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Abstract

In this work, we explore the challenging task of gener-
ating 3D shapes from text. Beyond the existing works, we
propose a new approach for text-guided 3D shape gener-
ation, capable of producing high-fidelity shapes with col-
ors that match the given text description. This work has
several technical contributions. First, we decouple the
shape and color predictions for learning features in both
texts and shapes, and propose the word-level spatial trans-
former to correlate word features from text with spatial
features from shape. Also, we design a cyclic loss to en-
courage consistency between text and shape, and introduce
the shape IMLE to diversify the generated shapes. Fur-
ther, we extend the framework to enable text-guided shape
manipulation. Extensive experiments on the largest ex-
isting text-shape benchmark [10] manifest the superiority
of this work. The code and the models are available at
https://github.com/liuzhengzhe/Towards-Implicit-

Text-Guided-Shape-Generation.

1. Introduction
3D shape creation has a wide range of applications, e.g.,

CAD, games, animations, computational design, augmented
reality, etc. Significant progress has been made in recent
years by exploiting neural networks and generative models
to learn to produce 3D shapes. Yet, existing works [7, 12, 13,
22, 34, 35, 47, 49, 70, 76, 78] focus mostly on generating the
overall shapes, whereas the more recent ones [11, 14, 23, 44,
59, 79, 80] attempt to generate shapes with more details.

In this work, we are interested in the challenging task of
text-guided 3D shape generation—Given a sentence, e.g.,
“A comfortable red color chair with four legs,” we aim to
develop a method to automatically generate a 3D shape that
follows the text description; see Figure 1 (a) for our example
results. This research direction has great potential for effi-
cient 3D shape production, say by taking user speech/text
input to guide or condition the process of generating 3D
shapes. By this means, we can assist users to readily gener-
ate and edit 3D models for diverse applications.

*: Corresponding authors

A computer chair with green 
padding and back, black arm rests, 
and five spokes legs with rollers.

(b)  

(a)  

Brown colored whole wood oval 
shaped coffee table.

A comfortable red color chair with four legs.

(c)  pink

rectangular

Figure 1. (a) Chairs of different structures and appearances gen-
erated by our method from the same given sentence. Our method
also allows text-based manipulation in color (b) and in shape (c).

While many methods [40,61–64,67,72,73,77,82,83] have
been developed for generating 2D images from text, the task
of generating 3D shapes from text is rather under-explored.
Chen et al. [10] generate 3D shapes from natural language
descriptions by learning joint text and shape embeddings,
but the performance and visual quality are highly limited
by the low-resolution 3D representations. Another very
recent work [33] leverages semantic labels to guide the shape
generation, but it requires predefined semantic labels and
cannot directly deal with natural language inputs.

To enhance 3D shape generation from text, we pro-
pose a new solution by leveraging the implicit represen-
tation [13, 48, 54] to predict an occupancy field. Yet, several
inherited challenges have not been addressed in the early
works for properly adopting the implicit representation for
the text-to-shape task. First, the above works generate shapes
typically without colors, which are crucial in text-guided 3D
shape generation, since text descriptions often contain col-
ors; we empirically found that directly predicting shape and
color with a single implicit decoder often lead to shape distor-
tion and color blur. Second, text contains a large amount of
spatial-relation information, e.g., “a wooden table on a metal
base.” Still, spatial-relation local features are ignored in ex-
isting works, since the implicit decoder generally considers
only the global feature from the auto encoder as input [13].
Third, the generated shapes are not all consistent with the
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input texts, largely due to the semantic gap between text and
3D shape and also the lack of effective learning constraints.
Last, text-to-shape generation is inherently one-to-many, i.e.,
diverse results may match the same input text. Yet, the exist-
ing regression-based approach outputs only a single shape.

This work presents a new approach for high-fidelity text-
guided 3D shape generation. First, we decouple the shape
and color predictions for feature learning in both texts and
shapes to improve the generation fidelity; this strategy also
aids the text-guided shape manipulation. Also, we introduce
a word-level spatial transformer to learn to correlate the word
features with the spatial domain in shapes. In addition, we
design a cyclic loss to encourage the consistency between the
generated 3D shape and the input text. Further, we propose a
novel style-based latent shape-IMLE generator for producing
diversified shapes from the same given text. Last, we extend
the framework for text-guided 3D shape manipulation with
a two-way cyclic loss. As shown in Figure 1 (b), we may
modify the original text and our framework can produce new
colored shapes according to the edited text, while keeping
the other attributes unchanged.

