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Abstract

Scene text detection and document layout analysis have
long been treated as two separate tasks in different im-
age domains. In this paper, we bring them together and
introduce the task of unified scene text detection and lay-
out analysis. The first hierarchical scene text dataset is
introduced to enable this novel research task. We also
propose a novel method that is able to simultaneously de-
tect scene text and form text clusters in a unified way.
Comprehensive experiments show that our unified model
achieves better performance than multiple well-designed
baseline methods. Additionally, this model achieves state-
of-the-art results on multiple scene text detection datasets
without the need of complex post-processing. Dataset and
code: https://github.com/google-research-
datasets/hiertext.

1. Introduction
The ability to read and understand text in natural scenes

and digital documents plays an important role in anthro-
pocentric applications of computer vision. While state-of-
the-art text detection systems such as [44,61] excel at local-
izing individual text entities, visual text understanding [2]
requires comprehension of the semantic and geometric lay-
out [5, 7] of the textual content. In the current literature,
most works focus on the individual tasks of text entities
detection [3, 18, 61] and layout analysis [26, 58] in a sep-
arate way, devoting all the power of deep learning models
to task-specific performance. We argue that joint treatment
of these two closely related problems can result not only in
simpler and more efficient models, but also models that are
more accurate across all tasks. Additionally, an all-in-one,
unified text and layout detection architecture can become
indispensable for text reasoning tasks such as text-based
VQA [4, 47] and image captioning [57].

The division between text detection and geometric layout
analysis tasks has led to parallel and separate research direc-
tions. Text detectors [14,18,40,61] usually treat word-level
annotations, i.e. sequence of characters not interrupted by

Figure 1. Top: We introduce the task of unified text detection and
layout analysis, and collect a dataset called HierText with hier-
archical annotations. Blue boxes are word level bounding boxes.
Yellow boundaries mark the ground-truth clustering of text. Line-
level annotations and transcriptions are not visualized to avoid
overcrowding. Bottom: We propose an end-to-end model called
Unified Detector which can simultaneously detect text as masks
and further group them into clusters. The model produces masks
for text detection and an affinity matrix to cluster text lines, both
in an end-to-end fashion without complex post-processing. We
visualize the layout analysis results by coloring text line masks
according to their clusters.

space, as the only supervision signal. Conversely, geometric
layout analysis algorithms [2,26,54,58,62] focus on digital
documents and either assume word-level text information
as given [2, 54, 58] or directly predict geometric structures
without reasoning for their atomic elements [62]. We ask:
Can there be a reconciliation of text entity detection and
geometric layout analysis? Can geometric layout analysis
target both natural scenes and digital documents? These
questions are important given their relevance in real-world
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applications, such as screen readers for visually impaired
and image-based translation.

Our work aims to unify text detection and geometric
layout analysis. We introduce a new image dataset called
HierText. It is the first dataset featuring hierarchical an-
notations of text in natural scenes and documents (Fig. 1,
top). The dataset contains high quality word, line, and para-
graph level annotations. “Text lines” are defined as logi-
cally connected sequences of words that are aligned in spa-
tial proximity. Text lines that belong to the same seman-
tic topic and are geometrically coherent form “paragraphs”.
Images in HierText average more than 100 words per im-
age, twice denser than the current highest density scene text
dataset [48]. Experimental results show our dataset is com-
plementary to other public datasets [10,11,19,22,37,38,48,
49, 59, 60] for the standalone text detection task.

In addition to HierText, we present a novel model, Uni-
fied Detector, that simultaneously detects text entities and
performs layout analysis by grouping text entities, as illus-
trated in the bottom of Fig. 1. Unified detector consolidates
an end-to-end instance segmentation model, MaX-DeepLab
[53], to detect arbitrarily shaped text and multi-head self-
attention layers [51] to form text clusters. The proposed
model enables end-to-end training and inference with a
single-stage simplified pipeline. It eliminates complex la-
bel generation processes [3,44] during training and sophisti-
cated post-processing [33,63] during inference. Unified De-
tector outperforms competitive baselines and even a com-
mercial solution on the task of unified text detection and
geometric layout analysis, demonstrating its effectiveness.

