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Abstract

We propose an end-to-end network that takes a single
perspective RGB image of a complex road scene as input,
to produce occlusion-reasoned layouts in perspective space
as well as a parametric bird’s-eye-view (BEV) space. In
contrast to prior works that require dense supervision such
as semantic labels in perspective view, our method only
requires human annotations for parametric attributes that
are cheaper and less ambiguous to obtain. To solve this
challenging task, our design is comprised of modules that
incorporate inductive biases to learn occlusion-reasoning,
geometric transformation and semantic abstraction, where
each module may be supervised by appropriately transform-
ing the parametric annotations. We demonstrate how our
design choices and proposed deep supervision help achieve
meaningful representations and accurate predictions. We
validate our approach on two public datasets, KITTI and
NuScenes, to achieve state-of-the-art results with consider-
ably less human supervision.

1. Introduction

Understanding road layout from images is essential for
real-world applications such as autonomous driving or path
planning [5, 8, 13, 31], where, besides the usual perspective
space outputs, top-view representations of geometry and
semantics have been popular. Non-parametric representa-
tions such as pixel-level semantics [31] generally require
labor-intensive and potentially ambiguous supervision in the
top-view, for example, when dealing with occluded regions.
On the other hand, parametric representations for top-view
layouts are desirable for their interpretability, which is ben-
eficial for higher-level reasoning and decision-making in
downstream applications.

Parametric attributes such as presence of side roads or
number of lanes may be easily annotated by humans given
sensor inputs, and require less effort than pixel-level seman-
tic annotations. However, besides parametric annotations1 in

1Parametric and attribute-level annotations are used interchangeably in
our paper.

Figure 1. We propose an end-to-end model that inputs perspective
image and outputs parametric layouts in top-view. Compared to ex-
isting methods, ours requires only the parametric layout annotations
during training and achieves SOTA performance under complex
road scenarios. Moreover, it generates occlusion-reasoned (see
the predicted semantics on regions occluded by cars) pixel-level
semantics in both perspective and top view.

the bird’s-eye-view (BEV), i.e. top-view, previous works that
estimate parametric BEV layouts also require pixel-level su-
pervision in perspective images [23, 46] or handle only very
simple road layouts [35]. This paper seeks to obtain para-
metric BEV maps as well as pixel-level semantics in both
the perspective and top views, but using only the cheaper
parametric supervision on attributes.

While relying on cheap supervision only is undoubtedly a
goal worth pursuing, removing the dense perspective super-
vision makes the problem harder. This is non-trivial, since
there exists a large gap between sparse parametric supervi-
sion and dense pixel-level semantic supervision. To bridge
the gap, one must reason about the underlying geometry
to map the parametric supervision to top-view and get the
correct semantics, even in occluded regions.

We address this challenge through two key insights. First,
rather than directly regressing the parametric BEV layout
from RGB image space, we introduce two intermediate steps
– a perspective semantics (PS) module and a top-view se-
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mantics (TS) module – to predict intermediate occlusion-
reasoned per-pixel perspective and BEV layouts (Fig. 1).
Second, to obtain supervision for PS/TS, a simple renderer
can convert the parametric annotations to occlusion-reasoned
per-pixel semantic annotations in both the BEV and perspec-
tive view, with the help of geometric transformation. This
allows meaningful deep supervision [18, 19] of intermediate
modules without additional annotation costs, thus weakly
supervised. The weakly but deeply supervised PS and TS
modules together lead to accurate parametric BEV layout
by introducing inductive biases on the type of reasoning
the network should perform, thereby facilitating complex
tasks such as occlusion reasoning, geometric transformation
and semantic abstraction that correspond to the parametric
supervision.

The above insights make our method simple yet highly
effective, even outperforming previous methods that rely on
perspective-view dense supervision for semantic segmenta-
tion. We validate our choices through state-of-the-art (SOTA)
accuracies on both KITTI [9] and NuScenes [28] datasets,
achieving 47.3% and 13.0% F1 score. In extensive ablation
experiments, we establish the value of the inductive biases
introduced by the PS and TS modules, as well as the deep
supervision through transformed parametric annotations.

To summarize, our key contributions are:

• An end-to-end model for occlusion-reasoned perspec-
tive and top-view parametric layout in complex scenes.