Extensive experiments on the largest existing text-shape
dataset [10] demonstrate the superiority of our approach over
the existing works, both qualitatively and quantitatively.

2. Related Work
Text-to-image generation. Remarkable progress has been
made for generating images from text [40, 41, 61–63, 72, 77,
82,83]. Recently, approaches [56,64,66,67,73,75,81] based
on the unconditional GAN [6, 36, 37] were also proposed.

Compared with text-to-image, it is more challenging to
generate 3D shapes from texts. First, unlike 2D images, 3D
shapes are unstructured and irregular without well-defined
grid structures. Also, the text-to-shape task requires a com-
prehensive prediction of the whole 3D shape, while the text-
to-image task addresses image generation, which is a projec-
tion of the 3D shape. Further, there are plenty of large-scale
image datasets [46, 51, 71] to support text-to-image. Yet,
as far as we know, the largest dataset for text-to-shape was
proposed in [10], which has 75k texts and 15k shapes of
1283 resolution. The lack of large-scale and high-quality
training data makes the text-to-shape task even harder.

3D shape representations, generation, and manipulation.
Unlike images, 3D shapes can be represented as, e.g., voxel
grids [18, 24], point clouds [2, 60], and meshes [21]. Also,
various methods [30, 38, 39, 45, 68] have been proposed for
generating and manipulating shapes for different 3D rep-
resentations. Yet, the generated shapes are limited by the
resolution and quality of the training set. To generate shapes
of arbitrary resolution, recent works [13, 16, 47, 48, 54] start
to explore implicit functions, which in fact have been used
in many tasks, e.g., single-view reconstruction [44, 50, 76],
3D scene reconstruction [29, 35, 58], and 3D texture gen-

eration [17, 52, 53]. In existing works, a typical approach
is to leverage an auto-encoder (AE) to adopt to multiple
3D generation tasks and map the input modalities into the
AE’s learned feature space, e.g., single-image 3D reconstruc-
tion [13,76], point-cloud-based shape generation [7,15], and
3D completion [74].

Following the above works, a straightforward approach
for text-guided 3D shape generation is to map the text feature
into the AE’s feature space then adopt an implicit decoder to
generate the 3D shape. This simple approach, however, has
several drawbacks, as discussed in Section 1.

Recently, several works make it possible to manipulate
implicit 3D shapes [19, 27, 32, 84] using a reference box or
reference points as guidance. Yet, none of them enables 3D
shape manipulation with natural language descriptions.

3D shape generation from text. A series of works are
proposed to address the tasks on texts and 3D shapes, includ-
ing learning the text-shape correspondence [3], cross-modal
retrieval [26, 69], shape-to-text generation [25], text-guided
shape composition [31], and 3D object localization [9].

As far as we are aware of, there are only few works [10,
33] that address the challenging text-to-shape task. Chen et
al. [10] propose to directly predict colored voxels with adver-
sarial learning on top of a jointly-learned text-shape embed-
ding. Though plausible shapes can be produced, the shape
resolution and texture quality are still far from being satisfac-
tory. Also, the generated shapes may not be consistent with
the input texts due to the large semantic gap between text
and shape. Jahan et al. [33] propose a semantic-label guided
shape generation approach; however, it can only take one-hot
semantic keywords as input and the generated shapes are
also unsatisfying in quality, without color and texture.

This work presents a new framework, capable of gen-
erating high-fidelity 3D shapes with good semantic corre-
spondence between the text and shape. Also, our framework
enables text-guided 3D shape manipulation for both shape
and color, outperforming the existing works by a large mar-
gin, as demonstrated in the experiments.

Diversified generation. Besides GANs, IMLE (Implicit
Maximum Likelihood Estimation) is another approach to
aid multi-modal generation, e.g., super-resolution [42],
semantic-layout-guided image synthesis [43], image decom-
pression [57], and shape completion [4]. Compared with
GANs, IMLE mitigates the mode collapse of GANs and
boosts the result diversity. In this work, we leverage IMLE
for generating multiple shapes from the same text input.

3. Methodology
3.1. Overview

Given text T, we aim to generate high-quality 3D shape
S with colors, following the description of T. To gener-
ate high-quality results, we exploit the implicit occupancy
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Figure 2. Overview of our text-guided shape generation framework, which has three major parts. (a) First, the shape auto-encoder {E,D}
extracts shape feature fs and color feature fc from the input 3D shape I . (b) We then learn to generate the 3D shape in a text-guided manner
with the word-level spatial transformer (WLST) and the cyclic consistency loss fcyc. (c) Further, we generate diversified 3D shapes from the
same given text by adopting a style-based latent shape generator G. We only need (c) during the inference.

representation other than the explicit voxel/point/mesh rep-
resentations to characterize shapes with color. Specifically,
the predicted shape with color is denoted as S ∈ RN×(1+3),
including the shape ∈ RN×1(a set of occupancy values in the
voxels) and the color ∈ R3N (the associated set of RGB val-
ues), respectively, where N is the number of sample points,
concerning the generation quality.

