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Figure 1. (a) Illustrations of different Chinese font styles. Typically, a font style involves unique morphological structures of a character at

multiple scales. For example, stroke-level styles involve stroke-level features such as weight, hollowness and serif-ness. Component-level

styles implies how strokes are oriented and joined to form a component. Character-level styles engage character-level features including

the component layout, inter-component spacing and “connected-stroke”. (b) Exemplar few-shot font generation results of our method.

Please note that each row presents a disparate font style by using only one glyph as reference. In addition, our model generates faithful and

consistent results regardless of the type of the source font or the reference variant.

Abstract

Generating a new font library is a very labor-intensive

and time-consuming job for glyph-rich scripts. Few-shot

font generation is thus required, as it requires only a few

glyph references without fine-tuning during test. Existing

methods follow the style-content disentanglement paradigm

and expect novel fonts to be produced by combining the style

codes of the reference glyphs and the content representa-

tions of the source. However, these few-shot font genera-

tion methods either fail to capture content-independent style

representations, or employ localized component-wise style

representations, which is insufficient to model many Chi-

nese font styles that involve hyper-component features such

as inter-component spacing and “connected-stroke”. To re-

solve these drawbacks and make the style representations

more reliable, we propose a self-supervised cross-modality

pre-training strategy and a cross-modality transformer-

based encoder that is conditioned jointly on the glyph image
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authors.
†Corresponding author.

and the corresponding stroke labels. The cross-modality

encoder is pre-trained in a self-supervised manner to al-

low effective capture of cross- and intra-modality corre-

lations, which facilitates the content-style disentanglement

and modeling style representations of all scales (stroke-

level, component-level and character-level). The pre-

trained encoder is then applied to the downstream font gen-

eration task without fine-tuning. Experimental comparisons

of our method with state-of-the-art methods demonstrate

our method successfully transfers styles of all scales. In

addition, it only requires one reference glyph and achieves

the lowest rate of bad cases in the few-shot font generation

task (28% lower than the second best).

1. Introduction

The few-shot font generation task (FFG) aims to produce

a new font library using only a few glyphs as reference,

without additional fine-tuning of the model at the testing

stage. FFG is especially a desirable task when designing

a new font library for glyph-rich scripts such as Chinese
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(the total number of characters exceeds 80,000), as the tra-

ditional manual font design process is very laborious. FFG

is also desired when the target style glyphs are too rare to

collect (e.g., historical handwriting).

Since font styles are highly complex and fine-grained, a

simple analysis of the low-level textures of a few reference

examples is impossible to perform successful style trans-

fer as in [11, 16, 24, 25, 28]. A common paradigm used for

FFG is to disentangle font-specific style and content infor-

mation from the given glyphs, and synthesize a new glyph

by combining the style embeddings extracted from the ref-

erence set and the content representations of the source

glyph [2,3,9,22,29,30,33,35,41,45]. Early attempts of this

stream [9,45] employ the universal style representations, us-

ing a simple convolutional encoder to extract style embed-

dings directly from the reference glyph images. However,

the universal style representations show limited capabilities

in capturing reliable and content-independent style repre-

sentations due to limited awareness of the character struc-

tures and correlations between different regions of the input

glyph. More advanced architectures such as DM-Font [3],

LF-Font [29], MX-Font [30] propose to use structure-aware

style representations and learn the localized component-

wise style representations.

To make the localized style representation possible, these

methods either condition the style encoders jointly upon the

glyph image and the corresponding component labels or in-

troduce component-label-guided losses to train the style en-

coder. The structure-aware localized style representations

remarkably improve the reliability of the style representa-

tions. However, as mentioned in [29], learning component-

wise styles solely is insufficient for component-rich glyphs

like Chinese characters that have over 200 different types of

components. It is hard to cover all component types with

a few reference glyphs during test. To relieve this prob-

lem, LF-Font [29] simplifies the component-wise styles by

a product of component factor and style factor, inspired by

low-rank matrix factorization. MX-Font [30] extracts mul-

tiple style features not explicitly conditioned on component

labels, but automatically by multiple experts to represent

different local concepts, thus enabling the model to be gen-

eralized to a character with unseen components.