• Intermediate module design that incorporates inductive
biases to learn occlusion-reasoning, geometric transfor-
mation and semantic abstraction.

• Deep supervision with cheap parametric annotations in
top view only, rather than requiring additional expen-
sive per-pixel labeling in either perspective or top view.

• State-of-the-art results on publicly available datasets.

2. Related Work
3D scene understanding on outdoor scenes is an im-

portant yet challenging task. Applications such as robot
navigation [13], autonomous driving [8,17], augmented real-
ity [1] or real estate [24, 39] always require comprehensive
understanding on given scenes.

Road Scene Understanding Scene understanding for out-
door scenarios is very challenging mainly due to the lack
of strong priors. To this end, non-parametric approaches
have been proposed [12, 40, 41], where layered representa-
tions [4,48] are utilized to reason about the geometry as well
as semantics in occluded areas. Other typical non-parametric
representations in perspective view are joint pixel-level se-
mantics and depth [21], pixel-level semantics and geometric

labels [11]. In contrast, parametric approaches provide ab-
stract understanding, such as road scene attributes [8, 35]
and graph-based representation [17]. Perhaps [23,46] are the
most recent works that are able to handle complex road lay-
out, e.g. multiple lanes and different types of intersections.
Our work follows the parametric representation proposed in
these methods. Unlike [23, 46] that request additional infor-
mation, e.g. models [15] pre-trained with dataset-specific
per-pixel semantics, depth and 3D objects [9], to map seman-
tics to top-view as pre-processing, our model is end-to-end
trainable that directly takes RGB as input. More importantly,
we exploit deep supervision [18, 19] by introducing mean-
ingful intermediate modules (PS and TS), with which we
are able to obtain occlusion-reasoned pixel-level semantics
in both perspective and top-view without per-pixel human
annotations. It is also beneficial in terms of improving final
parametric layout predictions. Though focusing on single im-
age for now, our model can be easily extend to video-version
by introducing spatio-temporal graphical model [22, 46],
LSTM [6, 38] or FTM [42, 49, 50]

Scene Understanding in Top-view Top-view representa-
tions [25, 27, 29, 37] can be more beneficial when occlusion
relationships are desired, e.g., two objects cannot occupy
the same position in top-view while they can potentially
occlude each other in perspective view. Such intuition is
widely exploited in 3D object localization literature [44]
where camera to top-view projection is fulfilled with the help
of depth estimation and 2D detection in perspective view.
Although [32] proposes an end-to-end trainable model that
explicitly exploits the perspective to top-view projection to
perform 3D localization task, the performance of this method
is not comparable to [44] due to the lack of explicit depth-
aware re-projection. As for general scene understanding, the
initial steps are taken in [34,36]. However, due to the lack of
ground truth, no quantitative evaluation is performed in [34].
More recent work [30, 31] extends [32] and predicts top-
view semantic map from single monocular image or multiple
streams of images. A graph like parametric representation
is introduced in [2] for road layout estimation as well as ori-
ented bounding boxes for road participants. However, such
representation misses important semantics such as crosswalk,
sidewalk and lane directions. And it further requires HD-
map, GPS and human annotations to train such a model. In
contrast to non-parametric approaches [26, 29–31, 47] that
require expensive per-pixel supervision in top or perspective
view and focus on predicting semantics on visible regions,
our method aims to predict parametric layouts in BEV and
also provides occlusion-aware non-parametric representa-
tions in both BEV and perspective view as by-products. All
these meaningful representations are obtained without per-
pixel human annotations but relying on cheap parametric
annotations.
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Figure 2. Overview of our proposed framework: Taking a single RGB as input, our model predicts (1) occlusion-reasoned semantics
in perspective view, (2) hallucinated semantics in top-view and (3) parametric layout predictions in top-view, with only attribute-level
annotations in top-view. This is achieved with multiple intermediate modules and deeply supervised training.

3. Our Framework

Our model consists of three modules. (1) The per-
spective semantics (PS) module inputs the RGB image and
outputs the occlusion-reasoned pixel-level semantics in per-
spective view (OSP). (2) The top-view semantics (TS) mod-
ule projects OSP into top-view and learns to hallucinate
or complete pixel-level top-view semantics on out-of-view
as well as noisy regions, which we refer to as hallucinated
semantics in top-view (HST). (3) The top-view parametric
prediction (TPP) module takes the HST and predicts road
layout related attributes in top-view. Fig. 2 gives an overview
of the proposed method. Network architectures are borrowed
from [33, 43, 46] and described in Sec. 4 and supplementary.
We focus in this section on describing our main contribu-
tions that allow effectively exploiting weak supervision with
cheap parametric-level human annotations. We detail each
module in Sec. 3.1, the training process and the generation
of intermediate pixel-level semantic annotations in Sec. 3.2.