Our framework consists of a text encoder B, feature gen-
erator G, spatial aware decoder D′, and shape encoder E.
Its overall architecture is given in Figure 2. In inference, B
extracts text feature f̄ = {f̄s, f̄c} from text T (where f̄s and
f̄c are the shape and color portions of f̄ , respectively), and
G produces multiple instances of such feature {f̂i}mi=1 based
on f̄ conditioned on various random vectors {zi}. Then, D′

generates diverse shapes {Si ∈ RN×(1+3)}mi=1 with color.
The model training of our method is non-trivial. We train

the overall framework in three stages (see again Figure 2):
(a) shape auto-encoder, (b) text-guided shape generation, and
(c) diversified shape generation with IMLE. Specifically,

• First, as shown in Figure 2 (a), we train shape encoder
E and implicit decoder D. As shown in the top middle,
unlike existing works [13, 33] that ignore colors in the
shape generation, D composes of Ds and Dc that ac-
count for the decoding of shape and color, respectively,
when D predicts the output shape.

• Then, we adopt BERT-based text encoder B [20] to help

extract text feature f̄ = {f̄s, f̄c} and word-level feature
f̄w = {f̄s w, f̄c w} from input text T (see Figure 2 (b)),
and map f̄ into the joint text-shape feature space to
reduce the domain gap between the text and the shape.
Further, we propose the spatial-aware decoder D′ to
leverage local feature f̄l extracted by the word-level
spatial transformer (WLST), which explicitly correlates
the spatial and word features to improve the fidelity of
S. Also, we formulate cyclic loss Lcyc to encourage the
consistency between shape S and text T.

• Lastly, we propose to adopt style-based shape generator
G that conditions on a set of random noise vectors
{zi}mi=1 to enable diversified 3D shape generation with
feature f̂i, as shown in Figure 2 (c).

In the following, we will detail each component of the
framework and the associated losses.

3.2. Shape Auto-Encoder

We extend the auto-encoder in [13] to jointly recon-
struct the shape and color. As shown in Figure 2 (a), our
shape auto-encoder aims to map the input voxel-based shape
I ∈ R64×64×64 into a compact feature space. Specifi-
cally, encoder E [13] extracts the shape and color features
f = {fs, fc} from I , whereas decoder D reconstructs the
shape and color through Ds and Dc, respectively. Inside

17898



𝑊

𝑊: (𝐾 × 𝑑𝑙)

R: (𝑁 × 𝑑𝑙)

A: (𝐾 × 𝑁)
Q: (𝐾 × 𝑑𝑙)

K: (𝑁 × 𝑑𝑙)

𝑀𝑎𝑡𝑀𝑢𝑙

𝐹𝑄

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑎: (𝐾 × 𝑁)

𝐹𝐾

𝐹𝑉

𝑀𝑎𝑡𝑀𝑢𝑙 𝐹𝐹1 𝐹𝐹2

V: (𝑁 × 𝑑𝑙)

ҧ𝑓s_𝑙 𝑜𝑟 ҧ𝑓𝑐_𝑙:
(𝑁 × 𝑑𝑙)

Next transformer layer

𝑅

Figure 3. The Word-Level Spatial Transformer architecture. FQ,
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feed-forward networks. The Layer Normalization [5] is omitted.
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of seat of back 
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color.

Output
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The attention
map of “metal”

The attention 
map of “brown”

Figure 4. Visualizing the attention map A for the words “metal”
and “brown”. Warmer colors indicate stronger correlation.

D, we concatenate a sample (or query) point coordinate
p = (x, y, z) with each feature vector (fs or fc) as input to
Ds or Dc. Ds and Dc have the same architecture with seven
fully-connected and leaky-ReLU layers, except in the last
layer, Ds outputs a single occupancy value and Dc outputs
three values for RGB color, both at the sample point p.

The shape auto-encoder is trained to reconstruct the shape
and color of the input shape with an L2 regression:

Lae =λsΣp||Ds(fs ⊕ p)− I(p)||22
+λcΣk∈{R,G,B}Σp||Dc(fc ⊕ p)[k]− I(p)[k]||221(I(p)),

(1)
where I(p) and I(k, p) denote the ground-truth occupancy
and color values, respectively, at point p; ⊕ denotes concate-
nation; 1 is an indicator function of value 1 if p is inside the
input shape, and 0, otherwise; and λs and λc are weights for
the shape and color reconstructions, respectively.