Along with the unified task, we also evaluate our model
on the standalone scene text detection task using existing
public datasets, including ICDAR 2017 MLT [38], Total-
Text [10], CTW1500 [60], MSRA-TD500 [59], and achieve
state-of-the-art results. While fine-tuning is a common
practice in recent works [44, 63], the proposed model is di-
rectly trained using a combination of datasets without fine-
tuning on each individual target dataset. The unified detec-
tor is the first end-to-end model that achieves state-of-the-
art performance on the text detection task and simultane-
ously recovers important text layout information.

In conclusion, our core contributions are as follows:
• We propose the task of unified text detection and lay-

out analysis, bringing together two tasks that have been
studied independently, yet are intrinsically connected.
• A new high quality dataset with hierarchical text anno-

tations is introduced to facilitate research on this task.
• We propose an end-to-end unified model, which out-

performs competitive multi-stage baselines that treat
the two tasks separately.
• Our model, which is free of complex post-processing,

achieves state-of-the-art results on multiple challeng-
ing public text detection benchmarks.

2. Related Works
2.1. Scene text and documents datasets

There have been a variety of scene text datasets and doc-
ument datasets. Scene text datasets range from straight text
[19] to curved text [10,60], sparse text to dense text [48,50],
monolingual text [10,19] to multilingual text [37,38], word
level to line level [59, 60], narrower image domain to
broader image domain [22, 48], varying in characteristics.
However, these datasets only focus on the retrieval of in-
dividual words or text lines. There are also datasets that
provide additional higher-level annotations for text based
VQA [48] and image captioning [57]. However, they fo-
cus on specific tasks and do not analyze the layout of text,
which has universal usage in downstream tasks. Document
datasets [1, 12, 13, 27, 62] only provide annotations for lay-
out analysis without labeling the atomic entities i.e. words.
Furthermore, these datasets only contain scanned or digi-
tal documents for a specific domain such as academic pa-
pers [62] and historical newspapers [13]. The text read-
ing order dataset [27] only contains images that have well-
defined reading order, such as product labels and instruction
manuals, and thus is not general. The proposed dataset is
the first dataset that allows joint detection and layout analy-
sis for general natural images.

2.2. Scene text detection

Recently, scene text detection research [32] has mainly
focused on the representation of irregularly shaped text
and post-processing method that recovers the text con-
tours from geometric attributes such as word or charac-
ter center regions, pixel level orientation, and radius of
the text [3, 14, 28, 33, 44, 55]. The custom representation
for text complicates the label generation process and post-
processing, such as semi-supervised and iterative genera-
tion of character center regions [3], boundary shrinking and
recovery [28] with Vatti clipping [52], and polygonal non-
maximum suppression [14]. Raisi et al. [41] introduce the
end-to-end detector DETR [6] to detect text using rotated
bounding boxes, but it does not handle curved text. Besides,
these works only provide solutions to the task of text detec-
tion. Conversely, our research works on the unification of
text detection and layout analysis with an end-to-end neural
network that greatly simplifies the whole pipeline.

2.3. Layout analysis

Driven by the success of object detection [17, 42] and
semantic segmentation [8, 31] in images, layout analysis
in documents is also framed as detection and segmentation
tasks in some works [26,43,62], where detector models are
trained to detect semantically coherent text blocks as ob-
jects. These methods fail to produce word or line level de-
tections and can only be used in company with standalone
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Dataset #Img #Word
(avg/total)

Ann Level
Train Val Test Word Line Paragraph

IC15 [19] 1,000 0 500 4.4/6.5K X
Total-Text [10] 1,255 0 300 7.4/11K X
CTW1500 [60] 1,000 0 500 6.7/10K X

MSRA-TD500 [59] 300 0 200 6.9/3.5K X
IC17 MLT? [38] 7,200 1,800 9,000 9.5/85K X
IC19 MLT? [37] 10,000 0 10,000 8.9/89K X
IC19 LSVT? [49] 30,000 0 20,000 8.1/243K X
IC19 ArT? [11] 5,603 0 4,563 8.9/50K X
TextOCR [48] 21,778 3,124 3,232 32.1/903K X
Intel OCR [22] 191,059 16,731 0 10.0/2.1M X

HierText 8,281 1,724 1,634 103.8/1.2M X X X

Table 1. HierText v.s. other datasets. Our dataset is characterized
by high text density and hierarchical annotations. Datasets marked
with ? do not provide test set annotations. The train and validation
sets were used to count the number of words.

text detectors, increasing the complexity of the pipeline.
Another branch of work [54] takes a hierarchical view and
apply graph-based models on the finest granularity, i.e. in-
dividual words, to analyze the layout. All of these prior arts
have mainly focused on document datasets. Unlike these
works, we introduce layout analysis into scene text domain
and propose an end-to-end unified model.

