This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Lite-MDETR: A Lightweight Multi-Modal Detector

Qian Lou, Yen-Chang Hsu, Burak Uzkent, Ting Hua, Yilin Shen, Hongxia Jin
Samsung Research America
{qian.lou, yenchang.hsu, b.uzkent, ting.hua, yilin.shen, hongxia.jin} @ samsung.com

Abstract

Recent multi-modal detectors based on transformers and
modality encoders have successfully achieved impressive
results on end-to-end visual object detection conditioned
on a raw text query. However, they require a large model
size and an enormous amount of computations to achieve
high performance, which makes it difficult to deploy mobile
applications that are limited by tight hardware resources.
In this paper, we present a Lightweight modulated detector,
Lite-MDETR, to facilitate efficient end-to-end multi-modal
understanding on mobile devices. The key primitive is that
Dictionary-Lookup-Transformormations (DLT) is proposed
to replace Linear Transformation (LT) in multi-modal de-
tectors where each weight in Linear Transformation (LT)
is approximately factorized into a smaller dictionary, in-
dex, and coefficient. This way, the enormous linear pro-
Jection with weights is converted into efficient linear pro-
Jjection with dictionaries, a few lookups and scalings with
indices and coefficients. DLT can be applied to any pre-
trained multi-modal detectors, removing the need to per-
form expensive training from scratch. To tackle the chal-
lenging training of DLT due to non-differentiable index, we
convert the index and coefficient into a sparse matrix, train
this sparse matrix during the fine-tuning phase, and recover
it back to index and coefficient during the inference phase.
Our experiments on phrase grounding, referring expression
comprehension and segmentation, and VQA show that our
Lite-MDETR achieves similar accuracy as the prior multi-
modal detectors with up to ~ 4.1x model size reduction.

1. Introduction

Recently, multi-modal models on vision and language
data have shown increased performance on vision and lan-
guage tasks thanks to the adoption of transformers and
large-scale pre-training [3,7,12,21,32]. These multi-modal
transformers substantially benefit from large model com-
plexity and computationally costly pre-training on large-
scale datasets. Unfortunately, their large model complex-
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Figure 1. Our lightweight multi-modal Lite-MDETR using pro-
posed DLT layers. We replace the linear transformation layers in
text encoder and multi-modal transformer with more efficient DLT
layers to reduce the model size.

ity prohibits us from deploying them on resource-limited
platforms, i.e., mobile devices [19,31]. For this reason, im-
proving the efficiency of recent multi-modal models is crit-
ical for real-world applications. However, there exists no
method that can leverage already pre-trained multi-modal
transformers while reducing their size as the existing meth-
ods [25, 26, 29] require pre-training the compressed model
on large-scale datasets.

Diving deeper into multi-modal models, we observe that
linear transformer layer (LT) in individual transformers
dominate large share of the overall model size. For exam-
ple, a recently published state-of-the-art vision and languge
model, called MDETR [12], uses a vision and language
transformer based detector together with a language trans-
former and a CNN as backbones to process text and image
inputs. We find out that the LT layers in the text encoder, a
RoBERTa transformer [20], and vision and language trans-
former in MDETR occupy ~ 90% of the model size. As
a result, it is reasonable to replace the traditional LT lay-
ers with more efficient layers to reduce the model size of
MDETR to achieve high accuracy while being able to de-
ploy it on resource-limited real-world platforms.

Inspired by this finding, we propose Lightweight Dictio-
nary Lookup Transform (DLT) layer that can replace the
costly LT layers in transformers in MDETR model. We
show integration of our DLT layers in MDETR in Figure 1.
As shown in the figure, we use the DLT layers in the text
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Figure 2. (a) The state-of-the-art multi-modal detector architecture used in MDETR [12]. (b) The model size breakdown of MDETR using
ENB-3 as backbone and the effects of our lightweight architecture. Ours-Q means we further use 16-bit quantization technique on our

lightweight architecture.