3.1. Full Model

Consider a dataset D = {I,Θ}Ni=1 of N samples, where
I ∈ R H×W×3 are RGB perspective images and Θ denote
the corresponding scene attributes obtained from human
annotations. We further generate xp, x automatically for
each sample where xp ∈ R H×W×(C+1) denotes semantic
segmentation map in perspective view and x ∈ Rh× w×(C+1)

denotes top-view semantics. C = 4 denotes the number of
layout categories (“road”, “sidewalk”, “lane boundaries”,
“crosswalks”) and we also include one foreground class. We
refer the readers to Sec. 3.2 for more details about the data
generation process. Our full model is defined as:

Θ = f full(I) = (f tpp ◦ f ts ◦ f ps)(I) , (1)

where ◦ defines a function composition. f ps, f ts and f tpp

correspond to our three modules PS, TS, and TPP.

Perspective semantics module The PS module predicts
per-pixel occlusion-reasoned semantics in the perspective
view (OSP). Unlike traditional semantic segmentation mod-
els (e.g. [3,43]) that predict semantics on visible pixels only,
our module focuses on predicting both visible and occluded
layout classes (See Fig. 3(d)). Such occlusion reasoning is
also demonstrated in Fig. 3(b) and (c). As shown, we aim to
predict road semantics in the top-view despite that they are
occluded, e.g. by cars or buildings, in the perspective view.

Compared to conventional semantic segmentation prob-
lem, ours is more challenging in terms of both data and
model training. As for data, the semantic ground-truth on
occluded regions can be ambiguous, hence difficult and time-
consuming to annotate accurately in pixel-level. For instance,
it takes more than 20 minutes to annotate only the visible
regions on KITTI images while in comparison, parametric
annotation in BEV takes about 20s for an image [45]. We
refer the readers to Sec. 4 and supplementary for annota-
tion details. For model training, the PS module predicts se-
mantics in invisible/occluded regions, which again requires
dealing with ambiguity. For instance, regions occluded by
a foreground instance, e.g. building, can be either another
building or road. This requires the module to learn to predict
semantics with contextual cues rather than fully relying on
local visible information.

Formally, given an image I , the PS module outputs xp

encoding the probability of each pixel belonging to a specific
category:

xp = f ps(I) . (2)

Top-view semantics module Our second module, i.e. the
top-view semantics module, takes as input the OSP and
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Figure 3. We overlay output and input of PS module in (a). Ex-
amples of inputs (left) and target outputs (right) of PS module are
provided in (b) and (c). PS module aims to predict both visible and
occluded background classes. (d) demonstrates the input image,
semantics of visible regions and our target output from left to right.
And we highlight the occluded regions in red.

learns to explicitly project the semantics in perspective view
to top-view. Given camera intrinsics, the projection could
be done if the depth estimation is available, say, via a depth
network. However, standard single image depth networks
(e.g. [7, 10, 21]) typically do not reason about depth in
occluded regions, which is nevertherless required for our
occlusion-aware projection. In addition, resolution is low
for distant regions and thus may lead to sparser/noisier se-
mantics in top-view. Lastly, top-view semantics on close-by
regions can be incomplete due to limited field of view. In-
stead, we propose a two-step projection through an initial
geometric transformation f trans and a learned hallucination
module f halln:

x = f ts(xp) = (f halln ◦ f trans)(xp). (3)

Transformation module. In view of these issues, we first
make use of the prior that the road forms nearly a plane,
which facilitates an initial projection without requiring depth
estimation. We assume known camera intrinsics and extrin-
sics w.r.t. the ground plane; this is a mild assumption since
they could be obtained via calibration [14] in advance. As
such, it is well-known that one can back-project each pixel
in the perspective view to the BEV view and vice versa [14].
Hallucination module. After the transformation module that
maps the OSP to top-view, the hallucination module then
learns to predict the unseen far away regions as well as
recover the noisy semantics with contextual information in
top-view. Note that our input and output of hallucination
module are both of the size h×w×(C+1). Fig. 4 visualizes
two sets of inputs and outputs of this module. Compared
to inputs generated with ground-truth OSP, the target HST
improves at far away (right) regions as well as close-by areas
where predictions are sparse (left).