3. Hierarchical Text Dataset (HierText)
3.1. Data collection

Images in HierText are collected from the Open Images
v6 dataset [24]. We scan Open Images using a public com-
mercial OCR engine, Google Cloud Platform Text Detec-
tion API (GCP)1, to search for images with text. We filter
out images: a) with few detected words, b) low recognition
confidence and c) with non-English dominant text. Finally,
we randomly sample a subset from the remaining images to
construct our dataset. 11639 images are obtained and fur-
ther splitted into train, validation, and test set. HierText
images are of higher resolution with their long side con-
strained to 1600 pixels compared to previous datasets based
on Open Images [22,48] that are constrained to 1024 pixels,
resulting in more legible text.

We annotate these images in a hierarchical way [16].
We first annotate word locations with polygons. Legible
words are also transcribed regardless of their language. The
top-left corner and the orientation of the polygon define
the word’s reading direction. Then words are grouped to
text lines. Paragraphs are firstly annotated using polygon
and then text lines and words are associated with the corre-
sponding polygon based on their binary mask intersection.
As a result, we obtain a tree structure annotation hierarchy.
Note that, the clustering of words into lines and lines into
paragraphs are relatively low-cost, since precise pixel level
annotation is not required.
Coverage check: We check the cross-dataset coverage be-
tween HierText and the other two text datasets from Open

1https://cloud.google.com/vision/docs/ocr
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(b) Distribution of numbers of words in
each line and paragraph in HierText.
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Figure 2. Statistics of HierText dataset. Compared to other
datasets, our dataset has higher word density per image and more
uniformly distributed text.

Images, i.e. TextOCR [48] and Intel OCR [22]. Only 1.5%
of our images are in TextOCR, and 3.6% in Intel OCR. We
also ensure that our training images are not in the validation
or test set images of TextOCR and Intel OCR, or vice versa.

3.2. Dataset characteristics

Table 1 compares statistics between HierText and other
datasets. HierText has 103.8 words per image on average;
approximately 3 times the text density of the second densest
dataset, i.e. TextOCR [48]. Even though HierText has fewer
images than TextOCR, it contains more legible words. Fi-
nally, HierText is the only dataset that provides hierarchical
annotations. Fig. 2a shows that HierText represents a differ-
ent domain of images from existing public datasets. It has
a large proportion of high text density images. While Intel
OCR [22] has the largest number of images and some cover-
age of images with more than 100 words, HierText contains
more of them in terms of absolute number: 5.3K v.s. 3.4K.
Fig.2c illustrates that the spatial distribution of text is also
more uniform in HierText. In other datasets, text tend to
be located in the center of the images. The distribution of
the number of words in each line and paragraph is shown
in Fig. 2b. A significant proportion of lines and paragraphs
have more than one word making the layout analysis a chal-
lenging problem.

Overall, we demonstrate that the proposed HierText
dataset has unique characteristics and captures an uncov-
ered domain from other datasets. Additionally, it enables
research into unified text detection and layout analysis.

3.3. Task and evaluation protocol

Tasks: There are two task categories for HierText dataset.
The first category involves the instance segmentation of text
at word or line levels. Conceptually, word level and line
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level outputs are interchangeable since modern text recog-
nition systems [9,35,45] are highly effective with both type
of input image patches. For the second task of layout anal-
ysis, we also frame it as an instance segmentation task by
treating each text cluster, i.e. “paragraph”, as one object in-
stance, following previous works [62]. The ground-truths
for text lines and paragraphs are defined as the union of
pixel-level masks of the underlying word level polygons.