encoder and multi-modal transformer in MDETR. Our DLT
layer compresses the representation of LT as a dictionary,
scales and sums the sparse lookups on dictionary to re-
cover the compressed representation. To further reduce the
model size, we use the orthogonal quantization method al-
ready implemented in PyTorch [14, 23]. Our experiments
show that our Lite-MDETR using DLT achieves similar
accuracy with MDETR using LT on several tasks such as
phrase grounding, referring expression comprehension and
segmentation, and visual question answering. More spef-
ically, DLT alone can reduce the model size of MDETR
by 2.03x with slight loss in accuracy whereas the orthogo-
nal quantization further reduces the model size by 1.94 x as
shown in Figure 2(b). We want to highlight that we achieve
these results without pre-training Lite-MDETR on a large-
scale dataset. In conclusion, these results increase the pos-
sibility of the application of MDETR on resource-limited
platforms, i.e, mobile devices.

2. Background and Motivation
2.1. Multi-Modal Detectors

Transformers have recently replaced the CNNs for end-
to-end single-stage object detection on images [2, 5, 6,27,
34]. DETR [2], the first study in this direction, uses trans-
former to predict fixed number of bounding boxes without
using any box proposals. Following this progress, trans-
formers have also been applied to end-to-end object detec-
tion on the images conditioned on the language data [7, 12,
18]. For example, MDETR [12], uses the DETR transform-
ers to detect objects given the multi-modal representations
of CNN and text encoder, as shown in Figure 2.

In the pre-training stage, it performs end-to-end train-
ing for detecting objects mentioned in the image captions.
In the fine-tuning stage, MDETR can be specifically tuned
for different vision and language tasks that require detec-
tion, i.e., referring expression, or not, i.e., VQA. Follow up

studies [7, 18] use similar architecture to MDETR as they
contain image and text encoder together with multi-modal
transformer.

2.2. Limitations of Existing Lightweight Methods
for Multi-modal Detectors

One straightforward strategy to achieve lightweight
MDETR is replacing the big transformer blocks in MDETR
with compact blocks, like TinyBERT [!1], DistilBERT
[25], then pre-training this new model on a large corpus.
Here we highlight that this generic pre-training [25,26,29]
on a large corpus is necessary for a compact model to per-
form good performance on the downstream tasks. How-
ever, the generic pre-training often costs prohibited com-
putational resources, and as a result, it may not be afford-
able for everyone. For instance, if we replace the text en-
coder or multi-modal transformer in MDETR with a com-
pact model, e.g., a TinyBERT [ 1], it may take almost 5376
NVIDIA V100 GPU hours to get the pre-trained lightweight
MDETR [12]. Another line of strategy that can achieve a
lightweight MDETR without using a generic pre-training
is approximating the pre-trained MDETR parameters, i.e.,
weights factorization [9,22], to inherit the knowledge of the
big trained MDETR model. However, simply using weights
factorization often results in a significant loss in task per-
formance [22]. In this study, different from existing works,
we provide a lightweight MDETR in which a generic pre-
training is not necessary to match the accuracy of MDETR.

2.3. Motivation

In its original form, the MDETR model consumes al-
most 450MB model size that prohibits the model deploy-
ment to resource-constrained hardware. Thus, there is an
urgent need to design a lightweight model. To propose a
lightweight model, we investigate the three components in
MDETR: vision encoder, text encoder and a multi-modal
transformer that are shown in Figure 2(a). The vision en-
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compress the representation as a dictionary and then expand the representation by looking up, scaling, and summing the dictionary.
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Figure 4. (a) Transformer block used in MDETR. (b) Lightweight transformer block used in our Lite-MDETR. For simplicity, we avoid
using residual and normalization operations in (a) and (b) since they are used in both Linear Transform and our Dictionary Lookup

Transform layer.

coder employs a small CNN as a backbone, i.e., ENB-3
[28]; Text encoder uses a large transformer encoder, e.g.,
ROBERTa [20], that occupies ~ 83% of total MDETR
model size; the multi-modal transformer is a transformer
with hidden size 256. Further investigating the text encoder
and the multi-modal transformer, we find out that the Lin-
ear transform (LT) layer is the main storage bottleneck as it
occupies more than 90% of MDETR model size. For this
reason, in this study our motivation is to replace the heavy
LT layer with a more efficient layer while maintaining the
accuracy of the MDETR and benefiting from the already
pre-trained MDETR.

