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Abstract

We introduce Retrieval Augmented Classification (RAC),
a generic approach to augmenting standard image classi-
fication pipelines with an explicit retrieval module. RAC
consists of a standard base image encoder fused with a
parallel retrieval branch that queries a non-parametric ex-
ternal memory of pre-encoded images and associated text
snippets. We apply RAC to the problem of long-tail clas-
sification and demonstrate a significant improvement over
previous state-of-the-art on Places365-LT and iNaturalist-
2018 (14.5% and 6.7% respectively), despite using only
the training datasets themselves as the external informa-
tion source. We demonstrate that RAC’s retrieval mod-
ule, without prompting, learns a high level of accuracy on
tail classes.This, in turn, frees the base encoder to focus
on common classes, and improve its performance thereon.
RAC represents an alternative approach to utilizing large,
pretrained models without requiring fine-tuning, as well as
a first step towards more effectively making use of external
memory within common computer vision architectures.

1. Introduction
Large Transformer [48] models have arrived in Com-

puter Vision, with parameter counts and pretraining dataset
size increasing rapidly [11,26,34,42,44,53]. The distributed
representations learned by such models result in significant
performance gains on a range of tasks, however come with
the drawback of storing world knowledge implicitly within
their parameters, making post-hoc modification [8] and in-
terpretability [4] challenging. In addition, real-world data
is long-tailed by nature, and implicitly storing every visual
cue present in the world appears futile with current hard-
ware constraints. As an alternative to this fully parametric
approach, we propose augmenting standard classification
pipelines with an explicit external memory, thus separating
model performance from parameter count, and facilitating

*Part of this work was done when WY was with Amazon and CS was
with The University of Adelaide.

the dynamic addition and removal of information explicitly
with no changes to model weights.

To evaluate our approach, we focus on the problem of
Long-Tail visual recognition, as it shares many of the prop-
erties likely to be encountered by a general agent. Specifi-
cally, the data distributions are highly skewed on a per-class
basis, with a majority of classes containing a small number
of samples. The number of samples in these small classes,
commonly referred to as the “tail”, can far outweigh those
in the relative minority of high sample classes (referred to
as the “head”). In this situation, learning is challenging due
to both the lack of information provided for tail classes,
and the tendency for head classes to dominate the learning
process. Long-tail learning is a well-studied [2, 20, 39] in-
stance of the more general label shift problem [41], where
the shift is static and known during both training and test-
ing. Despite being well-studied, commonly occurring, and
of great practical importance, classification performance on
long-tail distributions lags significantly behind the state-of-
the-art for better balanced classes [24].

Base approaches are largely variants of the same core
idea—that of “adjustment”, where the learner is encouraged
to focus on the tail of the distribution. This can be achieved
implicitly, via over/under-weighting samples during train-
ing [3, 12, 19, 22] or cluster-based sampling [6], or explic-
itly via logit [10, 36, 57] or loss [21, 36] modification. Such
approaches largely focus on consistency, ensuring minimiz-
ing the training loss corresponds to a minimal error on the
known, balanced, test distribution.

An alternative approach focuses on ensembling models.
Instead of disregarding knowledge of the test distribution,
recent work [17, 52, 59] use ensembling models to induce
invariance to the test distribution. This is typically done
by training separate models under different losses or re-
sampling techniques, and combining them at test time.

We introduce a third approach, Retrieval Augmented
Classification (RAC), motivated by the desire to explicitly
store tail knowledge, as a retrieval-based augmentation to
standard classification pipelines.

RAC’s retrieval module is multi-modal, making use of
image representations as retrieval keys, and returning en-
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Figure 1. (a) RAC overview. RAC consists of a retrieval module that augments a standard encoder B(·) with explicit external memory.
(b) The retrieval module consists of external images I encoded by a fixed, pretrained image encoder E(·), and associated text T queried
using an approximate k-NN and encoded via a text encoder T(·). The logits of the retrieval encoder are then combined with those of the
base network. In our instantiation, B and E are ViT’s, and T is a BERT-like text encoder.

coded textual information associated with each image. We
place no limitation on the nature of this text; it may be the
labels from a supervised training set, descriptions, captions
etc. In the simplest case, the images in the index, and asso-
ciated text, can be the images and labels from the dataset of
interest alone.