3.3. Text-Guided Shape Generation

As shown in Figure 2 (b), the text-guided shape genera-
tion network consists of three modules: shape encoder E,
BERT-based text encoder B, and spatial-aware decoder D′.
With E and D′ (D′

s and D′
c) initialized by the corresponding

components in the shape auto-encoder, our goal here is to
train the whole network end-to-end to obtain B and D′.

Text encoder B. We employ the BERT structure [20] to
build text encoder B for extracting text feature f̄ from input
text T and mapping f̄ to the joint text-shape feature space.

Spatial-aware decoder D′. D′ aims to transform text fea-
ture f̄ to the predicted shape S with color. Instead of simply
using the trained implicit decoder D, we construct the spatial-
aware decoder D′ with the word-level spatial transformer
(WLST). In short, we take the local features from WLST to
improve the spatial correlation implied from T.

The right side of Figure 2(b) shows the architecture of
the spatial-aware decoder D′. First, we concatenate f̄s and p
and transform the result {f̄s ⊕ p} ∈ RN×(d+3) using a fully-
connected layer, where N is the number of sample points
for shape reconstruction and d is the channel dimension
of f̄s. Then, we transform the word-level BERT features
{f̄w} ∈ RK×dB (where K is the number of words in input
text and dB is the channel dimension of each word feature
f̄w) from B using a fully-connected layer. The transformed
spatial and word features are denoted as R ∈ RN×dl and
W ∈ RK×dl , respectively, where Ri ∈ Rdl is the ith row in
R that corresponds to the ith sample point and Wj ∈ Rdl

is the jth row in W that corresponds to the jth word in
input text. Importantly, we formulate the WLST to learn the
correlation between {Ri} and {Wj}; see the next paragraph
for the details. After that, D′

s takes the global feature f̄s,
sample point coordinate pi, and local feature f̄s l,i from
WLST as inputs to predict the occupancy value at pi for
shape reconstruction.

Figure 3 shows the architecture of the WLST. With the
spatial features R and word features W , we first establish
an attention map A to explicitly correlate each word feature
Wj with each sample point pi given the shape feature f̄s;
see Figure 4 for example visualizations of A, revealing how
it captures the spatial regions in a shape for different words
in the input text. Next, we use the softmax function to
process A to generate the normalized attention matrix a. The
output local shape feature f̄s l,i of point pi is the weighted
aggregation of the word-level features Wj across the whole
input text. Hence, our WLST can be formulated as

f̄s l,i = Σjsoftmax(
FQ(Wj)FK(Ri)√

dl
)FV (Ri), (2)

where FQ, FK , and FV are fully-connected layers; see Fig-
ure 3 for the architecture of the WLST. Similarly, D′

c also
leverages a WLST for extracting local color feature f̄c l.

With the WLST, we can extend the implicit decoder D
to take into account the extra local feature f̄l = {f̄s l, f̄c l}
(see Figure 2), which is produced by explicitly learning the
correlation between the word-level spatial descriptions and
the 3D shape. Hence, we can make every single word in the
input text accessible to the shape decoder and enhance the
fidelity (or local details) of the generated shape.

Cyclic consistency loss. To reduce the semantic gap be-
tween the text and shape, we propose a cyclic consistency
loss to encourage the consistency between input text T and
output shape S from D′. To form a cycle, we first grid-
sample 64 × 64 × 64 points to use D′ to generate S, and
utilize encoder E from the trained shape auto-encoder to ex-
tract features fcyc from S; see Figure 2(b). Then, we define
the cyclic consistency loss to operate on the semantic mean-
ingful feature space instead of the low-level occupancy or
color values, such that it can regularize the shape generation

17899



𝐹1 𝐹2

ҧ𝑓 𝐹1 𝐹2 𝐹3 𝐹4 F5 𝐹6𝐿𝑁1

𝐹1 𝐹2

𝐿𝑁2

𝐴1

𝐴2

መ𝑓𝑧~𝑁(0,1)

𝑤 ∈ 𝑊 +

𝑤 ∈ 𝑊 +

Figure 5. The architecture of our shape-IMLE generator. Inspired
by StyleGAN [37], we map random noise z to latent space W+ [1]
to control the generator through adaptive Layer Normalization [5]
(A1 and A2) at the first and third fully-connected layers.

in a closed loop by encouraging the high-level features fcyc
to be similar to f = {fs, fc} from the shape encoder.