Such solutions relieve the “unseen components” issue

to some extent. However, they are prone to generating

bad cases when failing to generalize the unseen compo-

nent styles from seen components. On the other hand,

component-wise style representations are incapable of cap-

turing character-level style features (e.g., inter-component

spacing), which is an important perspective in many Chi-

nese font libraries: see Figure 1 (a) for the Chinese font

styles of all three scales.

To address these issues, we make two significant

changes. First, we employ the stroke labels rather than the

component labels as the atomic representation of charac-

ter structure, as the stroke set used in Chinese is signif-

icantly fewer (about 28) than that of the component set

(more than 200), which can be easier to cover with a few

reference glyphs or generalized from seen strokes. On

the other hand, to enhance the awareness of the stroke-

level styles while not losing component-level or character-

level style features, we propose to use the unified all-scale

style representations instead of the localized component-

or stroke-wise styles. This can be achieved by introduc-

ing a cross-modality transformer-based encoder that is con-

ditioned jointly on the glyph image and the corresponding

stroke labels. On one hand, the self-attention layers used

in the encoder is good at capturing both local and global

style features. On the other hand, the self-supervised pre-

training of the cross-modality encoder inspires the learning

the glyph-stroke alignments, which further facilitates the

content-style disentanglement and modeling of style rep-

resentations at multiple scales in the downstream training

phase.

In addition to the cross-modality pre-training mecha-

nism, we propose a LSTM-based stroke loss and a style-

content decoupling network which considers spatial infor-

mation conservation, to enhance the reliability of the model

further. Comprehensive analyses of the experimental results

demonstrate our method achieves significantly lower rate of

bad cases than prior FFG methods and it can successfully

generate novel glyphs based on only one reference exam-

ple.

To sum up, the major contributions of the paper include:

• For the first time, we introduce the cross-modality

transformer-based encoder and the mechanism of

cross-modality pre-training to the FFG task. The

self- and cross-attention layers in the transformer-

based encoder pre-trained with self-supervised signals

help capture local and global style features (stroke-

level, component-level and character-level features)

and learn the glyph-stroke alignments, thus enhancing

the structure-awareness of style representations and

facilitating the style-content disentanglement in the

downstream FFG task.

• We elaborate a style-content decoupling network com-

posed of Efficient Channel Attention (ECA) modules

[31], and employ an 8×8 feature map instead of a sim-

ple average-pooled vector to represent styles or con-

tents with the expect to conserve spatial information,

which prove to be effective in increasing the reliability

of the model.

• We also propose a novel stroke loss based on a pre-

trained LSTM-based stroke order predictor, to enforce

the correct stroke order of the generated glyph in-

stead of the existence of stroke labels only, which
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proves to benefit the structure preservation and faithful

generation of stroke-order-related style features (e.g.,

“connected-stroke”).

• Experimental results see powerful generalizability of

our model to unseen font domains. Our model can per-

form successful font style transfer with only one refer-

ence glyph.

2. Related work

2.1. Imagetoimage translation

Image-to-image translation methods [5, 6, 18, 26, 27, 42,

42,46] that learn the mapping between domains can be used

for cross-domain font generation. For example, StarGAN-

v2 [6] proposes to do image-to-image translation across

multiple-domain in a unified framework. FUNIT [27] aims

to translate an image to the given reference style while pre-

serving the content without fine-tuning the model during

test, which can be used for the FFG task. In this paper, we

have our method compared with StarGAN-v2 as for gener-

ating glyphs of seen font domains, and also compared with

FUNIT on both seen and unseen font domains.

2.2. Manyshot font generation methods

Early font generation methods [10, 17, 19, 37, 40] train

the cross-domain translators between different font styles.

Some font generation methods [10, 17, 19, 40] train a trans-

lation model first, and fine-tune the translation model with

many reference glyphs of the target style. For example,

hundreds of reference glyphs in the target domain are used

in [19]. Despite their remarkable performances, their sce-

nario is very limited because collecting hundreds of glyphs

with a coherent style can be very expensive. In this pa-

per, we aim to generate an unseen font library without any

expensive fine-tuning or collecting a large number of refer-

ence glyphs for that style.