RAC jointly trains a standard base encoder, and a sepa-
rate retrieval branch. We demonstrate empirically that the
retrieval branch learns, without explicit prompting, to focus
on tail classes. This frees the base encoder from modelling
these sparse classes, as they are already effectively repre-
sented by the non-parametric memory of the retrieval mod-
ule. This in turn allows the base encoder to achieve a higher
level of performance on the head classes.

RAC achieves state-of-the-art performance on common
Long-Tail classification benchmarks, even out-performing
approaches such as LACE [36] that are provably consistent
with regard to the class-balanced error, and Bayes-optimal
under Gaussian class priors. A major benefit of RAC is its
ability to use large, pretrained models for inference (for in-
dex and retrieval encoding), leveraging their rich represen-
tations to improve the classification performance of a base
learner. This broadens the applicability of such models due
to the large cost of fine-tuning.

Our contributions are summarised as follows:

1. The first demonstration of effective external memory
within long-tail visual recognition setting.

2. A novel method for Long-Tail classification that sig-
nificantly improves on the current state-of-the-art.

3. Insight into the proposed method, with the reimple-
mentation of strong baselines that also exceed current
state-of-the-art.

2. Related Work

Resampling and Logit Adjustment Over-sampling sparse
classes [3, 19] is one of the oldest approaches to address-
ing distribution bias, but one that is still in common use.
Under-sampling common classes [12], applying additional
data-augmentation to sparse classes in pixel, or feature
space [5, 32], or sampling uniformly from pre-computed
clusters [22], have also been suggested. Hong et al. [21]
propose a distribution aware weight regularizer that is ap-
plied more heavily to head classes than tail classes, in a
similar vein to weight normalization. However, empirically,
the resulting model (LADE) only produces marginal gains
over straight-forward balanced softmax. Recent work [36]
has unified many empirically successfully approaches under
a Fisher-consistent scorer for the balanced error, and addi-
tionally shown that weight normalization fails when used
with the ADAM optimizer. Zhang et al. [54] adopt a two
stage approach, and propose a class-specific learnable (from
the samples) reweighting (via a single layer NN) of the
frozen pretrained logits based on a generalized formulation
of the class-balanced softmax. They show that transform-
ing the classification head, as opposed to re-training it, per-
forms better. PaCo [6], the current state-of-the-art for long-
tail classification, combines learnable logit adjustment with
contrastive learning [38]. Despite their simplicity, adjusted
logit methods (LACE, LDAM, LADE) remain strong solu-
tions to the long tail problem, typically achieving within 1-
2% top-1 accuracy of state-of-the-art ensemble approaches
(see Table 1, Table 2).

Ensemble Methods In proposing TADE [56], Zhang et
al. explicitly train three heads with standard, balanced,
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and inversely weighted softmax losses, linearly combin-
ing their predictions at test time, weighted by a measure
of confidence derived from each head’s stability under
data-augmentation. Wang et al. [50] in contrast combine
multiple independently trained classification heads that are
pushed to be decorrelated in their predictions via a (class
balanced) KL loss, with a small routing network that im-
proves computational efficiency during inference.
External Memory One of the first models to success-
fully combine deep networks with external memory was
the Neural Turing Machine [15]. The purpose of that
model was symbolic manipulation, however, which ren-
ders its architecture quite different to that of RAC. Gong
et al. [14] proposed a similar retrieval-module architecture
for anomaly detection, but without RAC’s corresponding
base module. Recently, in the NLP domain, several works
have proposed the augmentation of large language models
with a non-parametric memory to allow explicit access to
external data [18, 30]. While such approaches make use
of differential retrievers, which introduces the problem of
lookup/representation drift, they are still closely related to
RAC. k-NN Language Models (LMs) [27] are most similar
to our work, which directly interpolate a retrieval distribu-
tion with the next token distribution produced by a base LM,
resulting in reduced combined model perplexity.