Figure 4. Two sets of examples for input and output of hallucination
module. Our module aims to recover the far away sparse semantics
(right) and hallucinate close-by areas with limited view (left).

Top-view parametric prediction module Given the hal-
lucinated semantics in top-view (HST), our next step is to
predict the layout attributes through the top-view parametric
prediction (TPP) module that maps the HST x into the scene
model parameters Θ. As aforementioned, we follow the at-
tribute definitions in [23,46]. Our Θ consists of three groups:
Θb for 14 binary, Θm for 2 multi-class and Θc for 10 con-
tinuous attributes of the scene model, respectively. Binary
attributes consist of information such as whether the road is
one-way or not. Number of lanes on the left hand-side of the
ego car is an example of multi-class attributes and distance
to right side-road can be one of the continuous attributes.
More details can be found in supplementary materials. Our
TPP module is defined as:

Θ = f tpp(x) = (f ◦ g)(x) , (4)

where f and g are respectively multi-layer perceptron (MLP)
and convolutional neural networks. Note that similar to [46],
this module is also able to exploit rich simulated data during
training, but we leave this extension to future work.

3.2. Model Training

Following our above description of intermediate mod-
ules assuming supervision available, we describe in this
section the generation of such supervision with only anno-
tations for parametric layout Θ, as well as deep supervision
training. Instead of training the full model in an end-to-end
manner from scratch, we adopt a multi-stage training proto-
col. We first pretrain all three modules, and then jointly train
the full model in an end-to-end manner. Empirically, end-to-
end training provides a 1% performance improvement in our
experiments. Our full loss function L is defined as:

L = λLtpp + γLts + βLps, (5)

where λ, γ and β are the weights for each module.
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Figure 5. Examples of rendered ground-truth for TS module. From
left to right: RGB, parametric human annotations and rendered
pixel-level semantics in top-view.

Top-view parametric prediction module Since Θ and I
are already available, we define the loss function of TPP as:

Ltpp =
N∑
i=1

BCE(Θb,i, ηb,i)+CE(Θm,i, ηm,i)+ℓ1(Θc,i, ηc,i) ,

(6)
where (B)CE is the (binary) cross-entropy loss and ℓ1 de-
notes L1 loss. {Θ, η}·,i denotes the i-th sample in the data
set. For regression, we discretize continuous variables into
100 bins by convolving a dirac delta function centered at Θc
with a Gaussian of fixed variance.

Top-view semantics module Unlike the straightforward
design in parametric space, our TS module requires per-pixel
supervision in top-view. To this end, we propose to exploit a
rendering function that generates pixel-wise semantics from
parametric annotations. Specifically, for each Θ, we ren-
der a map x. Some examples of our paired {x,Θ} are in
Fig. 5, which shows that our rendered xp accurately reflects
the layout of the road in top-view. Since we only need on
parametric abstractions, our renderer can be implemented
using simple Python code, rather than the complex machin-
ery of physics-based image renderers. We refer the readers
to supplementary materials for more details on our renderer
and the generation process. The loss function for TS module
is defined as:

Lts =
N∑
i=1

CE(xi, x̂i) (7)

where x̂i and xi denotes the predictions and the rendered
ground-truth of the top-view semantics of i-th sample in D.

Perspective semantics module Obtaining the top-view
semantics x, we can project [14] it to perspective view with
camera parameters as well as plane assumption. We demon-
strate the effectiveness of our projection in Fig. 3(a). Simi-
larly, the loss function for the PS module is defined as:

Lps =
N∑
i=1

CE(xp
i , x̂

p
i ) (8)

where x̂p
i and xp

i denotes our predictions and the back-
projected ground-truth of the perspective semantics of sam-
ple i in D.