2.3. Crossmodality pretraining

Cross-modality pre-training [4, 21, 23, 32, 36, 43, 44] is

widely used in visual-linguistic tasks such as image-text

matching [4, 32, 36], visual question answering [4, 23, 34,

36], image captioning [44], etc. Cross-modality tasks re-

quire the understanding of both modalities, and the align-

ment and relationships between the two modalities. The

pre-training enables the encoder to produce representa-

tions with fused cross-modality information, thus benefiting

downstream tasks. Motivated by the concept, we introduce

such mechanisms to the font generation tasks. The frame-

work to learn vision-and-language connections is adapted

to the glyph-stroke correlation learning, with the expect to

increase the structure-awareness of style encoding. In cross-

modality pre-training, we build a transformer model that

consists of three encoders: a glyph processing module, a

stroke processing encoder, and a cross-modality module.

Next, to endow our model with the capability of connect-

ing a glyph image and its related stroke labels, we pre-train

the model with large amounts of glyph-stroke pairs, via

self-supervised signals (reconstruction of the input data).

This task helps in learning both intra-modality and cross-

modality relationships.

3. Method

3.1. Overall pipeline

As shown in Figure 2 (top), the encoder takes two modal-

ities as input: the glyph image of specific style and a se-

quence of stroke labels representing the corresponding char-

acter structure of the glyph. The encoder processes the two

modalities separately with two single-modality modules be-

fore they are joined with a cross-modality module. In the

pre-training stage, the encoder is followed by a convolu-

tional decoder and stroke label predictor, and is designated

for self-supervised representation learning (i.e., trained to

reconstruct the inputs).

In the second stage, the cross-modality encoder is frozen

and used for the downstream task: see Figure 2 (bottom).

In this stage, we follow the style-content disentanglement

paradigm and synthesize novel fonts by combining the style

features of the reference glyphs and the content embeddings

of the source glyphs. The cross-modality encoder is ap-

pended with a decoupling network that aims to decouple

the style and content representations from the fused cross-

modality representations, which is further followed by a

convolutional decoder that is designated to generate novel

fonts by taking the style representations of the reference and

the content representations of the source as input.

In the following sections, more detailed descriptions of

the sub-modules and training methodologies are presented.

3.2. Crossmodality encoder

As shown in Figure 2, the cross-modality encoder is

made up of two input embedding modules, two single-

modality modules and the cross-modality module. The in-

put embedding module converts the input data (glyph and

stroke labels) into embeddings sequences. Then, the single-

modality module processes each modality separately before

they are joined with the cross-modality module. Next, we

describe the sub-modules of this cross-modality encoder in

detail.

Input embedding module The input embedding module

converts the input data (i.e., a glyph image and a stroke label

sequence) into two separate embedding sequences (glyph

embeddings and stroke embeddings). The stroke embed-

ding sequence consists of 28 stroke embeddings that ar-
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Figure 2. The framework of the proposed XMP-Font model. Our approach consists of the pre-trining phase and the downstream font

generation phase. The cross-modality encoder is shared in both phases.

ranged in the stroke order. Note that 28 is the maximum

number of strokes forming a commonly-used Chinese char-

acter, and the stroke order of each Chinese character is un-

ambiguously determined as strokes are typically arranged

based on their spatial coordinates, i.e., from left to right and

from top to bottom. The stroke order inputs contain the spa-

tial information, which is also beneficial to improve the final

result, especially for the deformation of structure and cor-

rect generation of “connected-stroke”. Each stroke embed-

ding is a sum of three different embeddings: the stroke label

embedding, position embedding and modality type embed-

ding. In detail, the label embedding is a 512-dimensional

(512-d) vector mapped from the stroke label with an em-

bedding sub-layer. Similarly, the position index (from 0 to

29) of a stroke is projected to a 512-d position embedding

with a position embedding sub-layer, and the modality label

(0 for stroke and 1 for glyph image) is projected to a 512-d

modality type embedding with a modality type embedding

sub-layer. Thus, we obtain a 30-embedding sequence for

the stroke modality.