Latent retrieval has been applied to textual open-domain
QA [25, 29]. The central difference is such approaches re-
turn information that is most similar to the retrieval key,
whereas RAC returns information (text) attached to re-
trieved samples. An approach similar to that of RAC has
been applied to knowledge-intensive QA [49], where a ‘fact
memory’ consisting of triples from a symbolic Knowledge
Base (KB) is directly encoded and queried using the final
representation of a language model as keys. In computer
vision, non-parametric retrieval has been used to assist in
addressing the fine-grained retrieval problem, such as in
enforcing instance-level retrieval loss in [46]. The Open-
world Long-tail model proposed in [33] also makes use of
a retrieval module, but primarily as a mechanism to distin-
guish between seen, and unseen samples in the ‘open world’
setting, not to boost performance on seen classes as we do.

3. Method
3.1. Preliminaries

In long-tailed visual recognition, the model has access
to a set of N training samples S = {(xn, yn)}Nn=1, where
xn ∈ X ⊂ RD and labels Y = {1, 2, .., L}. Training class
frequencies are defined as Ny =

∑
(xn,yn)∈S 1yn=y and

the test-class distribution is assumed to be sampled from a
uniform distribution over Y1, but is not explicitly provided

1While this is true for Places365-LT, iNaturalist2018 has a fixed num-
ber of test samples for each class (N test

i = 3, ∀i ∈ Y)

during training. The goal is thus to minimize the balanced
error, of a scorer f : X → RL, defined as;

BE(x, f(·)) =
∑
y∈Y

Px|y

(
y /∈ argmax

y′∈Y

fy′(x)

)
(1)

where fy(x) is the logit produced for true label y for sample
x. Traditionally this is done by minimizing a proxy loss, the
Balanced Softmax Cross Entropy (BalCE):

ℓBalCE(x, y, fy(·)) = − 1

Ny
log

efy(x)∑
y′∈Y efy′ (x)

. (2)

This is a form of re-weighting, where the contribution of
each label’s individual loss is scaled by an approxima-
tion of P(y), which for ℓBalCE, is the inverse class fre-
quency. BalCE remains a strong baseline in this domain
(see Sec. 4.3).

3.2. LACE Loss

An alternative to re-weighting is to adjust the logits
themselves, however the two can be done in conjunction,
resulting in the general form of the re-weighted (via αy)
and adjusted (via ∆y) softmax cross entropy loss;

ℓ(x, y, fy(·)) = −αy log
efy(x)+τ ·∆y∑

y′∈Y efy′ (x)+τ ·∆y′ (3)

where τ is a constant temperature scaling parameter. Sev-
eral recent works focusing on long-tail learning exploit spe-
cial cases of this loss. If αy = 1 and, Logit Adjusted
Cross-Entropy (LACE) [36], can be recovered with ∆y =
log (Ny/N) and LDAM [1] with αy = 1/Ny and

∆y =

{
N

−1/4
y if y′ = y,

0 otherwise.
(4)

Both are Fisher-consistent with respect to the balanced loss.
The optimal τ can be found with a holdout set, or set to
1 if the logits are calibrated [16]. In our experiments, this
calibration is achieved through label smoothing [37], which
has been shown to implicitly calibrate neural networks [45].
This property is important in the design of RAC as we use
LACE as the base loss and do not apply manual temperature
adjustment, setting τ = 1, unless otherwise specified.

3.3. Retrieval Augmented Classification

The overall idea of RAC is very simple—split the scorer
into two branches (see Fig. 1), where one branch (retrieval)
exhibits implicit invariance to class frequency. The two
branches are trained under a common LACE loss, with their
individual logits combined with a norm, addition and re-
scale operation to ensure that one does not override the other
during training.
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The base branch encoder B(·) can be any choice of a
standard backbone network. In our experiments, we pri-
marily use the ViT-B-16 variant of Visual Image Trans-
former [11], transforming the final token embedding via a
standard linear layer. The retrieval module (see Sec. 3.4)
takes a raw image and performs a latent-space lookup on
an index of precomputed embeddings, returning the text at-
tached to the top k most similar images to the image cur-
rently being considered, xq . This text is then fed through
a text encoder and transformed by another linear layer into
logits f ret(xq).

We make use of the pretrained BERT-like text encoder
(63M parameters, 12-layer 512-wide model with 8 attention
heads) from CLIP [42], which we choose due to the broad
(400M) range of images, alt-text pairs used during pretrain-
ing, and the compatibility with other language models due
to the preservation of masked self attention in the architec-
ture. In our experiments, the choice of text encoder is not
critical as the textual information being retrieved (labels)
is not highly complex, and off-the-shelf word embeddings,
and even random encodings still perform reasonably well
(see Fig. 3). This choice does increase training time due to
the larger parameter count (see Table 5), but allows RAC to
scale to more complex retrieved text.