A candidate method for the unified detection and layout
analysis task should produce text entity detection results at
either word or line level, and also the grouping of these en-
tities into paragraphs.
Evaluation: To evaluate these tasks as instance segmenta-
tion, we use the recently proposed Panoptic Quality (PQ)
metric [21] as the main evaluation metric:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |+ 1
2 |FP |+ 1

2 |FN |
(1)

where TP, FP, FN represent true positives, false posi-
tives, and false negatives respectively. Mathematically, PQ
equals to the product of ICDAR15 [19] style F1 score [15]
and average IoU of all TP pairs. The motivation for a seg-
mentation metric is that text entities are sensitive to missing
or superfluous pixels which result in missing or unexpected
characters in recognition. Although there have been recent
works [25, 30, 46] investigating the scoring of text detec-
tion, they do not generalize to complex geometric entities
like text lines and paragraphs. PQ metric treats word, line
and paragraph segmentation tasks in a uniform way. There-
fore, we adopt PQ metric for the evaluation of all tasks for
its simplicity and ubiquity.

4. Methodology

4.1. Unified detector

We propose an end-to-end model to perform unified
scene text detection and layout analysis. We term it Uni-
fied Detector. It is designed to produce (1) a set of text
detection masks and (2) the clustering of these detections
simultaneously without complex post-processing.
End-to-end text detection: Inspired by recent advances
in end-to-end object detection and panoptic segmentation
[6, 53], we represent the detection of text as producing
a fixed number of N softly exclusive masks {m̂i}Ni=1

and N binary classifications {ŷi}Ni=1. The masks satisfy∑N
i=1 m̂i = 1

H×W . The binary classification ŷi denotes
the probability of the i−th mask being a text object. This
representation is suitable for text of arbitrarily shape and
can accurately capture both word and line level detections.
Unified layout analysis: Unified detector analyzes the lay-
out and performs text clustering by producing an affinity
matrix: Â ∈ [0, 1]N×N . Entry Âi,j in this matrix represents

the probability of text represented by m̂i and m̂j belonging
to the same semantic/paragraph group.
Inference: The inference of unified detector is straightfor-
ward. We first obtain text detection results by applying
argmax on the masks to assign each pixel to one text ob-
ject. Then, we remove low-confidence pixels. As a result,
for the i−th object, the final mask is represented as:

m′i,x,y = 1(i = argmaxj [m̂j,x,y] and m̂i,x,y > tm) (2)

where tm is the threshold for pixel’s confidence. We further
filter text instances by applying a threshold tc on the binary
classification score ŷi. For layout analysis inference, we
cluster a pair of text instances if their affinity score Âi,j is
above a threshold, denoted as tA. A union-find algorithm is
utilized to merge these connected nodes into clusters.

4.2. Model architecture

The architecture of the proposed unified detector is il-
lustrated in Fig. 3. Our unified detector is based on the
recent Max-DeepLab [53] end-to-end panoptic segmenta-
tion framework. In this framework, we augment the in-
put pixels with a set of N learned object queries that are
D−dimensional. Then we feed the pixels and object queries
into a transformer-based encoder, the MaX-DeepLab back-
bone, in which the bidirectional communication between
pixels and object queries allows the model to encode text
instances in each of the object queries. With the encoded
queries and pixel features, the text detection branch pro-
duces the text mask output, {m̂i}Ni=1. The layout branch
produces the affinity matrix Â ∈ [0, 1]N×N for the rela-
tions between each pair of text instances. A third branch
produces the binary classification scores {ŷi}Ni=1.
Backbone: The MaX-DeepLab [53] backbone is composed
of an alternating stack of hourglass [39] style CNNs and the
proposed dual-path transformer. The Hourglass style [39]
CNNs are applied to pixel features. They encode features
from coarse to fine resolutions iteratively and thus can pro-
duce high resolution features. The dual-path transformer
[53] allows bidirectional communication between pixel fea-
tures and the learnable object queries. It enables attention
within pixel space and interaction among object queries.
This makes it possible to encode long-range information
in pixel features, and allows object queries to locate and
retrieve text objects exclusively from pixels. The MaX-
DeepLab produces output at 1

4 resolution of the input, i.e.
(H ′,W ′) = (H4 ,

W
4 ). We urge readers to refer to the origi-

nal paper [53] for full details.
Text detection branch: The text detection branch takes
the outputs of the MaX-DeepLab backbone and produces
the text mask outputs. Two fully-connected layers pro-
duce mask queries from the encoded queries, denoted as
f ∈ RN×D. Similarly, two convolutional layers produce
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MaX-DeepLab Backbone

Pixel inputs
HxWx3

Object queries
NxD

Pixel features
H’xW’xD

Encoded queries
NxD

⌦

Text masks
NxH’xW’