To reduce the memory consumption and training time,
we firstly grid-sample 16 × 16 × 16 points to form a low-
resolution voxelized shape Sl, then tri-linearly upsample Sl

to S of the same resolution as I (64× 64× 64).

Network training. Initialized with the shape auto-encoder,
we train the text-guided shape generation network end-to-
end with the shape auto-encoder loss L′

ae on D′,

L′
ae =λsΣp||D′

s(fs, p, f̄s l, Rs i)− I(p)||22
+λcΣk∈{R,G,B}Σp||D′

c(fc, p, f̄c l)[k]− I(p)[k]||221(I(p)),
(3)

Lreg = λr||f̄ − f ||22, (4)

and Lcyc = λcyc||fcyc − f ||22, (5)

where λs, λc, λr, and λcyc are weights.

3.4. Diversified 3D Shape Generation

To enable diversified 3D shape generation for the same
input text, we propose a style-based latent shape-IMLE gen-
erator G, namely shape IMLE, which operates in the latent
space; see Figure 2(c). Taking text feature f̄ = f̄s ⊕ f̄c from
B as input, G generates {f̂i = f̂s,i⊕f̂c,i}mi=1 conditioned on
a set of random vectors Z = {zi}mi=1. Different from GANs,
which encourage the generated samples to be similar to the
target data, IMLE inversely encourages each target data to
have a similar generated sample to avoid mode collapse [43].
Figure 5 shows the architecture of the shape IMLE G.

For the training of G, it is optimized as follows:

min
θ
EZ [ min

k∈{1,...,m}
d(Gθ(f̄ , zk), f)] (6)

where θ denotes the weights of generator G; d(·, ·) is a
distance metric; and zk ∼ N(0, 1).

With each input f̄ , we randomly sample m random noise
vectors {zi} to generate m different outputs {f̂i}. Among
them, the one that is most similar to the ground truth f , say
f̂k, is trained to be closer to f with an L2 regression. So,
we can encourage every ground truth f to have a similar
generated sample to avoid the mode-collapse issue in GANs,

while promoting diversified shape generation [42, 43]. We
train the shape IMLE G with all the other modules E,B,D′

frozen (see Figure 2) using an L2 loss on f̂k = G(f̄ , zk):

LG = min
k∈{1,...,m}

||G(f̄ , zk), f ||22. (7)

During the inference, we feed every feature of
{f̂1, . . . , f̂m} into D for generating diversified shapes, with-
out using the ground truth f to select the nearest f̂k.

3.5. Text-Guided Shape Manipulation

Next, we extend our framework for text-guided shape
manipulation, i.e., to generate shape Ṡ that matches text
T2 that is slightly modified from original text T1 by re-
placing/inserting/removing one or a few words, with other
attributes unchanged for the same random noise z.

Taking shape manipulation (with color unchanged) as an
example, we may directly feed feature f̂2 = {f̂2s, f̂2c} from
the edited text to D′ to generate the new edited shape. Yet,
it could cause drastic changes in the unedited region and
colors (Figure 7(b)). Considering the decoupled shape and
color features, we may mix f̂2s from edited text and f̂1c from
original text as input to D′. This simple approach ensures
the consistency of the unedited attributes but shape and color
may not well align with the edited shape (Figure 7(c)), since
f̂2s and f̂1c actually come from different texts.

To encourage shape-color alignment, we propose to feed
shape feature f̄2s (extracted from text T2) and color feature
f̄1c (extracted from text T1) to G3 to predict the manipulated
feature ˆf2s, f1c. Then, we can feed ˆf2s, f1c to D′ to produce
the edited shape Ṡ. Yet, this approach could still lead to
certain changes in the unedited attributes (Figure 7(d)). Fig-
ure 6 shows our full framework further with the two-way
cyclic loss, i.e., Lcyc c and Lcyc s. Here, we use shape en-
coder E to extract manipulated feature ḟ = {ḟs, ḟc} from
Ṡ and formulate Lcyc s for shape consistency (ḟs and f̂2s)
and Lcyc c for color consistency (ḟc and f̂1c). Then, we can
formulate the overall loss:

Lmani = (||ḟs − f̂2s||22 + ||ḟc − f̂1c||22)1(IoU(I1, I2) > t)

+ LG1
+ LG2

,
(8)

where the first term is the two-way cyclic consistency loss,
which takes effect only when the Intersection over Union
(IoU) between the associated ground-truth shapes I1 and I2
is larger than threshold t. The last two terms fine-tune the
shape IMLE for a diversified generation (see Eq. (7)).