3. Lite-MDETR
3.1. Definition and Overview

For the state-of-the-art multi-modal MDETR, each text
encoder block and transformer block shown in Figure 4(a)
is heavily dependent on linear transform (LT') layer. Specif-
ically, given each input or hidden state X, correspond-

ing query @, Key K, and Value V are generated by
LT(X,Wq), LT(X,Wk), and LT (X, Wy), respectively.
The Attention module shown in Equation 1 takes @, K,V
as inputs, and generates outputs O that is projected by W
using LT(O,Wy) to combine multi-head information in
transformer. The projected value F} is then fed into feed-
forward network (FFN) layers as shown in Equation 2 to
generate F5 and next hidden state Y.

Attention(Q, K, V) ft (QKTV) (1)
ention(Q, K, V) = softmax ,

Vd
FFN(F1) = max(0, F1Wp1 + bp1)Wra + bpa.  (2)

As Figure 4(b) shows, our proposed Lite-MDETR re-
places each LT in MDETR with lightweight DLT. In-
stead of using large weights in LT', we propose DLT that
depends on smaller dictionary D, index I, and coefficient
C'. During training, index I and coefficient C' is converted
to sparse matrix B; during inference and deployment, B
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is stored as dense and tiny I and C. Unlike previous
lightweight transformers methods that create compact ar-
chitecture from scratch and knowledge distillation with pre-
training [25,26,29], our new architecture D LT can inherit
the knowledge of existing pre-trained MDETR model. As a
result, we remove the need to pre-train the Lite-MDETR on
image-text dataset that contains >1M images. This saves us
reasonable amount of computations and GPU hours as pre-
training MDETR on 8 V100 GPUs takes several weeks [12].
Specifically, given the pre-trained MDETR, we initialize the
dictionary, index and coefficient in DLT by factorizing cor-
responding weights in LT. Compared to low-rank factor-
ization method, DLT has benefits on the sparsity of B, i.e.
tiny dictionary weight D, index I, and coefficients C' and
cheap lookups. We introduce the switching method between
sparse B and dictionary weight D, index I, and coefficients
C in section 3.3.

Figure 3 compares the LT and DLT from a network
connection view. As seen in the figure, LT has much more
connections than DLT'. Specifically, given input X with
size of n x d, and the weight W with size of d x dy, LT has
almost d x dyy connections, where n is the token numbers, d
is the hidden size in a transformer block. In contrast, DLT
has fewer connections. Dictionary weight D has size of
d x r, both coefficient and index size is t X dy . Given
the same index with size of n x d, DLT has (d x r +t X
dw ) connections. One could dynamically tune dictionary
size r and coefficient size ¢ to control the trade-off between
performance and model size. As a complement, Figure 5
introduces the difference of L7 and DLT from a matrix
view, and further illustrates D LT is more lightweight than
LT.

Our Lite-MDETR based on DLT has two modes: (I).
Inference Mode (II). Training Mode. This is because the
lookups on dictionary is not differentiable, thus index I and
coefficient C' is only used during inference mode and prac-
tical deployment. During training mode, instead of index
I and C, differentiable B is used with sparsity constraints.
We present these two modes in the following section 3.2
and section 3.3, respectively.

3.2. Lite-MDETR Inference

Figure 5 (a) and (b) show the computation processes
of LT and DLT that are used in MDETR and our Lite-
MDETR, respectively. As Figure 5(a) shows, LT (X, W)
is a matrix multiplication between an input X with size of
n X d and a weight W with size of dy, and the output
is X’ with size of n x dy . In contrast, Figure 5(b) rep-
resents the computation process of DLT(X, D, I, C) that
takes X as input, and generates X' as output. Specifically,
DLT(X, D, I,C) has three steps: @ Generating dictionary
with small linear projection LT(X, D) = S. Asmall d x r
dictionary weight D is used to compress the input X with