Cluster feature
NxC

⌦

Affinity matrix
NxN

2FC Cls Score

Layout results

2FC

Layout branch

Text detection branch

Text 
clustering 

head

2Conv

Textness branch

Figure 3. Illustration of our approach. Our method produces mask
outputs for the text detection task and an affinity matrix for layout
analysis task in a unified way. The text detection branch produces
an N × H ′ × W ′ tensor that represents the N softly exclusive
masks. The layout analysis branch produces an N × N affin-
ity matrix that models the pairwise relationship of the predicted
masks. The green links in the top right suggest clustering of the
text instances, while the red links indicate the opposite. The bi-
nary classification score produced by textness branch is used to
filter out non-text objects from object queries.

normalized pixel features, denoted as g ∈ RD×H′×W ′
. The

text mask prediction is the inner product of f and g:

m̂ = softmaxN (f · g) ∈ RN×H
′×W ′

(3)

Layout branch: Layout branch takes the encoded queries
from the backbone as the sole input. In order to separate
layout features from text detection features, we apply an
extra projection head for cluster embedding projection. For
this projection head, we adopt a 3-layered multi-head self-
attention layer [51] to obtain the normalized layout features,
denoted as h ∈ RN×C . We apply inner product of the lay-
out features followed by a sigmoid function with tempera-
ture τ to get the affinity matrix:

Â[i, j] =
1

1 + e−(
hi,:h

T
j,:

τ )

(4)

Textness branch: The textness branch applies another 2-
layered fully connected layers and a sigmoid function to
produce the binary classification scores {ŷi}Ni=1.

4.3. Training targets

Unified detector enables end-to-end training for both the
scene text detection task and the layout analysis task. The
key ingredient is to perform a bipartite matching between
prediction and groundtruth since our model produces an un-
ordered set of outputs. We first describe the matching be-
tween prediction and groundtruth of the detection task and
the metric we use. Then we show the joint optimization of
our unified detector for both tasks.
Text matching: We adopt the PQ-style similarity score
proposed in MaX-DeepLab [53]. For a pair of prediction
(m̂i, ŷi) and groundtruth (mj , yj), the score is defined as:

sim(i, j) = [ŷiyj + (1− ŷi)(1− yj)]×Dice(m̂i,mj) (5)

where Dice(m̂i,mj) denotes the Dice coefficient [36] be-
tween the pair of masks. It measures mask similarity. This
score considers both the classification score and mask score.

The goal of matching is to find a permutation of N el-
ements σ ∈ GN to maximize the total similarity between
predictions and groundtruths:

σ̂ = argmaxσ

N∑
i=1

sim(i, σ(i)) (6)

Following previous works [6, 53], we solve this optimal as-
signment problem with the Hungarian algorithm [23] on the
fly during training.
Text detection loss: The training target for text detection is
adopted from MaX-DeepLab [53]:

Ldet =
1

N

N∑
i=1

{(1− α)(1− yσ(i))[−log(1− ŷi)]

+αyσ(i)[− ¨̂yiDice(m̂i,mσ(i))− ¨Dice(m̂i,mσ(i))log(ŷi)]}
(7)

where dotted variables ¨̂yi and ¨Dice(m̂i,mσ(i)) denote con-
stant weights and gradients do not pass through them. α is
a balancing factor between positive and negative samples.
Layout analysis loss: We first define the ground-truths for
output of layout analysis branch. Each text instance comes
with a text cluster ID, denoted as {ci}Ni=1. This is part
of the annotations of the proposed HierText dataset. The
groundtruth affinity matrix can be intuitively defined as:

A[i, j] = 1(ci == cj) (8)

Then, the layout analysis loss can be computed as:
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Llay =

N∑
i=1

N∑
j=1

yσ(i)yσ(j){αLwpAσ(i),σ(j)[−log(Âi,j)]

+ (1− αL)wn(1−Aσ(i),σ(j))[−log(1− Âi,j)]} (9)

where wp = [
∑N
i=1

∑N
j=1 yσ(i)yσ(j)Aσ(i),σ(j)]

−1, wn =

[
∑N
i=1

∑N
j=1 yσ(i)yσ(j)(1−Aσ(i),σ(j))]−1, and αL is a bal-

ancing factor.
The final training target is the weighted sum of the text

detection loss Ldet, the layout analysis loss Llay. We also
find it useful to incorporate the semantic segmentation loss
Lseg and instance discrimination loss Lins as defined in
MaX-DeepLab [53]. As a result, the model is jointly op-
timized for the following loss function:

L = λ1Ldet + λ2Llay + λ3Lseg + λ4Lins (10)

where λ1,...,4 are weighting factors.