To combine base and retrieval branches, we normalize
each branch’s outputs to the unit norm and add them to-
gether. To ensure training dynamics are not altered (via
lower logit magnitudes) in comparison to the baselines we
rescale the combined logits by a constant factor (dependent
on L due to final layer Xavier initialization [13] also being
dependent on L).

f(x) =
L

2

(
f ret(x)

||f ret(x)||2
+

f base(x)

||f base(x)||2

)
, (5)

where f base(x) represents the logits produced by the image
encoder backbone, and f ret(x) is the output of the retrieval
module. This straightforward setup has the benefit of be-
ing able to treat the branch outputs as individual logits, in-
creasing the interpretability of RAC, and allowing us to pre-
cisely evaluate the per-class accuracy of each branch (see
Fig. 2). While there are many ways to combine the branches
such as confidence or distance based weightings, attention
mechanisms etc., we found this approach sufficient, with
the weighting of each branch done implicitly by the learned
sharpness of the logits.

3.4. Retrieval Module

The retrieval module consists of a frozen pretrained im-
age encoder E(·), a pre-existing set of external images
I = {ij}Jj=1, with associated text T = {tj}Jj=1, which
may be labels, descriptions, captions etc. Unless otherwise
specified, E(·) is a ViT-B-16, pretrained on ImageNet fol-
lowing [43]. Prior to training RAC, the retrieval module is
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Figure 2. Per-class top-1 accuracy on Places365-LT from each
branch’s output. Without prompting, the retrieval module learns to
focus on tail classes. The 20 sample moving average over classes
(solid line) is shown for clarity.

initialized by producing image keys Z = {zj} such that
zj = E(ij) ∀j, and storing the resultant representations in
a fast approximate k-NN index.

During training, we produce features zq = E(xq) for
each image xq in the training batch. The k-NN is queried
for each zq and returns a list of indices of the k closest keys
in Z, where cosine similarity is the distance metric. The text
element in T is recovered for every such index, generating
k text elements for each query. These text elements are then
encoded by a text encoder T(·) which produces the retrieval
branch’s (fixed length) logits, f ret(xq).

Text strings are truncated after 76 tokens, and the resul-
tant batches are zero-padded. This approach allows for a
single text-encoder call per batch, as opposed to k which
would be required if each text snippet was encoded sepa-
rately, and would result in a significant slowdown. The use
of a large-scale transformer ensures that RAC can scale to
longer text snippets if the external information is expanded
to contain additional sources beyond simply labels.

A key feature of the retrieval module is its ability to in-
clude otherwise unconnected data-sources simply via their
labels. In this way, we can dynamically add or remove
datasets from I, and if new examples are similar (from the
point of view of the encoder), they can directly impact clas-
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Method Backbone Many Med Few All

Input: 224× 224

OLTR [33] RN50 59 64.1 64.9 63.9
Dec. LWS [24] † RN50 65.0 66.3 65.5 65.9
LADE [21] † RN50 - - - 70.0
ALA [57] † RN50 71.3 70.8 70.4 70.7
LACE [36] RN50 - - - 71.9
RIDE [50] RN50 70.9 72.4 73.1 72.6
TADE [56] RN50 74.4 72.5 73.1 72.9
DisAlign [54] RN152 - - - 74.1
PaCo [6] RN152 75.0 75.5 74.7 75.2
RAC (ours) ViT-B-16 75.92 80.47 81.07 80.24

Input: 384× 384

Grafit RegNetY - - - 81.2
RAC (ours) ViT-B-16 82.91 85.71 86.06 85.56
Table 1. Historical performance on iNat under varying backbones
and training schemes. †Results reproduced from [57].