On the other hand, the input glyph image of size 256×
256×3 is mapped to a feature map of size 8×8×512 with

a 5-layer convolutional encoder. The feature map is further

flattened to a sequence of 64 512-d embeddings, in which

each embedding corresponds to a specific spatial coordi-

nate. Similarly, the position embedding and the modality

type embedding of each spatial coordinate are mapped from

the x-y coordinate and the modality label respectively with

separate embedding sub-layers. The glyph embedding is a

sum of the position embedding, modality type embedding

and feature embedding. Thus, we obtain a 64-embedding

sequence for the glyph modality.

Note that the inclusion of positional information is nec-

essary for the pre-training and font generation task, because

the following transformer layers are agnostic to the absolute

indices of their inputs as the order of the stroke or image

embeddings is not specified.

Self- and cross-attention layers We build our single- and

cross-modality processing modules mostly on the basis of

self-attention layers and cross-attention layers [38]. After

the input embedding module, we obtain two embedding se-

quences each representing a specific modality. We first ap-

ply two single-modality modules, i.e., 9 BERT [8] layers

to process stroke information and 5 BERT layers for glyph

processing.

Each cross-modality layer in the cross-modality mod-

ule consists of two self-attention sub-layers [38], one bi-
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directional cross-attention sub-layer [36], and two feed-

forward sub-layers. We stack these cross-modality layers in

our implementation. The bi-directional cross-attention sub-

layer contains two unidirectional cross-attention sub-layers:

one from stroke to glyph and one from glyph to stroke. Note

that the query and context vectors are the outputs of the for-

mer layer (i.e., stroke features and glyph features). The

cross-attention sub-layer is used to exchange the informa-

tion and align the entities between the two modalities in or-

der to learn joint cross-modality representations. For further

building internal connections, the self-attention sub-layers

are then applied to the output of the cross-attention sub-

layer. Lastly, the final output is produced by feed-forward

sub-layers. We also add a residual connection and layer

normalization after each sub-layer.

3.3. Pretraining strategy

In order to learn a better initialization which understands

connections between the glyph image and its related stroke

labels, we pre-train the cross-modality encoder with a pre-

training task on a large font library dataset. As shown in

Figure 2 (top), to ensure effective interaction between the

two modalities, during the training phase, there is a prob-

ability of 0.375 that all input stroke labels are masked. In

the remaining cases, each stroke has a probability of 0.5 to

be masked. We attach the encoder with a stroke prediction

head consisting of two fully-connected layers. The embed-

ding sequence of the stroke modality is directly mapped to

the stroke labels. In addition to where masked strokes are

predicted from the non-masked strokes in the stroke label

modality, our model could predict masked strokes from the

glyph modality as well, so as to resolve ambiguity. For ex-

ample, as shown in Figure 2 (top), it is hard to determine the

masked stroke from its stroke context but the stroke choice

is clear if the visual information is considered. Hence, it

helps building connections from the glyph modality to the

stroke modality, and we refer to this task as stroke recon-

struction task. We perform the task of learning the labels

of masked strokes with cross-entropy loss. We also attach

the encoder with a convolutional decoder with the expect to

reconstruct the glyph image. The 64-embedding sequence

of the glyph modality is reshaped to an 8× 8 feature map,

and then decoded into an image with the decoder. Further,

L1 loss contrasting the input glyph and the output image is

used to ensure that there is no loss of information.

We aggregate a large aligned glyph-stroke dataset from

Founder font libraries [7] in the pre-training phase, which

consists of 100 different fonts. We pre-train all parameters

from scratch (xavier initialization [12]). Our model is pre-

trained with two losses: the glyph reconstruction loss (L1

loss) and the stroke classification loss. We add these losses

with equal weights as in Eq. 1. We take Adam [20] as the

optimizer with a linear-decayed learning-rate schedule and

a peak learning rate at 1e− 4. We train the model for 30

epochs (i.e., roughly 4,000,000 optimization steps) with a

batch size of 4.

Lpre =
L

∑
i=1

BCE(ŝi,si)+ |Î − I| (1)

where I is the predicted glyph and Î is the ground-truth

glyph. si, ŝi (i ∈ {1,2, ...,L}) are the predicted and the

ground-truth stroke labels.

3.4. Downstream task of fewshot font generation

Model architecture Once the encoder is pre-trained, we

freeze the parameters and use it for the font generation task.