4. Experiments

Datasets and model details We validate our ideas on
KITTI [9] and NuScenes [28], utilizing the annotation and
data split in [23]. Please refer to [23] and our supplemen-
tary for details in road layout attributes annotation. h and
w are set to 256 and 128, presenting a 60m × 30m space in
real world. Camera parameters are available in the original
datasets through calibration. Weights (λ, γ, β) are set exper-
imentally on validation set. As for fps, we use HRNetV2-
W18 [43] as the backbone as it achieves very good trade-offs
between accuracy and efficiency. As for fhalln, we utilize a
shallower version of [33], e.g. 5-layer encoder and decoder.
Finally, f is implemented as a multi-task network with three
separate predictions ηb, ηm and ηc for each of the parameter
groups Θb, Θm and Θc of the scene model. And g is intro-
duced for feature extraction. Note that our method does not
depend on the specific details of these sub-modules but is
generally applicable if this three-stage architecture holds.

Cost for parametric annotations We summarize the an-
notation time for each type of supervision in Tab. 2. Unlike
non-parametric annotations such as pixel-level semantics
that require several dozens of minutes per frame, our para-
metric annotations require less than a minute per frame.
Moreover, this time is heavily amortized across a video se-
quence to just around 20 seconds on the KITTI dataset, since
parametric attributes change predictably across consecutive
frames. Binary and multiclass attributes (such as presence
of side-road, or number of lanes) change less frequently
and their annotations can often be inherited from previous
frames. Further, continuous attributes (such as distance to in-
tersection) typically change smoothly across frames, which
facilitates annotation. We refer the readers to supplementary
materials for more details.

Evaluation metrics Since our output space Θ consists
of three types of predictions and involves both discrete
and continuous variables, we follow the metrics in [23, 46].
Specifically, as for binary variables Θb and multi-class vari-
ables Θm, the prediction accuracy is defined as Accu.-Bi =
1
14

∑14
k=1[pk = Θbk] and Accu.-Mc = 1

2

∑2
k=1[pk = Θmk].

We further report the F1 score on Θb to have a better
idea about the overall performance given the observation
that the binary classes are extremely biased. Formally,
F1 = 1

14

∑14
k=1 2 × pk×rk

pk+rk
, where pk and rk are the pre-

cision and recall rate on Θbk . For continuous variables, we
report the mean square error (MSE).
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Supervision Required KITTI [9]
Method Parametric Depth Semantics Simulated Video+Object Accu.-Bi. ↑ Accu.-Mc. ↑ MSE ↓ F1 ↑
RGB [15, 35] ✓ .811 .778 .230 .176
RGB [15, 35]+D ✓ ✓ .818 .819 .154 .109
BEV [34] ✓ ✓ ✓ .820 .797 .141 .324
H-BEV+DA [46] ✓ ✓ ✓ ✓ .834 .831 .134 .435
BEV-J-O [23] ✓ ✓ ✓ ✓ .831 .837 .142 .494
Ours ✓ .833 .832 .140 .473

Table 1. Performances on single image based road layout prediction on KITTI. we observe that our method outperforms RGB when having
the same model setting. In addition, our results are comparable to other SOTA (H-BEV +DA and BEV -J-O) but with far less human
annotations required.

Time Binary Multiclass Continuous Total
Random images 24.3 5.1 25.7 55.1
Video frames 20.2

Table 2. Average annotation time (sec.) on KITTI dataset.

Apart from parametric predictions, our model also outputs
intermediate representations, e.g. OSP and HST. We further
report the IoU as well as the accuracy for these two semantic
segmentation tasks. Please note that human annotated OSP
and HST are not available on either dataset in practice. Thus,
we report our performance by comparing our predictions
with rendered semantics x and xp instead.

4.1. Evaluations of Parametric Road Layout

Baselines We choose several appropriate baselines as pre-
sented in [23, 46].:

• RGB (RGB): A ResNet-101 [16, 35] backbone is in-
troduces and trained on the manually-annotated ground
truth. Note that this setup is the only one that directly
comparable to ours as it requires only the parametric
annotations as ground-truth.

• RGB+Depth (RGB+D): Same as RGB but with the
additional task of monocular pixel-wise depth predic-
tion [16]. In contrast, we do not require dense depth
information.

• BEV(BEV ): BEV uses the output of [34], which is a
top-view semantic map. To obtain such map, additional
pixel-level semantic annotation and depth supervision
are required in perspective space. Though more recent
approaches [26, 30] are also able to output semantics in
top-view, they miss importance semantics such as lane
boundary or crosswalk thus are not desired as BEV
baselines.