5. Experiments
In this section, we set up experiments to evaluate our

proposed unified detector in a comprehensive way. First, we
compare our method with competitive baselines. We show
that the unified detector achieves better performance. We
also perform thorough ablation studies to analyze the design
selections of the proposed approach. Finally, we train and
evaluate the unified detector on public datasets for the sole
task of scene text detection, verifying the effectiveness of
the text detection branch.

5.1. Baselines

The task of unified detection and layout analysis largely
remains untouched in the academic literature, despite the
incredible progress of scene text detection methods and in-
creasing number of layout analysis algorithms. We there-
fore carefully select the following baselines representing
non-end-to-end methods:
Commercial solution: The GCP API, as mentioned above,
is a commercial solution that produces text detection and
recognition results at word, line and paragraph level.
GCN Post-Processing: The GCN [20] based post-
processing method (GCN-PP) [54] applies the GCN on text
line bounding boxes to cluster lines into paragraphs.
Object detection baselines: PubLayNet [62] formulates
the layout analysis as an instance segmentation task pre-
dicting text clusters as pixel masks. Following this work,
we build a baseline using Mask R-CNN [17] as in [62] that
produces text cluster masks. Each such mask represents one
text cluster. The layout analysis is performed by assigning
each detected text entity (word or line) to the text cluster

Figure 4. Outputs of the unified detector trained on HierText. Im-
ages are sampled from the val and test set of HierText, Total-Text,
CTW1500, IC15, ICDAR17 MLT, and MSRA-TD500. In each
pair of images bounded by dotted boxes, the image on the top
or left visualizes text detection results. The image on the bot-
tom or right visualizes results of layout analysis. These results
demonstrate that our unified detector is able to detect arbitrarily
shaped text and produce text clusters regardless of the variability
in shapes, fonts, colors and backgrounds.

Text line
Detection

Layout
AnalysisMethod Text detection

branch
Layout analysis

branch PQ PQ
GCP API unknown unknown 56.17 46.33
GCN-PP GCN 50.10

Mask-RCNN-Cluster Mask R-CNN [17] 51.67
MaX-DeepLab-Cluster MaX-DeepLab [53] 52.52

Unified Detector

Text detection
branch of

unified detector Layout branch of
unified detector

62.23

53.60

Table 2. Results of text detection and layout analysis on HierText
test set. The last row represents our end-to-end unified scene text
detection and layout analysis model.

with the maximum area of intersection. Since this model
does not produce word or line level detections, it is used in
combination with a text entity detection model as specified
in Sec. 5.2. This two-stage baseline is dubbed Mask-RCNN-
Cluster. Similarly, we build MaX-DeepLab-Cluster using
MaX-DeepLab [53], which represents a more competitive
method with state-of-the-art advance in instance object seg-
mentation task.

5.2. Experimental settings

Unified Detector: We use the DeepLab2 [56] library for the
implementation of the MaX-DeepLab part of our method.
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We use the MaX-DeepLab-S backbone, with an input size
of 1024 × 1024. The number of object query is set to 384,
due to the high density of text in our dataset. Query di-
mensions are D = 256 and C = 128 respectively. In our
main experiments, we only use HierText as training data.
The models are trained on 128 TPUv3 cores with a batch
size of 256 for 100K steps, AdamW [34] optimizer with
weight decay rate of 0.05, and cosine learning rate start-
ing from 10−3. The weights for PQ-loss, layout analysis
loss, instance discrimination loss, and semantic segmenta-
tion loss are 3.0, 1.0, 1.0, 1.0 respectively. The balancing
factors are set as α = 0.5 and αL = 0.5. During inference,
we filter out text masks that have less than 32 pixels or less
than tc = 0.5 in confidence. We also use tm = 0.4 to fil-
ter out low confidence pixels. For text clustering, we use a
threshold of tA = 0.5 on the affinity matrix. In our main
experiments, the text detection branch of unified detector is
trained to detect text lines as opposed to words. Note that
most of these hyper-parameters follow the original settings
of MaX-DeepLab.
Baselines: For Mask-R-CNN-Cluster, we use the imple-
mentation from the public TF-Vision repository2. Input size
is set to 1024 × 1024. For MaX-DeepLab-Cluster, we fol-
low the same hyper-parameter and training settings of our
unified detector for fair comparison. For GCN-PP, we fol-
low the settings in [54] to train the line clustering model.
As mentioned above, these methods can only perform lay-
out analysis based on detected text entities. Therefore, we
pair these three baselines with the text detection branch of
our unified detector for fair comparison.