Method Backbone Many Med Few All

Focal Loss [31] † RN152 41.1 34.8 22.4 34.6
Range Loss [55] † RN152 41.1 35.4 23.2 35.1
OLTR [33] † RN152 44.7 37 25.3 35.9
Dec. LWS [24] † RN152 40.6 39.1 28.6 37.6
LADE [21] † RN152 42.8 39 31.2 38.8
DisAlign [54] RN152 40.4 42.4 30.1 39.3
ALA [57] RN152 43.9 40.1 32.9 40.1
TADE [56] RN152 43.1 42.4 33.2 40.9
PaCo [6] RN152 36.1 47.9 35.3 41.2

RAC (ours) ViT-B-16 48.69 48.31 41.76 47.17
Table 2. Historical performance on Places365-LT under varying
backbones and training schemes. †Results reproduced from [57].

sification accuracy, providing an alternative to fine-tuning
in order to incorporate new information.

For fast querying of the index, we make use of the FAISS
implementation [23] of the Hierarchical Navigable Small
World (HNSW) approximate k-NN lookup [35]. We con-
struct the index with default settings aside from the hyper-
parameter M = 32, which sets the number of bidirectional
links per node and increases the complexity of the index,
but allows for higher recall. During training, we drop the
first result, as when training data is included in the index,
the first result is often the original image, which causes the
text encoder to place undue weight on the first retrieved la-
bel when creating predictions.

4. Experiments

We establish RAC’s high level of performance on com-
mon benchmark datasets iNaturalist2018 (Table 1) and

Method Backbone Many Med Few All

Places365-LT

CE RN50 - - - 32.14
Balanced CE RN50 - - - 38.31
CE ViT-B-16 50.81 33.83 19.51 37.16
Balanced CE ViT-B-16 49.03 45.72 29.05 43.67

Retrieval - 43.50 41.99 26.83 39.58
Base only ViT-B-16 44.57 45.06 40.77 44.05
RAC ViT-B-16 48.69 48.31 41.76 47.17

iNaturalist 2018

CE RN50 - - - 61.7
Balanced CE RN50 - - - 69.8
CE ViT-B-16 81.53 76.62 69.82 74.44
Balanced CE ViT-B-16 72.39 76.06 73.05 74.49

Retrieval - 50.10 52.77 52.45 52.37
Base only ViT-B-16 74.41 78.95 78.55 78.32
RAC ViT-B-16 75.92 80.48 81.07 80.24

Table 3. Comparison of top-1 accuracy against baselines under a
common training scheme. ‘Base only’ is equivalent to LACE with
implicit temperature scaling via label smoothing.

Places365-LT (Table 2)2 with no additional external infor-
mation aside from the datasets used to pretrain the indi-
vidual encoders. Note that these tables report results from
the literature which were obtained under varying architec-
tures and training schemes. We ablate the benefit of RAC’s
improved training pipeline in Table 3 where we reimple-
ment class-balanced softmax Cross Entropy (BalCE) and
LACE [36] as baselines. We consider ‘Base only’ trained
under the LACE loss [36] as our primary baseline, due
to LACE’s strong theoretical grounding, provable consis-
tency, and high level of previously reported empirical per-
formance. We report overall accuracy as well as per-class
accuracy bucketed into the few (< 20), medium (≤ 100)
and many (> 100) shot categories. The full per-class distri-
bution curve is also shown in Fig. 2. We then focus specifi-
cally on the design choices of the retrieval module and how
the choice of data for the index affects RAC in Sec. 4.7.

In all experiments, unless otherwise indicated, E is a
ViT-B-16 encoder, with the weights from [11]. The weights
are obtained from pretraining on ImageNet21k (IM21k), a
larger (11M samples) variant of the original 1.2M images
ImageNet [9] dataset, with more granular classes. We make
use of IM21k to expand the index in some experiments, and
use the variant introduced in [28].

2We do not compare against CIFARLT and ImageNetLT, as in these
scenarios training is typically performed from scratch, and RAC requires
a pretrained network for the retrieval module. While it is possible to train
the base network from scratch, this is not a fair comparison and RAC sig-
nificantly outperforms other methods due to the information present in E.
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4.1. Places365-LT

Places365-LT is a synthetic long-tail variant of Places-
2 [60] introduced in [33]. It consists of 365 high-level scene
classes such as ‘airport’, ‘basement’, etc. across 62.5K sam-
ples at 256×256 resolution. The minimum number of sam-
ples per class is 5, with a training set that, while balanced,
is not perfectly uniform. The dataset contains a significant
amount of label noise, which makes it appealing, as logit ad-
justment methods typically assume fully separable classes
in their theoretical motivation.