To train the framework, we initialize its weights from
shape IMLE then finetune G using Lmani with all other
modules E,B,D′ frozen. Also, we randomly sample two un-
paired texts T1, T2 to simulate the original and edited texts.
With the two-way cyclic loss, the shape IMLE can learn
to generate edited shapes with other attributes unchanged,
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A square, brown,
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Figure 6. Overview of our text-guided shape manipulation framework (with color unchanged). Given two pieces of text T1,T2, shape IMLE
G1 and G2 use the same random noise zi to generate shapes. G3 takes {f̄2s, f̄1c} and zi as input to generate shape Ṡ with feature {ḟs, ḟc}
(encoded by E), such that ḟs and ḟc should be similar to f̂2s and f̂1c, respectively. Hence, we propose a two-way cyclic loss (Lcyc c and
Lcyc s) to encourage shape consistency between Ṡ and T2, and color consistency between Ṡ and T1. G1, G2, G3 share the same weights.

Dark wooden 
framed chair

with arms.  The 
seat and back 
are a cushions 
in a light tan 
color. 

without

(a) Original
Shape & color 
𝑓1 = 𝑓1𝑠 ⨁𝑓1𝑐

(c) Manipulated shape
& original color

𝑓2𝑠 ⨁𝑓1𝑐

(b) Manipulated
shape & color
𝑓2 = 𝑓2𝑠 ⨁𝑓2𝑐

(d) Ours without 
2-way cyclic loss

𝑓2𝑠, 𝑓1𝑐

(e) Ours with 
2-way cyclic loss

𝑓2𝑠, 𝑓1𝑐

Figure 7. (a) The original shape from the unedited text. (b) The
shape from the edited text. It shows that even editing just a color-
unrelated word may influence the generated color. (c) Replacing
f̂2c with the original color feature f̂1c can cause misalignment
between generated shape and color. (d) Our approach without the
two-way cyclic loss, the unedited attributes may still change. (e)
Our full approach with the two-way cyclic loss produces an edited
shape that better preserves the unedited attributes.

A table with
square
wood legs. The 
tabletop is blue.

circular
A pool table with 
green felt surface 
and thick brown 
legs . white

(a) Shape manipulation (b) Color manipulation

Figure 8. Our text-guided shape and color manipulation results.

while better aligning the shape and color. Please see the
supplementary material for the details on the color manipula-
tion framework. Besides Figures 1(b,c) and 7(a,e), Figure 8
shows two more text-guided manipulation results.

4. Experiments
4.1. Dataset and Implementation Details

Our approach is evaluated on the largest text-shape
dataset ShapeNet 3D models with natural language descrip-
tions [10]. The dataset contains 15, 038 shapes from the
table and chair classes of ShapeNet [8]; 75, 344 natural lan-
guage descriptions, 16.3 words per description on average,
and 8, 147 unique words in the whole dataset [10].

We implement our framework in PyTorch [55]. To train

the shape auto-encoder, we sample 4, 096 points with the
strategy in [13] and train the network for 500 epochs in 163

resolution, then continue the training for another 500 epochs
in 323 resolution with learning rate 1e−4. For text-guided
shape generation, we train the network end-to-end for 200
epochs, then fine-tune it end-to-end in 643 resolution for
another 200 epochs. For diversified shape generation, we
train the shape IMLE for 100 epochs with learning rate 1e−3

and the other network modules frozen. Lastly, we fine-tune
the shape IMLE for another 100 epochs with the two-way
cyclic consistency loss to enable manipulation. We set hyper-
parameters d, dl, λs, λc, λreg, λcyc, and t as 256, 32, 2, 1,
1, 0.005, and 0.01, respectively, using a small validation set.

4.2. Comparison with the Existing Works

We compare our method with two existing works [10,33]
(see also Section 2) on text-guided shape generation.

For a fair comparison with [10], we transform our gener-
ated results into voxels in the same resolution as [10], i.e.,
323. Also, we follow its train/val/test (80%/10%/10%)
split and its evaluation metrics, i.e., IoU, EMD, IS, and
Acc (Err=1-Acc), and directly compare our results with the
numbers in [10]. Table 1 reports the results, showing that our
method outperforms [10] for all evaluation metrics, manifest-
ing its effectiveness. Note that “IS” ranges [0, 2], as it is built
upon a two-category classification model, so both methods
(1.96 vs. 1.97) already achieve satisfying performance in
this respective. The qualitative comparisons in Figure 9 also
demonstrate the superiority of our approach, which is able
to generate much better shapes and colors (see Figure 9 (b,
c)) in comparison with [10] (see Figure 9 (a)).