5.3. Main Results

We evaluate our method and compare with baselines as
detailed above. Results are summarized in Tab. 2. Com-
pared with other standalone text clustering methods in-
cluding GCN-based and detection-based ones, our end-to-
end unified approach achieves better layout analysis per-
formance by a considerable margin of 1.08% in PQ score.
Note that, these baseline methods are applied on the outputs
of the text detection branch of unified detector. Therefore,
the only difference is in the layout analysis method. This
shows that the built-in end-to-end text clustering module of
unified detector is more effective and better than standalone
baseline modules. Note that the baselines are two stage ap-
proaches that require almost double the computational re-
sources. For text detection, our system achieves higher per-
formance than the GCP API (62.23 v.s. 56.17).

We also demonstrate results on images from various do-
mains, as shown in Fig. 4. The proposed method is able to
work on various layouts, including text clusters with curved
text and with non-uniform fonts and colors.

2https : / / github . com / tensorflow / models / tree /
master/official/vision/beta

#Obj query Method
Layout analysis

(PQ)

128 Unified-Detector-Word 34.38
Unified-Detector-Line 51.48

256 Unified-Detector-Word 36.71
Unified-Detector-Line 52.50

384 Unified-Detector-Word 39.11
Unified-Detector-Line 53.60

Table 3. Comparison between word-based and line-based unified
detector. Results demonstrate that line-based unified detector out-
performs word-based unified detector consistently with different
numbers of object queries.

Text Line DetectionBalancing
method P R F T PQ

Layout analysis
(PQ)

Vanilla 75.34 75.02 75.18 77.27 58.10 50.04
α-balanced loss

(α = 0.25) 76.32 75.20 75.76 77.57 58.76 51.48

focal loss 75.16 74.58 74.87 77.38 57.94 45.22

Table 4. The effect of balancing factor in text clustering loss on
text and layout metrics.

5.4. Ablation studies

In this section, we do ablation studies to further explore
the design details. Except the detection granularity experi-
ments (i.e. word v.s. line), we use N = 128 object queries.
Word-based v.s. line-based: Our unified detector frame-
work is able to perform end-to-end text entity detection on
either word or line level, and then cluster these entities into
the paragraph level as layout analysis results. Though word
and line detections are largely interchangeable in terms of
the subsequent recognition algorithms, we observe signifi-
cant difference in layout analysis as shown in Tab. 3. While
both word and line level models benefit from more ob-
ject queries, line level models consistently outperform their
word level peers. One potential cause may be that detect-
ing at line level reduces the number of objects compared to
word-level detections, making the optimization for the clus-
tering head easier.
Text clustering loss: We compare the use of different ways
to balance the clustering loss. Results are listed in Tab. 4.
α-balancing is the default method described in Sec. 4.3.
Vanilla means no balancing at all; it normalizes the loss
term directly byw = [

∑N
i=1

∑N
j=1 yσ(i)yσ(j)]

−1. Applying
α-balancing factor achieves considerable improvements in
both text detection and layout analysis. Balancing the loss
with focal style factors [29] results in worse performance in
both tasks.
Text clustering head: We compare our default setting, a 3-
layered multi-head self-attention (MHSA) [51] head, with
other viable choices, as shown in Tab. 6. We also list
the performance of a MaX-DeepLab line detector without
layout analysis branch. If we do not use any extra layer,
the text detection performance is deteriorated compared to

1055



Method Venue
Training Data Word Detection Line Detection

Pub HierText ICDAR 17 MLT Total-Text CTW1500 MSRA-TD500

P R F P R F P R F P R F

CRAFT [3] CVPR19 X 80.6 68.2 73.9 87.6 79.9 83.6 86.0 81.1 83.5 88.2 78.2 82.9
PSENet [55] CVPR19 X 75.3 69.2 72.2 84.0 78.0 80.9 84.8 79.7 82.2