We observe that with no explicit prompting, the retrieval
network learns to highly skew its accuracy towards the few-
shot classes (Fig. 1), confirming our hypothesis that it will
be beneficial in this case. Note that there is no explicit sig-
nal pushing the retrieval network to learn infrequent classes
over common ones, or for the supervised network to pre-
fer common classes, as both are trained under the common
LACE loss. Interestingly, RAC’s learned strategy is similar
to the hard-coded ensembling utilized in TADE [56], which
is the previous state-of-the-art.

4.2. iNaturalist-2018

iNaturalist-2018 (iNat) [47] consists of 437K images and
6 levels of label granularity (kingdom, genus etc.). Follow-
ing other work, we consider only the most granular labels
(species), which constitutes 8142 unique classes with a nat-
urally occurring class imbalance. In many cases the labels
are very fine-grained, making it a challenging dataset even
without the long-tailed property. The test set is perfectly
balanced, with 3 samples per class.

In addition to the 224 × 224 resolution commonly stud-
ied, we report the results with 384 × 384 images, which
was used in GRAFIT [46] and is currently state-of-the-art
for this task. We found the use of 16 × 16 patch size to be
of major importance on iNat, boosting retrieval accuracy by
21.6% (see Table 4), likely due to the fine-grained nature of
the dataset.

4.3. Ablation

Historical performance numbers reported in Tables 1
and 2 contain a mix of backbones and training schemes
that make comparison difficult as a modernized training
scheme alone can significantly boost performance [51].
In Table 3 we baseline RAC’s performance against class-
balanced softmax cross entropy (BalCE) and with the re-
trieval branch removed (‘Base only’). In this case, ‘Base
only’ is equivalent to LACE augmented with implicit tem-
perature scaling via label smoothing. Even against this very
strong baseline (already far past state-of-the-art), RAC im-
proves on overall accuracy by 7.01% for Places and 2.45%
for iNat.

One question is how RAC is able to so outperform meth-
ods that are provably consistent, such as LACE [36]. We hy-

Encoder Many Med Few All CT(m:s)

Places365-LT

RN50 31.73 16.28 8.65 20.34 0:46
RN152d 33.52 17.71 10.03 21.89 2:07
ViT-B-32 38.34 24.82 15.83 27.92 0:20
ViT-B-32∗ 39.95 26.12 16.87 29.28 0:49
ViT-B-16 39.97 26.74 18.65 29.91 0:53
ViT-B-16∗ 40.79 27.23 19.25 30.55 3:15

iNaturalist 2018

RN50 26.8 20.8 21.15 21.56 5:14
RN152d 38.95 29.56 28.45 30.09 17:50
ViT-B-32 48.14 43.69 44.1 44.31 2:35
ViT-B-16 59.38 53.92 52.42 53.89 4:19
ViT-B-16∗ 66.15 61.54 60.92 61.77 22:14
Table 4. Analysis of standard retrieval performance and Construction
Time (CT) which includes both image encoding and HNSW in-
dexing. ∗384× 384 resolution variants.

pothesize that, in addition to the non-convexity introduced
by using Neural Networks as the scorer, this is due to the
fact that sample frequency alone does not indicate classifi-
cation ‘difficulty’ from the perspective of a balanced learner
[58]. Instead, a small number of samples may still define a
sufficiently clear decision boundary if the volume of seman-
tic space covered by that class is small and distinct [7], and
hence in a truly balanced model, both inter- and intra-class
distributions must be considered. Accounting for the intra-
class distribution being difficult, however, given no prior
on this quantity is typically provided, aside from the la-
bels themselves. Instead, the majority of prior work has
either ignored this factor, or assumed the class distributions
to be Gaussian. In our formulation, these “easy” classes get
picked up by the retrieval model, leaving the base branch to
focus on examples that are difficult, where the difficulty is a
combination of presentation frequency and class complex-
ity. Previous methods have attempted this by correlating
stability under augmentation with confidence [56], however,
this correlation is weak.