size of n x d as dictionary S with size of n x 7 by using
S = LT(X,D). Each column i of DLT output X"'[:][¢]
is a linear combination of ¢ columns of dictionary S. This
linear combination is performed by looking up ¢ X dy in-
dex matrix, scaling and summing coefficient matrix C. @
Lookups S’[:][i] = Lookup(S, I[:][{]). Each column of in-
dex matrix I stores the indices that show which columns
in dictionary should be looked up for the following scaling
and summation. For instance, given ¢ = 3, the i-th col-
umn is [3, 6, 12], the 3-rd, 6-th, and 12-th columns of dic-
tionary S will be extracted as S'[:][¢]. @ A few scaling and
summation Scale&Sum/(S’, C[:][i]) = S”[:][¢]. After each
lookups with I[:][i], we get ¢-column S’[:][]. The ¢ coef-
ficients in the i-th column of coefficient matrix C[:][i] are
used to scale with t-column S’[:][¢], respectively. And the
scaled ¢ columns are summed up in an element-wise man-
ner to generate the i-th column of output of DLT, X" [:][¢].
For example, given the i-th column of coefficient matrix
C[:][]] = [0.2,0.5,0.3], DLT scales them with correspond-
ing extracted columns and sum the scaled vectors to gener-
ate the X"'[:][¢]. To generate all the X", one should perform
dw times of lookups, scaling and summation.

Lite-MDETR based on D LT not only has fewer param-
eters, but also has fewer computations than MDETR based
on LT during the practical inference and deployment. Our
extensive experimental results in section 5 show that Lite-
MDETR has smaller model size with similar accuracy with
MDETR. Theoretically, LT requires O(d X dy ) parameters
and O(n x d X dy) computation numbers (Multiplication
and Addition). In contrast, DLT has O(d X r + ¢ x dw)
parameters and O(n x d X 7+t X dy ) computation numbers
and O(t x dy) lookups. In this paper, we set r in the range
0f 0.2d ~ 0.6d, and ¢ is around 0.2d. O(t x dy) lookups on
dictionary can be negligible since lookups are small-scale (¢
is tiny) and lookups are cheap (cache access operations) on
both CPU and GPUs as shown in both existing works [ 1, 4]
and our experiments.

3.3. Lite-MDETR Training

There are two challenges to train Lite-MDETR: (I). How
to train D LT that has indifferentiable index matrix /? Di-
rectly training DLT requires to jointly train dictionary
weight D, index matrix I, and coefficient C. However,
index matrix I consists of non-continuous indices values
and as a result it is not differentiable during training. (II).
Given the pre-trained model MDETR, how to generate our
Lite-MDETR without resource-prohibitive retraining from
scratch? We show that we can avoid retraining from scratch
by reusing the learned knowledge of pre-trained model
MDETR. We propose a new Lite-MDETR training work-
flow shown in Figure 6(a) to address these two challenges.

1. Factorizing a Pre-trained Weight 1. To avoid
the generic pre-training on a large corpus, Lite-MDETR
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Figure 6. (a) The training workflow of Lite-MDETR. Given each pre-trained MDETR weight W, Lite-MDETR factorizes it into two parts:
dictionary weight D and matrix B’. Then a sparsity B is generated by removing the small values in B’. Without pre-training on a large
corpus, Lite-MDETR supports a direct fine-tuning with B on downstream tasks as shown in (b). After the fine-tuning step, sparse B is

converted into storage-efficient I and C for an efficient inference.

enables dictionary weight and coefficients to inherit the
knowledge of pre-trained weight W by factorizing W into
dictionary weight and coefficients as shown in Equation 4.
Given a pre-trained weight W with size of d x dyy, we fac-
torize it and generate a dictionary weight D with size of
d x r and a matrix B’ with size of 7 X dy by using a SVD
factorization [9,22] where a weight W is approximated into
U with size of d x r, 33 with size of  x r, Vg with size of
r X dy as shown in Equation 3. Lite-MDETR initializes

the dictionary weight D = UY. and lets B’ = V.
W~ USVE 3)
D, B' = Factorization(W,r) =~ US, Vi 4)

2. Generating a Sparse Matrix Weight B. Before fine-
tuning on the downstream tasks, Lite-MDETR converts the
B’ generated by factorizing W to a sparse B. Equation 5
shows the conversion process where ¥, b is an entry in B’
and B, respectively, and value(t) is the (t X dyy)-th largest
value in B’. As formulated in Equation 5, any b’ values
larger than or equal to value(t) are kept to B, otherwise the
corresponding values b are zeros.