For the downstream task, the encoder is attached to a decou-

pling network which is made up of 4 Efficient Channel At-

tention (ECA) modules [31] to adaptively rescale channel-

wise features and disentangle the style and content repre-

sentations. The output of the decoupling network is an

8×8×512 feature map, which is split into two 8×8×256

feature maps. The first split feature map is designated as the

style representation and the latter is treated as the content

representation. Combining the content representation of the

source and style representation of the reference to generate

a glyph that represent the source character with the refer-

ence style. We employ 8×8 feature map instead of a latent

vector to preserve richer spatial information.

From the aligned glyph-stroke dataset [7], we only use

30 font libraries and 6741 characters from each library in

this phase, which are all covered in the pre-training. We

train all parameters of the decoupling network and the glyph

decoder while holding the encoder parameters frozen. The

font generation model is trained with three losses: adversar-

ial loss, reconstruction loss and stroke loss. The adversarial

loss encourages generation of valid glyph images by using

a discriminator discriminating the generated from ground-

truth glyphs [13]. The reconstruction loss is the L1 dif-

ference between the generated glyph and the exact ground-

truth (a glyph of target style and source character). As for

the stroke loss, we pre-train an LSTM-based [15] stroke

predictor, which is able to predict the stroke labels sequen-

tially in the correct order given a glyph image as input: see

Figure 3 for details. Then we use the predictor to com-

pute the stroke loss. Instead of using the predicted labels

directly, we employ the activations of the second last LSTM

layer and compute the feature differences between the gen-

erated and the ground-truth glyph. We add these losses with

equal weights as in Eq. 2. We take Adam [20] as the op-

timizer with a linear-decayed learning-rate schedule and a

peak learning rate at 1e−4. Like in the pre-training phase,

we train the model for 30 epochs (i.e., roughly 5,000,000

optimization steps) with a batch size of 4.
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Figure 3. The LSTM-based stroke predictor, which is pre-trained

for stroke order prediction before used to compute the stroke loss.

L f g = Lossadv + |Î − I|+ |LST M(Î)−LST M(I)| (2)

where I, Î are the predicted and the ground-truth glyphs.

LST M(∗) is the activations of the second last layer of

LSTM-based stroke order predictor, while Lossadv is as the

same as WGAN-GP [1].

4. Experimental Results

Our model is implemented with PyTorch 1.7 and is

trained on a NVIDIA Tesla V100. The pre-training takes

2-3 days and the second-phase training costs 6 days.

We evaluate the state-of-the-art FFG methods and ours

on seen and unseen font domains to measure the general-

izability of the models. Our method is compared with five

font generation methods on the FFG benchmark, in both the

qualitative and quantitative settings. Experimental results

demonstrate that XMP-Font achieves the lowest failure rate

on both seen and unseen domains. The ablation and analysis

study helps understand the role and effects of pre-training

strategy, the use of stroke loss and other techniques.

4.1. Comparisons

We compared our XMP-Font with two image-to-image

translation methods (StarGAN v2 [6] and FUNIT [27]) and

three FFG methods (LF-Font [29], MX-Font [30] and DG-

Font [41]). StarGAN v2 and FUNIT are not directly pro-

posed for the font generation task, but the universal image-

to-image translation paradigm can be applied to the font

generation task as well. While [6] only supports transla-

tion of glyphs across seen domains, [27] can be applicable

to translations between unseen domains.

To show the generalizability to the unseen style domains,

we propose to do the evaluations in the following FFG sce-

nario; training a FFG model on 100 font style domains [7],

and evaluating the model on both seen and unseen style do-

mains by using only one glyph image as reference. As the

stroke labels is independent to font style, stroke labels for

all 6741 characters are provided.