4.4. Retrieval

Quantifying retrieval accuracy is important because if
standard retrieval performance is significantly lower than
that of a balanced supervised learner such as the LACE
baseline, it is unlikely to be beneficial. In Table 4 we per-
form standard retrieval with ImageNet pretrained encoders
on both datasets, encoding the training set and then query-
ing it with encoded test images, returning the label of the
closest image in the training set as the prediction. All com-
parisons are done on exact match indexes with the ℓ2 dis-
tance, no data augmentation and consistent crop, interpola-
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Figure 3. Effect of the choice of text encoder on performance.
The overall impact is minor, however the CLIP LM significantly
boosts few-shot performance on Places365-LT, where labels are
natural language terms.

tion and normalization constants. zq has length 2048 for the
ResNet models, and 768 for ViTs. Despite being trained on
the same data, we show that ViTs significantly outperform
ResNets, and are hence critical to RAC’s performance.

4.5. Importance of the Text Encoder

RAC makes use of a large BERT-like text encoder to
learn a mapping from retrieved labels to class logits. Here
we quantify the importance of this model relative to two
alternatives: (i) Bag-of-words (BoW) GLoVe [40] embed-
dings, and (ii) BoW cached random embeddings.

Both are of dimension 300 vs. 512 for the CLIP encoder.
The random embeddings are sampled from a uniform dis-
tribution over the interval [0, 1) and cached for each word
in the input string. That is, the embeddings for individual
words are consistent, but have no inherent semantics.

We observe that a higher capacity T does improve
performance, particularly on the Places365-LT few-shot
classes, but that overall this benefit is minor. This is likely
due to the input to the encoder not being overly complex,
and more detailed information such as captions were re-
turned, this effect may be more pronounced.

4.6. Effect of k

Given that our choice of k in approximate k-NN search
is larger than the minimum number of samples present per-
class for both Places365-LT and iNat, we question whether
the additional returned samples, which cannot be the correct
class (in the few-shot case), degrade retrieval performance.
To study this, we experimented on only the retrieval branch,
with no base encoder, and utilized an index that contained
the training set only. As can be seen in Fig 4, increasing k
consistently increases accuracy, indicating the text encoder
T(·) is able to learn to disregard the common classes. Note
the few-shot performance is low here, as the retrieval branch
is still trained under the LACE loss, and hence pushed to-
wards balanced performance across all classes. It is thus
not free (via the base branch) to focus on the tail classes.
This indicates that newer transformer architectures, that fa-
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Figure 4. Effect of the number of retrieved text snippets, k, on
Places365-LT top-1 accuracy for the retrieval only branch, query-
ing an index containing only the Places365-LT training set. Higher
k consistently improves performance until the cutoff induced by
the text encoding truncation (76 tokens), however it does come at
the cost of (linearly) higher training time. We choose k = 30 in
our experiments. x-axis is log-scaled.

cilitate longer sequence length, may be beneficial when ap-
plied to RAC, especially when the associated text snippets
themselves are longer.

4.7. Impact of Index Content

To quantify how index content affects RAC, we carried
out three experiments in which we trained only the retrieval
module on the Places365-LT dataset, with variants of the
ImageNet21k dataset used for the index. Training was done
with the same final LACE loss as complete RAC, with a
ViT-B-16 as E. Specifically, we alter:

(a) the index size via directly sub-sampling from the full
ImageNet21k dataset.

(b) the number of training examples per-class while keep-
ing the number of classes constant.

(c) the number of classes while keeping the number of
sample per class constant.

Results are shown in Fig. 5. While naively increasing in-
dex size does increase performance, this effect diminishes
as more samples are added. This is likely caused by the in-
formation content of the labels passed to T not increasing—
as once most labels are present E is more likely to find a
similar image, however from the perspective of T, which
is not distance or image aware, the information is the same.
This is supported by sub-figures (b) and (c), in which the to-
tal amount of samples in the index is increased consistently
between both plots, but adding samples by via new labels
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Figure 5. Effect of index content on performance (k = 30) on the retrieval branch only, trained under the LACE loss on Places365-LT.
Here, the index contains no Places365-LT data, only variants of the ImageNet21k dataset.

has a disproportionately larger effect than adding new sam-
ples with the number of labels constant. This is promising
in that it indicates increasing label granularity, through the
use of image captions or associated text, is likely to increase
RAC’s performance even further.