The other work [33] focuses on generating shapes from
phrase descriptions; see the left side of Figure 10 (a). Since
its setting is very different from ours, we only compare
with it qualitatively. To do so, we first prepare sentence
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Table 1. Quantitative comparisons with the existing work [10].

Method IoU (↑) IS (↑) EMD (↓) Err (↓)

Text2Shape [10] 9.64 1.96 0.4443 2.63
Ours 12.21 1.97 0.2071 2.52

A table with square 
wood legs. The 
tabletop is blue. 

Broad rectangular 
shaped surface 
table with four 
short legs. 

A brown folding 
chair.

Figure 9. Results by Text2shape [10] (a) vs. ours (b,c) vs. GT (d).

Straight back square 
shape four long straight 
legs chair.  

Back: side view — straight
Seat: shape — square
Leg: number — four 

type — straight 
length — long

(a) Semantics-Guided

(b) Ours

Figure 10. Results generated by [33] (a) vs. ours (b).

descriptions that match the phrase descriptions in [33] and
then use our model to generate 3D results. Comparing the
results shown in Figures 10 (a) and (b), we can see that our
model is able to generate more diverse chairs that match the
input description (“square shape, long straight leg”), while
having varying colors and higher fidelity; please see also the
supplementary material for more comparison results.

4.3. Ablation Studies

We conduct extensive ablation studies to validate the ef-
fectiveness of the key components in “text-guided shape
generation” and “diversified generation.” To measure the
diversity and quality of the generated shapes, we formulate
two new metrics, PS and FPD, based on Inception Score
(IS) [65] and Fréchet Inception Distance (FID) [28]; please
see the supplementary material for the details. To evaluate
the text-shape consistency, we adopt R-Precision [77]. To re-
duce the training time, we train all models in 323 resolution.

Text-guided shape generation. We evaluate the effective-
ness of the following major components in this module (Fig-
ure 2 (a,b)): joint training with a pre-trained auto-encoder
(AE), decoupled shape-color decoder (DSCD), WLST mod-
ule (WLST), and cyclic loss (CL). Please refer to the supple-

Table 2. Ablation studies on text-guided shape generation.

Method IoU (↑) PS (↑) FPD (↓)

Without AE 0.03 1.01±0.00 67.37

+AE 12.04 2.95±0.03 35.05
further +DSCD 12.00 3.16±0.04 31.09
further +WLST 12.24 3.21±0.05 30.34

further +CL (full) 12.33 3.26±0.06 30.80

A two 
layered 
table with 
blue layers 
and four 
grey legs.

(a). -AE vs. +AE

(c). +DSCD vs. +WLST (d). +WLST vs. + CL

Tan 
wooden 
chair with 
red back 
and seat 
cushions. 

Brown 
and green, 
wooden, 
dinner 
table.

A brown 
and gray 
legs 
vertical 
center 
table.

(b) +AE. vs. +DSCD 

Figure 11. Qualitative ablation studies on shape generation.

Table 3. Ablation studies on diversified shape generation.

Method PS (↑) FPD (↓) R-Precision (↑)

Latent GAN 3.31 ± 0.02 30.70 21.20 ± 0.11

FC IMLE 2.93 ± 0.02 29.53 25.97 ± 0.09
Shape IMLE 3.39 ± 0.02 29.65 27.60 ± 0.39

further +WLST 3.39 ± 0.03 28.41 34.37 ± 0.09
+WLST+CL (full) 3.45 ± 0.02 27.26 40.71 ± 0.10

mentary material for the details of each setup.
Quantitative and qualitative results are shown in Table 2

and Figure 11, respectively. Note that all models in this set-
ting achieve satisfying R-Precision (> 98% except “Without
AE”), so we report R-Precision only in the next “Diversified
generation” setting. First, auto-encoder joint training (AE)
is crucial for model convergence. Without AE, the baseline
approach fails to converge, leading to unreasonable results
(see Figure 11 (a)) of very low quality. Second, decoupling
shape and color in the decoder structure (DSCD) improves
both PS and FPD by a large margin, manifesting its effec-
tiveness in promoting high-fidelity and diversified synthesis.
This is also verified in the qualitative comparison shown in
Figure 11 (b). Third, empowered by the word-level correla-
tion, we can enrich the local details; see “red back and seat
cushion” in Figure 11 (c). Lastly, cyclic loss (CL) improves
the consistency between the generated shape and input text;
see the visual comparison in Figure 11 (d). Note that both
WLST and CL benefit the model more in the “Diversified
generation” component to be detailed below.