Due to the style of the font domain is defined by appear-

ance features of multiple scales, measuring the visual qual-

ity with a unified metric is a challenging problem. As men-

tioned in MX-Font [30], the multiplicity of the font styles

Model Few Shot FID ⇓ PSNR ⇑ SSIM ⇑ L1 ⇓ Users ⇑

Seen Fonts

FUNIT Yes 147.19 8.98 0.7069 29.38 0.2667

LF-Font Yes 58.90 9.78 0.7312 25.05 0.3725

DG-Font Yes 73.49 9.73 0.7433 25.26 0.5759

MX-Font Yes 66.04 9.10 0.6963 30.05 0.7220

Stargan No 35.24 9.82 0.7336 26.64 0.7974

Ours Yes 31.14 12.94 0.7972 19.29 0.9249

Unseen Fonts

FUNIT Yes 173.30 8.45 0.6805 32.18 0.1060

LF-Font Yes 86.33 9.35 0.7058 27.63 0.3185

DG-Font Yes 53.04 9.33 0.7209 26.83 0.5220

MX-Font Yes 135.43 8.77 0.6810 26.17 0.5906

Ours Yes 36.80 12.05 0.7903 18.78 0.8748

Table 1. Quantitative evaluations of our XMP-Font and competi-

tors. The reported values are the average of the whole datasets,

where only one reference images per style is used for font genera-

tion in each experiment.

raises the issue when multiple “ground-truths” are satisfy-

ing and only one “ground-truth” glyph is present in the eval-

uation dataset. Thus, in addition to ground-truth-based met-

rics (SSIM [39], PSNR and L1), we also use evaluation met-

rics that does not require paired ground truths (FID [14]).

Other than the objective metrics, we conduct a user

study for quantifying the subjective quality. The partic-

ipants are asked to pick the acceptable cases considering

the success of style transfer and correctness of the charac-

ter structure. Failure of either the content or the style is

considered unsuccessful. We randomly select 10 seen font

styles and 10 unseen font styles, and 30 characters of each

style are generated with each model. Therefore, 3300 sam-

ples are generated (10× 30× 6 = 1800 for seen domains

and 10 × 30 × 5 = 1500 samples for unseen domains as

StarGAN-v2 does not work for unseen domains). The gen-

erated samples of the same style and the same character (by

different models though) are put together and shown to a

participant at a time. The src glyph and a few glyphs of

target styles are also shown to the participant in the mean-

time to facilitate the rating. After all trials finish, the rat-

ings of all participants are collected and analyzed, as pre-

sented in Table 1. We observe that XMP-Font outperforms

other methods in both seen and unseen font generation sce-

nario for most evaluation metrics. In the unseen-domain

scenario, ours exceeds others in all metrics by large margin.

Especially, our method achieves a remarkably 28% higher

success rate on unseen font domains over the second best.

We illustrated the generated samples in Figure 4. We

show the source images in the top row and the correspond-

ing stylize transfer results in the below. In Figure 4, we
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Figure 4. Visual comparisons of our XMP-Font with other state-of-the-art methods on famous Chinese poems. The red boxes highlight

failures of structure preservation, and blue boxes highlight failures of style transfer.

Figure 5. Comparisons of our XMP-Font with LF-Font [29] and

MX-Font [30] in terms of cursive font generation. The glyph de-

tails highlighted with the blue boxes and red boxes reveal the no-

ticeable gap between the other two models and ours.

observe that FUNIT [27] generates the worst results, as it

often fails to preserve the character structure of the source

(severe loss of strokes or components) and generates unrec-

ognizable glyphs. LF-Font [29] performs well for some test

styles, while its performance is unstable as they are prone to

loss of strokes or distortion of components on certain style

domains. At a glance, other methods including DG-Font

[41], StarGAN-v2 [6], MX-Font [30] and ours seem to pre-

serve the character structure well. However, DG-Font [41]

fails to perform style transfer especially when the source

style significantly differs from the target. StarGAN-v2 [6]

can only do transfer of seen styles, while it occasionally

generates unpleasant stroke paddings as highlighted with

the red boxes in Figure 4. MX-Font and ours synthesize bet-

ter detailed structures both in content and style, while there

is more chance that MX-Font fails to generate fine-grained

style features.

As shown in Figure 5, the blue and red boxes high-

light the failure of LF-Font [29] and MX-Font [30] in

terms of the generation of stroke-level styles (e.g., selfness),

component- and character-level styles (e.g., connected-

stroke and inter-component spacing). The advantage of our

XMP-Font is highlighted with more successful transfer of

styles of all scales. XMP-Font preserves both the detailed

local style and fine-grained global styles and generates the

plausible and recognizable images consistently. Such a no-

ticeable gap in visual quality explains the large performance

leap of XMP-Font in the user study.