4.8. Runtime Consideration

Nearest neighbour searches can be computationally in-
feasible for large datasets. We show here, however, that a
lookup over a sample index of size >10M can be performed
for each training sample with negligible overhead, although
the additional label encoding (and subsequent backprop),
does increase the training time by a factor of 1.5− 2×. We
report the precise run-times of models with and without re-
trieval augmentation on Places365-LT in Table 5. Given
that the index is static, the number of iterations per second
is constant throughout training. All training is carried out
on a single node, containing 8× A100 GPUs (32GB Mem).

Moving a tensor from the GPU to CPU, querying the in-
dex, then moving the resultant tensor back to GPU maybe
expected to slowdown training. However, we find that the
impact is minor with the majority of overhead coming from
the additional text encoder (the random encoder, ‘Rand.’,
contains no additional parameters). To facilitate multi-node
training, RAC keeps separate, complete copies of each in-
dex in memory for each node, ensuring querying the in-
dex is never the bottleneck, which we found to be essen-
tial. While it is possible to do the search entirely on GPU,
due to the low overhead we do not do this, instead using
the free GPU memory to facilitate a large batch size. Due
to the use of HNSW, index query time is logarithmic with
respect to the index size, and a standard exhaustive search
is prohibitively slow.

5. Limitations
While RAC demonstrates robust performance for both

naturally occurring (iNat) and constructed (Places365-LT)

Index Data Size Text Enc. Speed (s/epoch)

None None None 23.6
Places 184K Rand. 28.3
Places 184K CLIP 44.3
Places, IM21k 11.2M CLIP 47.0

Table 5. Effect of additional text encoder, and lookup on training
wall-time for RAC (k = 50) on Places365-LT. Top row indicates
the use of the base encoder only. The majority of added overhead
comes from use of the text encoder, rather than the lookup itself.

long-tailed class distributions, the analysis could be further
expanded to include additional long-tailed datasets. The
performance of RAC on balanced datasets is also of interest
and not explored. Finally, while RAC clearly demonstrates
the benefit of an explicit retrieval component, the data be-
ing retrieved (labels) is of limited value and imposes a cap
on RACs performance—a natural extension is to query for
whole paragraphs or captions. However, the 76 token limit
imposed by the CLIP text encoder prevents this, and would
need to be increased. We leave this for future work.

6. Conclusion
We have introduced RAC, a generic approach to aug-

menting standard classification pipelines with an explicit
retrieval module. RAC’s retrieval module, without prompt-
ing, achieves a high level of accuracy on tail classes, free-
ing up the base encoder to focus on common classes. RAC
improves upon the state-of-the-art results on the iNat and
Places365-LT benchmarks by a large margin for the task
of long-tail image classification. We hope that RAC repre-
sents a step towards more effectively making use of external
memory within common computer vision architectures, and
we predict its use for other vision tasks, particularly, such as
one/few shot learning, and continual learning without catas-
trophic forgetting.
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Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-
tau Yih. Dense passage retrieval for open-domain question
answering. arXiv: Comp. Res. Repository, 2020. 3

[26] Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. arXiv: Comp. Res.
Repository, 2021. 1

[27] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettle-
moyer, and Mike Lewis. Generalization through memoriza-
tion: Nearest neighbor language models. In Proc. Int. Conf.
Learn. Representations, 2020. 3

[28] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (bit): General visual representation learning. In
Proc. Eur. Conf. Comp. Vis., pages 491–507. Springer, 2020.
5

[29] Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. La-
tent retrieval for weakly supervised open domain question
answering. arXiv: Comp. Res. Repository, 2019. 3

6967



[30] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
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Matthieu Cord, and Hervé Jégou. Grafit: Learning fine-
grained image representations with coarse labels. In Proc.
IEEE Conf. Comp. Vis. Patt. Recogn., pages 874–884, 2021.
3, 6

[47] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and
detection dataset. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., pages 8769–8778, 2018. 6

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Proc. Advances in
Neural Inf. Process. Syst., pages 5998–6008, 2017. 1

[49] Pat Verga, Haitian Sun, Livio Baldini Soares, and William
Cohen. Adaptable and interpretable neural MemoryOver
symbolic knowledge. In Proc. Conf. North American Chap-
ter of the Association for Computational Linguistics: Human
Language Technologies, pages 3678–3691, June 2021. 3

[50] Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and
Stella X Yu. Long-tailed recognition by routing diverse
distribution-aware experts. arXiv: Comp. Res. Repository,
2020. 3, 5

[51] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet
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