/
b:{fﬂ
0

3. Fine-tuning with B. To work around indifferentiable
index matrix I, we fine-tune the model with B on the down-
stream tasks. This is because the sparse matrix B can be
converted to index matrix I and coefficient matrix C, and

if || >= value(t).
otherwise.

®)
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Figure 7. The switching operation between I, C and B. After
fine-tuning of B, we convert it to [ and C for smaller model size
and efficient computation during the inference phase.

vice versa. Specifically, the fine-tuning of DLT has two
steps: @ Generating dictionary with small linear projection
LT(X,D) = S. This step is the same as the first step of
inference mode. @ Multiplying dictionary S with sparse
matrix B with size of r x dy using X" = LT(S, B).

4. Converting B into I and C. During the deployment
and inference phase, the sparse matrix B with (r —t) x dy
zeros wastes enormous memory and computation resources.
To solve this issue, we convert B into dense and tiny / and
C. Figure 7 shows the switching process between B and
I, C. Given [ and C with size of ¢ X dy, one can easily
generate B with size of r X dyy by assigning the values in
indices of I with corresponding C' and other values whose
indices are not in index matrix as zeros. For example, given
the 4-th column of index matrix I[:][{] = [3,6,12], and the
i-th column of coefficient matrix C[:][¢{] = [0.2,0.5,0.3],
the 3-rd, 6-th, and 12-th value of the corresponding B[:][i]
is assigned 0.2, 0.5, 0.3, respectively. The other values of
B[:][7] is assigned to zero. Inversely, given the sparse matrix
B, one also could easily extract [ and C.

4. Experimental Methodology
4.1. Datasets and Metrics

We perform experiments on referring expression com-
prehension and segmentation, phrase grounding, and visual
question answering. We note that in all our experiments, we
use the same training/validation/test splits and same evalu-
ation metrics with MDETR [12].

Referring Expression Comprehension. We test Lite-
MDETR on a number of referring expression benchmarks
including RefCOCO, RefCOCOg, and RefCOCO+ [13,33].
The task in these datasets is to detect an object in an im-
age referred by a language query. RefCOCO, RefCOCOg,
and RefCOCO+ expressions have an average length of 3.61,
8.43, and 3.53 words. For evaluation metric, we com-
pute the Jaccard overlap between predicted and ground truth
bounding box. If it is above 0.5, the prediction is regarded

as correct.

Phrase Grounding. Additionally, we test Lite-MDETR
on phrase grounding benchmark, Flickr30K [24]. The task
in Flickr30k is slightly different to referring expression. In
this case, the goal is to detect all the objects in an image that
is mentioned in a language query. We use the same metric
with referring expression comprehension for evaluation.

Referring Expression Segmentation. Referring ex-
pression segmentation task takes the referring expression
comprehension task one step further by segmenting the
referred object. For this task, we use the PhraseCut
dataset [30] that uses the images from the Visual Genome
dataset [16]. For evaluation, we use the mean-IoU metric.

Visual Question Answering. Finally, we test Lite-
MDETR on the visual question answering task using the
GQA dataset [ 10]. For evaluation, we use the classification
accuracy.

4.2. Implementation Details

Existing Multi-Modal Models. Other than
MDETR [12], we also compare our Lite-MDETR with
several multi-modal detectors, including VisualBERT [17],
UNITER-L [3], VILLA-L [8] and TransVG [7] on referring
expression comprehension (REC), referring expression seg-
mentation (RES), and Phrase grounding (PG) tasks where
both UNITER and VILLA use large model settings. For
these tasks, MDETR uses ENB3 [28] (MDETR-ENB3) as
a backbone whereas for visual question answering (VQA)
tasks it adapts ENB5S (MDETR-ENBS5) as a backbone to
extract visual features. For a fair comparison, we use the
same backbone and training settings with MDETR.