FCE [64] CVPR21 X - - - 89.3 82.5 85.8 87.6 83.4 85.5 - - -
MOST [18] CVPR21 X 82.0 72.0 76.7 - - - - - - 90.4 82.7 86.4

ABPNet [61] ICCV21 X - - - 90.67 85.19 87.85 87.66 80.57 83.97 86.62 84.54 85.57
CentripetalText [44] NeurIPS21 X - - - 90.6 82.5 86.3 88.3 79.9 83.9 90.0 82.5 86.1

PCR [14] CVPR21 X 88.5 82.0 85.2 87.2 82.3 84.7 90.8 83.5 87.0

Ours (word) - X 77.71 75.88 76.78 85.49 90.53 87.94 - - - - - -
X X 78.05 76.44 77.24 84.96 91.06 87.90 - - - - - -

Ours (line) - X - - - - - - 83.92 85.87 84.88 86.59 86.81 86.69
X X - - - - - - 84.56 87.44 85.97 88.04 87.44 87.70

Table 5. Results of word and text line detection on public scene text datasets. Both our word and line detectors are outperforming the
latest methods, even though our models are not fine-tuned for any target datasets. The proposed new dataset also proves to be a helpful
complement to existing scene text datasets.

Text Line DetectionText clustering head P R F T PQ
Layout
(PQ)

Line detector only 76.21 75.11 75.66 77.38 58.55 -
no-extra layer 75.50 74.16 74.82 77.14 57.72 48.07

1 FC-ReLU-BN 75.71 74.85 75.28 77.41 58.28 47.79
MHSA x1 76.11 75.65 75.88 77.43 58.76 51.00
MHSA x3 76.32 75.20 75.76 77.57 58.76 51.48

Table 6. The impact of different text clustering head architecture
on text and layout metrics.

line detector only, indicating that it is necessary to separate
the features. However, using fully connected layer cannot
fully recover the ability to detect text and worsens layout
analysis. Using 1 layer of MHSA is better than only us-
ing fully-connected layer in both the detection and layout
tasks. This is intuitive since Transformer’s [51] architecture
block provides stronger modelling of interactions between
text entities. Finally, additional transformer layers improve
the performance.

5.5. Scene text detection on public datasets

In this section, we evaluate our models on the most
widely used benchmarks for scene text detection. We adopt
the same training and optimization settings in Sec. 5.2 ex-
cept that the layout analysis branch is excluded since other
public datasets do not have layout labels. We use N = 384
object queries. We do not initialize our models from any
checkpoint. Nor do we pretrain on any synthetic datasets.
We directly train on the union of public datasets without
fine-tuning on any of them3. We directly evaluate the mod-
els with the checkpoint of last training iteration. We evalu-
ate on the following 4 benchmarks: MLT 17 [38], Total-Text

3For word detection, we use TextOCR [48], MLT17 [38], Total-Text
[10], HierText. For line detection, we use LSVT [49], CTW1500 [60],
MSRA-TD500 [59], HierText.

[10], CTW1500 [60], and MSRA-TD500 [59]. Results and
comparison with previous papers are summarized in Tab.
5. Overall, our detectors are characterized by higher re-
call and lower precision compared to state-of-the-art meth-
ods. Notably, even though curve text takes up a very small
proportion in the training datasets, our model still excels at
both curved text datasets, CTW1500 and Total-Text, show-
ing case the adaptability of the proposed method.

For word detection, we achieve state-of-the-art result
(77.24) on MLT 17. The performance is still very com-
petitive (76.78) when trained on other public datasets only.
On Total-text, we achieve state-of-the-art regardless of the
use of HierText (87.94 and 87.90).

For line detection, we achieve very competitive results
on CTW1500 and MSRA-TD500 without training on Hi-
erText. We observe considerable improvements when we
add HierText in our training data (84.88 → 85.97 and
86.69→ 87.70). This demonstrates that HierText is a help-
ful complement to the collection of public line datasets.

6. Conclusion

In this paper, we motivate the task of unified scene text
detection and layout analysis. To facilitate research into this
direction, we collect a dataset with hierarchical text anno-
tations. We further propose an end-to-end model for uni-
fied detection and layout analysis that outperforms previ-
ous methods while at the same time greatly simplifying the
pipeline. With the new task, dataset, and model, we push
the envelop of text extraction and understanding in images
and enable better support for downstream tasks.
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