Diversified generation. Next, we evaluate the major mod-
ules for diversified generation (Figure 2 (c)). First, we re-
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(e) +WLST+CL(c) Shape IMLE(b) FC IMLE (d) +WLST(a) Latent GAN

A blue chair with side hand having vertical lines and a soft seat. 

Figure 12. Qualitative ablation studies on diversified generation.

place the style-based shape IMLE with two different com-
ponents for shape generation: a Latent GAN and a fully-
connected IMLE (FC IMLE). Besides, we explore models
without the proposed WLST module and cyclic loss (CL),
which benefit diversified shape generation. Please refer to
the supplementary material for the details of each setup.

Quantitative and qualitative results are shown in Table 3
and Figure 12, respectively. Note that this setting focuses
on shape diversity and quality, so we do not adopt “IoU,”
which measures the shape similarity to the ground truths. In
comparison with “Latent GAN,” the IMLE model can synthe-
size diversified colors and avoid generating collapsed invalid
shapes (see Figure 12 (a) vs. (b)), while attaining better quan-
titative results. Further, the proposed style-based generator
(“shape IMLE”) consistently improves on all metrics and
yields higher quality shapes with better completeness in com-
parison with “FC IMLE,” as shown in Figure 12 (c). Lastly,
the WLST module and cyclic loss further help improves
the generation fidelity and text-shape consistency by a large
margin as shown in the last two rows of Table 3, manifesting
their effectiveness (see Figure 12 (d,e)).

4.4. Text-Guided Shape and Color Manipulation

More text-guided manipulation results are shown in Fig-
ures 13 and 14, in addition to Figures 1(b,c), 7(a,e), and 8.
Thanks to our two-way cyclic loss, our model enables text-
guided modification of colors and shapes in the generated
results, while trying to keep the other attributes intact. For
instance, we are able to modify a “square” table to become
“circular,” while keeping the other irrelevant regions un-
changed, e.g., the legs of the chair; see Figure 13 (a). If
we change the word “pink” to “blue,” only the associated
parts in the shape are changed accordingly; see Figure 14 (a).
More comparisons with the existing work [10] and further
ablation study on manipulation can be found in the supple-
mentary material.

(a) A square 
shaped 
glass table 
with metal 
legs. 

circular

(f) A 
rectangular 
table with thin

white legs. It is 
black in color.

(c) A tall 
grey 
rectangular
shape table 
with a 
unique base.

short

(e) A sofa 
chair with 
armrest and 
has pinkish 
color. 

simple

(b) A round 
wooden 
coffee table 
with three 
legs. 

(d) A metal 
table with 
three 
straight legs.

curved

four

thick

Figure 13. Our text-guided shape manipulation results. We can
manipulate (a) the shape of a table, (b) number of legs, (c) height,
(d) shape of legs, (e) structure, (f) thickness of legs, and so on.

(d) A square 
shaped glass table 
with four metal 

round legs 
attached.

wooden

(a) A pink 
colored stylish 
chair, useful for 
functional type. 

blue
(b) A stylish brown 
colored chair, with

blueish colored 
seating material 
provided with curved 
structure. 

redish

(f) A silver coloured 
table with top
curved at edges
and dark base.

bright

(e) Bright res 
fabric chair with 
steel from and no
arm rest.

Dark

(c) Golden colored 
cushion sofa with 
two side arms.

Blood

Figure 14. Our text-guided color manipulation results. We can
(c) manipulate the color indirectly using the related word (e.g.,
“blood” for red), (d) manipulate the material, (e,f) adjust the color
brightness using words such as “bright” and “dark”, etc.

5. Conclusion

We have presented a novel framework capable of generat-
ing diversified 3D shapes with colors from text descriptions,
while allowing flexible text-guided manipulations. Besides
the framework, we propose to decouple the shape and color
predictions for learning both shape and color features from
texts and design the word-level spatial transformer to ex-
plicitly correlate words with spatial locations to enhance the
local details. Also, we develop the cyclic consistency loss to
enhance the text-shape consistency and introduce the style-
based shape-IMLE generator for diversifying the generated
shapes. Further, we extend the framework for text-guided
shape manipulation with the novel two-way cyclic loss. Ex-
tensive experimental studies manifest the effectiveness of
our framework. Limitation analysis and future works are
elaborated in the supplementary material.

Acknowledgement. This work is supported by the Re-
search Grands Council of the Hong Kong Special Adminis-
trative Region (Project No. 14201921 and 27209621).
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