Lite-MDETR Architecture and Training. We follow
the architecture settings of MDETR other than the replace-
ment of the LT layers with DLT layers in Lite-MDETR.
For the DLT layers, we study the dictionary size from
r = [0.2dw] to r = [0.6dw ] in the text encoder and
r = [dTW} in default to keep a good trade-off between ac-
curacy and model size. We introduce the reasons why we
choose this dictionary size and perform experiments with
different dictionary size in section 5.1. Here, [2] is an op-
eration to generate an upper-bound integer of x. On the
other hand, we set the coefficent matrix size ¢ to 0.2r. Fi-
nally, we follow the parameter settings in MDETR and train
Lite-MDETR on 4 NVIDIA V100 GPUs.

Methodologies Study. We also compare our proposed
work with baseline results with smaller model sizes, e,g,
reducing the model depth by half. We trained an addi-
tional baseline with 5 text encoders and 3 encoder and de-
coder layers in the multi-modal transformer, resulting in a
model with 270MB size. We call this baseline, MDETR-
ENB3-Half in Table 1. The proposed DLT layers can be
applied to the different components of the multi-modal de-
tectors. We use Lite-MDETR-T to represent the method
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Table 1. Comparisons with state-of-the-art multi-modal models on referring expression comprehension (REC) and segmentation (RES), and
phrase grounding (PG) tasks. We report validation accuracy, mean-IoU, R@1 for REC, RES, and PG tasks. REC is tested on RefCOCO,
RefCOCO+, and RefCOCOg datasets whereas RES and PG are tested on PhraseCut and Flickr30k datasets. We report PG performance
using Flickr30K dataset with AnyBox protocol and MergeredBox protocols. Entries with - are not available.

REC PG RES
Model size | RefCOCO RefCOCO+ RefCOCOg | Flickr-AnyBox Flickr-MergedBox | PhraseCut

VisualBERT [17] 440MB - 72.3 - 71.3 - -
UNITER-L [3] 1212MB 81.4 75.9 74.9 - - -
VILLA-L [8] 1212MB 824 76.2 76.2 - - -
TransVG [7] 430MB 80.3 63.5 66.6 78.4 - -
MDETR-ENB3 [12] 450MB 87.5 81.1 83.4 82.9 823 53.7
MDETR-ENB3-Half 270MB 84.0 79.2 80.2 - - -
SVD-MDETR-TTQ  404MB 83.8 79.3 79.6 79.8 79.5 49.6
Lite-MDETR-T 261MB 85.4 80.8 81.1 80.2 80.6 50.3
Lite-MDETR-TT 215MB 85.1 80.5 80.6 79.7 79.8 49.7
Lite-MDETR-TTQ 110MB 85.1 80.1 79.8 79.3 79.1 49.3

that compresses only the text encoder in MDETR. We also
apply Lite-MDETR on both text encoder and multi-modal
transformer of MDETR and call this model Lite-MDETR-
TT. In addition, we also show that our Lite-MDETR can
be combined with the orthogonal quantization method [14]
without any modification. We name this combination as
Lite-MDETR-TTQ. The current quantization bit width is
chosen as 16 bits that shows that low-precision model com-
pression can be used. Various quantization bits can be ex-
plored but it is outside of the scope of this study. Finally,
we design a baseline method that uses SVD matrix factor-
ization [9,22] to MDETR-TTQ, and call it SVD-MDETR-
TTQ. For fair comparison, we let the dictionary size r in
our DLT as the rank of SVD factorization.

Model Size. In this study, we omit the word embed-
ding lookup table from the model size since the embed-
ding lookup table entries are highly dependent on the down-
stream tasks that often have different vocabulary size. More
details can be found in Appendix.