We also report the performance of SOTA methods for
single image top-view layout prediction, or H-BEV-DA [46]
and BEV-J-O [23]. Please note that both of them require
far more human annotations compared to our method. We
refer the readers to supplementary for more details for all
baselines.

Quantitative results Tab. 1 summarizes our main results
on KITTI [9]. First of all, if we compare only to method
with the same setting, or RGB, our method outperforms
it with a large margin, which indicates the effectiveness of
introducing PS and TS as intermediate modules. Further-
more, compared to RGB +D method that introduces depth
channel, or even the BEV that further requires thousands
of human labelled semantic segmentation images in perspec-
tive space, our method achieves better results, which is of
significance given that our method requires far less human
annotations. Note that both H-BEV -DA and BEV -J-O
are based on BEV but require even more human annota-
tions. By comparing to H-BEV -DA that further exploits
additional simulated data and BEV -J-O that requires the
3D object information as well as entire video sequence as in-
put, we can see that our method achieves comparable results
with far less human annotations.

We further report results on NuScenes [28] in Tab. 3.
Our method outperforms RGB significantly. It also outper-
forms [23, 46] with far less human annotations required.

Qualitative results We demonstrate some qualitative re-
sults in Fig. 6. Note that in KITTI test sequences, rather than
the road being occluded by cars driving in front, significant
occlusions happen between parked cars and road/sidewalk,
or between foreground classes, e.g. buildings or trees, and
curved road or sideroad. As observed in this figure, our
model is able to output satisfactory results on all three repre-
sentations. We are able to handle complex road layout such
as arbitrary number of lanes with heavy occlusions. Again,
please note that OSP and HST are obtained without per-pixel
human annotations. Our final layout prediction is also better
than [23]. We further visualize our final results on NuScenes
in Fig. 7. It shows that our model is able to handle various
road layouts. We refer readers to supplementary material for
more qualitative results.

4.2. Ablation Study

To demonstrate the effectiveness of intermediate mod-
ules as well as deep supervision, we further conduct exper-
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Figure 6. Full predictions of our proposed model. From left to right: input RGB, OSP, HST, image rendered from parametric predictions,
results from [23] and image rendered from ground-truth attributes.

Method Accu.-Bi. ↑ Accu.-Mc. ↑ MSE ↓ F1 ↑
RGB [15, 35] .850 .503 .084 .109
BEV [46] .846 .485 .073 .101
H-BEV+DA [46]+GM .877 .496 .032 .125
BEV-J-O [23] .858 .543 .027 .128
Ours .875 .560 .023 .130

Table 3. Results on NuScenes dataset. We observe that
our method beats RGB significantly when having the
same model setting. Meanwhile, it also outperforms
H-BEV +DA and BEV -J-O with far less human an-
notations required.

Module KITTI [9]
Method fps f trans fhalln f tpp Accu.-Bi. ↑ Accu.-Mc. ↑ MSE ↓ F1 ↑
RGB ✓ .811 .778 .230 .176
RGB+PS ✓ ✓ .822 .827 .159 .425
RGB+PS+T ✓ ✓ ✓ .826 .829 .144 441
Ours ✓ ✓ ✓ ✓ .833 .832 .140 .473

Table 4. Ablation study on single image based road layout prediction on
KITTI. Note that all these methods share the same amount of human an-
notations. We can see that our introduced PS and TS modules, on the one
hand, provide meaningful intermediate representations at no additional costs.
On the other hand, they also prove to be beneficial individually for the final
parametric prediction task.

iments on incrementally adding modules. RGB is the one
without any module. RGB+PS contains the PS module
and directly predicts parametric predictions with perspective
outputs. Formally, RGB+PS is formulated as:

Θ = f rbgp(I) = (f tpp ◦ f ps)(I) , (9)

Similarly, RGB+PS+T is formulated as:

Θ = f rbgpf(I) = (f tpp ◦ f trans ◦ f ps)(I) , (10)

We report the quantitative results in Tab. 4. The results
show that first of all, comparing the RGB to RGB+PS, per-
spective representation, or the OSP, is beneficial for improv-
ing final parametric predictions. Secondly, the performance
gap between RGB+PS+T and RGB+PS demonstrates the
effectiveness of introducing top-view semantics as intermedi-
ate representation. Finally, by comparing the full model with
RGB+PS+T , we can tell that the hallucination module is
also critical for layout prediction task.

