this section, we evaluate the robustness of SAC on

physical patch attacks. We first introduce the APRICOT-
Mask dataset and further demonstrate the effectiveness of
SAC on the APRICOT dataset.

6.1. APRICOT-Mask Dataset

APRICOT [6] contains 1,011 images of sixty unique
physical adversarial patches photographed in the real world,
of which six patches (138 photos) are in the development
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set, and the other fifty-four patches (873 photos) are in the
test set. APRICOT provides bounding box annotations for
each patch. However, there is no pixel-level annotation
of the patches. We present the APRICOT-Mask dataset
1, which provides segmentation masks and more accurate
bounding boxes for adversarial patches in the APRICOT
dataset (see two examples in Fig. 7). The segmentation
masks are annotated by three annotators using Labelbox [2]
and manually reviewed to ensure the annotation quality. The
bounding boxes are then generated automatically from the
segmentation masks. We hope APRICOT-Mask along with
the APRICOT dataset can facilitate the research in building
defenses against physical patch attacks, especially patch
detection and removal techniques.

Figure 7. Images and patch annotations from the APRICOT and
APRICOT-Mask datasets. Left: adversarial images from the APRI-
COT dataset; middle: patch bounding boxes provided by the APRI-
COT dataset; right: patch bounding boxes and segmentation masks
provided by the APRICOT-Mask dataset.

6.2. Robustness Evaluation

Evaluation Metrics We evaluate the defense effectiveness
by the targeted attack success rate. A patch attack is “success-
ful” if the object detector generates a detection that overlaps
a ground truth adversarial patch bounding box with an IoU
of at least 0.10, has a confidence score greater than 0.30, and
is classified as the same object class as the patch’s target [6].

Evaluation Results We train the patch segmenter on the
APRICOT test set using the segmentation masks from the
APRICOT-Mask dataset. The training details can be found
in the supplementary material. Since APRICOT patches
are generated from three detection models trained on the
COCO dataset targeting ten COCO object categories, we
use a Faster-RCNN model pretrained on COCO [31] as our
base object detector, which is a black-box attack setting with
target and substitute models trained on the same dataset. We
evaluate the targeted attack success rate on the development

1https://aiem.jhu.edu/datasets/apricot-mask
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Figure 8. Targeted attack success rates on the APRICOT dataset.

set and compare SAC with the baselines as in Sec. 5.3.1. For
AT, we use the Faster-RCNN model adversarially trained on
the COCO dataset (AT-COCO) as the size of the APRICOT
dataset is not enough to retrain an object detector. The
results are shown in Fig. 8. SAC significantly brings down
the targeted attack success rate of the undefended model
from 7.97% to 2.17%, which is the lowest among all defense
methods. AT has a slightly higher targeted attack success
rate than the undefended model, which may be due to the
domain gap between COCO and APRICOT datasets.

7. Discussion and Conclusion

In this paper, we propose the Segment and Complete
defense that can secure any object detector against patch at-
tacks by robustly detecting and removing adversarial patches
from input images. We train a robust patch segmenter and
exploit patch shape priors through a shape completion algo-
rithm. Our evaluation on digital and physical attacks demon-
strates the effectiveness of SAC. In addition, we present the
APRICOT-Mask dataset to facilitate the research in building
defenses against physical patch attacks.

SAC can be improved in several ways. First, although
SAC does not require re-training of base object detectors,
fine-tuning them on images with randomly-placed black
blocks can further improve their performance on SAC
masked images. Second, in this paper, we adopt a con-
servative approach that masks out the entire patch region
after we detect the patch. This would not cause information
loss when the attacker is allowed to arbitrarily distort the
pixels and destroy all the information within the patch such
as in physical patch attacks. However, in the case where the
patches are less visible, some information may be preserved
in the patched area. Instead of masking out the patches, one
can potentially impaint or reconstruct the content within the
patches, which can be the future direction of this work.
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