5. Results
5.1. Referring Expression and Phrase Grounding

In Table 1 we show the comparisons of Lite-MDETR and
state-of-the-art multi-modal transformers on REC, RES,
and PG tasks. As shown in the table, MDETR-ENB3
achieves state-of-the-art results on REC and RES tasks.
Since the text encoder in MDETR-ENB3 occupies ~ 83%
model size, Lite-MDETR-T that only compresses the text
encoder can still significantly reduce the MDETR-ENB3
model size from 450 MB to 261 MB, achieving 1.72x
model size reduction. When tested on RefCOCO, Ref-
COCOg and RefCOCO+, Lite-MDETR-T attains 3% — 4%
higher accuracy than UNITER-L and VILLA-L that have
4 — 5x larger model size. Finally, Lite-MDETR-T outper-

forms a recent visual grounding model, TransVG, that has
similar architecture to the baseline MDETR by 4 — 13%
with > 2x smaller model.

Based on Lite-MDETR-T, Lite-MDETR-TT further ap-
plies our D LT module on the multi-modal transformer. Un-
like the text encoder where we used r = [dTWL the multi-
modal transformer is not the bottleneck of model size and
we notice that the multi-modal transformer is more sensi-
tive to dictionary ratio than the text encoder [15]. As a
result, we use a larger dictionary size r, i.e., r = {dTW]
for the multi-modal transformer to keep a better trade-off
between total model size and accuracy. With a larger dic-
tionary size r, Lite-MDETR-TT further reduces ~ 46 M B
model size to 215M B with 0.3 — 0.5% accuracy loss on
REC tasks. As we show in Table 1, an orthogonal quantiza-

Table 2. Comparisons with state-of-the-art MDETR [12] on
VQA task. Our Lite-MDETR achieves drastically smaller model
size than MDETR without suffering a significant accuracy loss.
MDETR adopts ENBS as a backbone to extract visual features.

VQA
Model size | Test-dev Test-std

490MB 6295 6245
300MB 60.2 60.3
255MB 59.9 60.1
130MB 59.6 59.7

MDETR-ENB5 [12]
Lite-MDETR-T
Lite-MDETR-TT
Lite-MDETR-TTQ

tion method [14] can be jointly used with our Lite-MDETR-
TT to design an even lighter MDETR. With 16-bit quanti-
zation on all parts of Lite-MDETR-TT including the vision
encoder, a lightweight multi-modal detector Lite-MDETR-
TTQ with 110M B can be obtained. Lite-MDETR-TTQ
attains 85.1%, 80.1%, 79.8% validation accuracy on Re-
fCOCO, RefCOCO+, and RefCOCOg that is still about
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Table 3. Experiments on Lite-MDETR architecture with different dictionary ratios on REC, PG, and RES tasks. We define dictionary ratio
as the ratio of dictionary size to weight size dyw . Dictionary ratio decides the architecture of our Lite-MDETR and helps us control the
trade-off between model size and accuracy. Entries with &+ represent the averages across three runs.

REC PG RES
Dictionary ratio Model size | RefCOCO RefCOCO+ RefCOCOg | Flickr-AnyBox Flickr-MergedBox | PhraseCut
20% 80MB (832 +£0.3 783+0.2 77.6+0.3 78.1 £0.2 75.6 £0.2 46.5£0.3
33% 110MB | 85.1+0.3 80.1+0.3  79.8+0.3 79.3+0.2 79.1£0.2 49.3+0.2
45% 137MB | 85.3+0.1 80.2+0.2  79.8£0.2 80.1+0.1 80.6+0.2 50.2+0.3
60% 17IMB | 854+0.3 80.5+0.4  80.2+0.2 80.3+0.2 80.7+0.3 50.3£0.2

2.7% — 3.9% higher than the accuracy of VILLA-L and
has a 3.81%, 2.23%, 4.15% accuracy loss over MDETR
that has 4.1x larger model size. Lite-MDETR-TT with
215MB model size, achieves ~ 1.1% higher accuracy than
MDETR-ENB3-Half.