4.2. Ablation studies

Pre-training strategies To show the effectiveness of the

pre-training strategy used in our approach, we did three ex-

periments. In Experiment A, the cross-modality encoder is

not pre-trained and it is directly trained for the downstream

task from scratch. In Experiment B, we pre-train the en-

coder first and in the second-stage training we only fine-tune

the encoder with smaller learning rate (10−6). Experiment

C is what we use in our approach, namely pre-training the

cross-modality encoder first and then keeping it frozen in

the second-phase training. Then, we demonstrate the vali-

dation losses (stroke loss and reconstruction loss) in Figure
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Figure 6. The validation losses over optimization steps when

using different pre-training strategies. A is the experiment w/o

pre-training (the encoder is trained for the downstream task from

scratch). B is the experiment with pre-training first and then

fine-tuning for the downstream task. C is what is used in our

method, namely pre-training the cross-modality encoder first and

then keeping it frozen in the second-phase training.

6. Figure 6 clearly shows that Experiment A and B fail to

converge as C does, implying that the pre-training strategy

is essential for our architecture.

Stroke loss and architecture design Further, to verify

the effectiveness of the proposed stroke loss and the archi-

tecture of the generator, we compare the performances of

different experimental settings and architecture designs on

the validation benchmark under seen and unseen domain

transfer scenarios. In Experiment A, we simply remove the

stroke loss during the second-stage training. The results are

shown in Table 2 and Figure 7. Table 2 (A) shows that the

objective metrics worsen without the use of stroke loss. The

visual results in Figure 7 (A) also show that the preservation

of character structure becomes worse and the model is less

sensitive to the stroke order.

In Experiment B, we modify the network architecture to

adopt smaller glyph feature map (4×4 instead of 8×8). To

make this possible, we employ a down-sampling convolu-

tional layer upon the 8× 8 glyph feature map before it is

processed with the decoupling network. We observe from

Figure 7 (B) that the smaller feature map is prone to loss

of fine-grained structure information and stroke-level style

features. This is also reflected by the objective metrics in

Table 2 (B). However, using a 16× 16 feature map is in-

tractable due to limitation of GPU memory. Therefore, we

choose 8×8 glyph feature representations in the final archi-

tecture.

In Experiment C, we ablate the decoupling network by

replacing the ECA modules with a simple convolutional

layer. The results in Figure 7 (C) show that content-style

disentanglement worsens without the use of the decoupling

network, and some results suffer loss of structure informa-

Figure 7. Qualitative analysis of the proposed techniques and ar-

chitecture configurations. A is the experiment w/o stroke loss. B

refers to the modified generator architecture with glyph feature

size 4× 4 instead of 8× 8. C is the modified generator architec-

ture w/o ECA modules [31].

Models A B C Ours

S
ee

n

FID 33.73 70.56 32.93 31.14

PSNR 12.29 11.58 11.94 12.95

SSIM 0.7933 0.7689 0.7810 0.7972

L1 19.85 21.25 21.07 19.28

Stroke Loss 0.3424 0.3896 0.3582 0.2709

U
n

se
en

FID 41.60 56.51 45.45 36.80

PSNR 11.73 10.81 11.15 12.05

SSIM 0.7725 0.7653 0.7732 0.7903

L1 21.70 21.59 21.63 18.78

Stroke Loss 0.3692 0.4879 0.4207 0.3272

Table 2. Quantitative analysis of the proposed techniques. A is

the experiment w/o stroke loss. B refers to the modified generator

architecture with glyph feature size 4×4 instead of 8×8. C is the

modified generator architecture w/o ECA modules [31].

tion and incorrect style features.

5. Conclusion

We proposed the XMP-Font model for few-shot font

generation that can generate a novel font library with high

success rate by using only one reference glyph from the tar-

get domain. Both qualitative and quantitative comparisons

with existing methods verify the remarkable advantages of

our approach. Our approach significantly boosts the art as it

achieves a record-breaking 87.5% success rate for the few-

shot font generation task on unseen font domains.

Nevertheless, a limitation of our model is that it does

not support unseen stroke labels, as it explicitly conditions

the style and content representations upon the stroke labels.

Neither can it be generalized to unseen languages whose

characters are composed of a disparate set of stroke genres.
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