Occlusion study Here, we study performance against in-
creasing number of objects in the scene, indicating increas-
ingly severe occlusions. Since [9,45] do not provide pixel-

Figure 7. Examples on NuScenes dataset. Left:input RGB Right:
rendered BEV semantics from our prediction.

level semantic ground-truths on our test sequences, to ana-
lyze our ability to handle occlusions, we instead report the
average image-level IoU on four classes against number of
foreground objects with respect to rendered ground truth x in
Tab. 6, with objects detected by Stereo-RCNN [20]. As one
can see, our method outperforms the state-of-the-art consis-
tently, with increasing gap when having more objects. Please
note that our model is single-image based so we handle
all objects, no matter they are moving or not, in the same
manner.

4.3. Evaluations of Intermediate Representations

Apart from requiring less annotation while maintaining
comparable performance, another advantage of the proposed
method is being able to provide meaningful pixel-level in-
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Representation KITTI [9]

Data OSP HST
Road Land Boundary Sidewalk Crosswalk Foreground Average

Accu. IoU Accu. IoU Accu. IoU Accu. IoU Accu. IoU Accu. IoU
RGB+PS ✓ .689 .563 .365 .214 .226 .126 .010 .007 .954 .878 .449 .358
Ours ✓ .700 .605 .403 .272 .255 .147 .042 .033 .962 .883 .472 .388

✓ .605 .461 .272 .197 .167 .102 .038 .032 .868 .651 .390 .289

Table 5. Intermediate results on KITTI. We report both IoU and accuracy for each semantic category. Compared to RGB+PS, our method
achieves better performance in terms of OSP with the help of end-to-end training. Our method further provides meaningful HST results.

Obj. 0 1 2 3 4 5 6 7 8 Avg.
[46] .67 .78 .67 .64 .61 .45 .48 .37 .35 .45

Ours .78 .81 .72 .69 .67 .48 .50 .40 .35 .50
Considering Road Class Only

[46] .85 .74 .85 .79 .67 .63 .59 .57 .37 .63
Ours .86 .91 .86 .83 .70 .70 .61 .61 .50 .70

Table 6. Average per-image IoU w.r.t. number of road participants.

termediate representations, OSP and HST, as by-products.
To demonstrate that these intermediate representations are
indeed semantically useful for downstream tasks, we study
their IoU as well as accuracy score, as an indication for their
performance. Please note that compared to existing work
that requires dense and time-consuming pixel-wise human
annotation, ours only requires cheap parametric human anno-
tations and produces pixel-level occlusion-reasoned semantic
segmentation in perspective and top-view.

As shown in Tab. 5, our method is able to provide multi-
ple meaningful intermediate representations. Also, our deep
supervision proves to be beneficial in an end-to-end manner,
which can be observed from the performance gap on OSP be-
tween RGB+PS and our full model. In addition, our model
also achieves reasonably good performance on HST. As a
reference, [31], which aims to predict pixel-level semantics
of visible regions in top-view with perspective images as
input, reports about 63.0% IoU for drivable category on two
different datasets.

However, please note that [31] requires pixel-level dense
annotations in top-view during training and the predictions
are not occlusion-reasoned. We further visualize quantitative
results in Fig. 8 and Fig. 9. As can be seen, our method
obtain high quality semantics in both perspective and top-
view despite occlusions.

5. Conclusion
We propose a novel end-to-end model that inputs sin-

gle RGB perspective image and outputs multi-aspect rep-
resentations for road layout, including top-view parametric
predictions, OSP and HST. Specifically, we introduce two
intermediate modules and exploit deep supervision to learn
inductive biases in occlusion-reasoning, geometric trans-
formation and semantic abstraction. We demonstrate the

Figure 8. We demonstrate input RGB, predicted HST as well
as BEV of [46], which is trained with thousands of pixel-level
annotated images and LiDAR images. As can be seen in these
examples, our model is able to hallucinate far away regions in a
realistic manner, even on curved road, with NO pixel-level human
annotations.

Figure 9. Input image, generated ground-truth pixel-level semantics
and predicted semantics from top to bottom row. Our model is able
to predict the semantics quite well despite occlusions.

effectiveness of our proposed method as well as intermedi-
ate modules on publicly available datasets and demonstrate
that we can achieve SOTA performance with less human
annotations.
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