On the other hand, our baseline, SVD-MDETR-TTQ
with 7 ranks, slightly reduces the model size of MDETR.
To be more specific, SVD-MDETR-TTQ still has 404M B
model size while achieving similar accuracy to the Lite-
MDETR-TTQ with 110M B model size. By comparing
the training workflows of SVD-MDETR-TTQ and our Lite-
MDETR-TTQ, we can observe that SVD-MDETR-TTQ
lacks two important steps: 1. Generating sparse matrix B
and 2. converting sparse matrix into dense index and coef-
ficient matrices, i.e., [ and C. A sparse B matrix can be
used to reduce the parameters redundancy without hurting
the performance. Converting B into I and C' can help re-
move the zeros in the sparse matrix. Therefore, we believe
that generating sparse matrix B and converting it into dense
index and coefficient matrices are the main reasons why our
Lite-MDETR-TTQ can generate more lightweight models
than SVD-MDETR-TTQ.

5.2. Visual Question Answering

Next, in Table 2 we show the comparisons of our Lite-
MDETR and MDETR-ENBS5 [12] on VGA tasks. MDETR-
ENBS [12] with model size 490M B adopts ENBS5 [28] as a
vision encoder backbone. Based on MDETR-ENBS, Lite-
MDETR-T replaces the LT layers in the text encoder with
the light-weight DLT layers, reducing the model size to
~ 300MB. On the other hand, Lite-MDETR-TT com-
presses the model size to 255M B from 3000 B by further
replacing the LT layers with DLT layers in multi-modal
transformer of Lite-MDETR-T. We highlight that similar to
our settings in section 5.1 D LT layers in multi-modal trans-
former use a larger dictionary size than the DLT layers in
text encoder. We justify the reasons behind this choice in
section 5.1. Finally, with orthogonal quantization we re-
duce the Lite-MDETR-TT model size by ~ 2x with only
0.3% loss in accuracy. Overall, we reduce the MDETR-
ENBS5 size from 490M B to 130M B with only 3.3% loss
in accuracy.

5.3. Lite-MDETR-TTQ Architecture Study

Finally, in Table 3 we investigate the Lite-MDETR-TTQ
architecture with various dictionary ratios. Dictionary ratio
defines the ratio of dictionary size to weight size dyy. For
this experiments, we fix the dictionary size in multi-modal
transformer as r = [dTW] and only tune the dictionary ratio
in the text encoder from 20% to 60%. There are two reasons
to use a large and fixed dictionary ratio in the multi-model
transformer. First, unlike text encoder, the multi-modal
transformer is not the bottleneck of model size. Addition-
ally, we notice that the multi-modal transformer model is
more sensitive to the accuracy than the text encoder [15].
For these reasons, we fix the dictionary size in multi-modal
transformer and only tune the dictionary ratio in the text en-
coder. As shown in Table 3, a larger dictionary ratio means
a larger dictionary size which in turn produces larger model
size. As expected, this larger model achieves higher accu-
racy. In particular, when dictionary ratios are 20% and 60%,
Lite-MDETR-TTQ has 80M B and 171 M B model size and
these models achieve 83.2% and 85.4% accuracy on Ref-
COCO. To sum up, our Lite-MDETR-TTQ enables users to
pick up architectures that are deployed on mobile devices
according to the specifications of hardware resources. In
this direction, we can simply tune the dictionary to control
the trade-off between model size and performance.

6. Conclusion

We proposed Lite-MDETR, an efficient vision and lan-
guage model, based on the MDETR architecture. To get
Lite-MDETR, we designed a dictionary lookup transforma-
tion (DLT) layer to replace the heavy linear transformation
layer (LT) in the text encoder and multi-modal transformer
in MDETR. We first factorize the LT weights using SVD
and learn the sparse matrix in the training time. In inference
mode, to improve efficiency we use the sparse matrix as a
lookup table to get dictionary indexes and coefficients to
perform efficient linear transformation. We perform exper-
iments on vision and language tasks including referring ex-
pression comprehension and segmentation, phrase ground-
ing and VQA and we show that our Lite-MDETR reduces
MDETR’s size drastically with minor loss in the accuracy.
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