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Abstract

Multi-modality (i.e., multi-sensor) data is widely used in
various vision tasks for more accurate or robust percep-
tion. However, the increased data modalities bring new
challenges for data storage and transmission. The exist-
ing data compression approaches usually adopt individual
codecs for each modality without considering the corre-
lation between different modalities. This work proposes
a multi-modality compression framework for infrared and
visible image pairs by exploiting the cross-modality redun-
dancy. Specifically, given the image in the reference modal-
ity (e.g., the infrared image), we use the channel-wise align-
ment module to produce the aligned features based on the
affine transform. Then the aligned feature is used as the
context information for compressing the image in the cur-
rent modality (e.g., the visible image), and the correspond-
ing affine coefficients are losslessly compressed at negligi-
ble cost. Furthermore, we introduce the Transformer-based
spatial alignment module to exploit the correlation between
the intermediate features in the decoding procedures for dif-
ferent modalities. Our framework is very flexible and eas-
ily extended for multi-modality video compression. Experi-
mental results show our proposed framework outperforms
the traditional and learning-based single modality com-
pression methods on the FLIR and KAIST datasets.

1. Introduction
In several practical vision applications (e.g., autonomous

driving), cameras from different modalities such as visible
or infrared imaging cameras are often jointly used for var-
ious computer vision tasks by exploiting the complemen-
tary characteristic. For example, the visible (RGB) cameras
can often provide continuous, high-resolution color images
but may not work well for extreme-low lighting scenarios,
which is precisely what infrared cameras can help. At the
same time, infrared cameras are easily disturbed by abnor-
mal heat sources, but the drawback can be compensated by
using visible cameras. However, these multiple modalities
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Figure 1. The comparison between video compression, stereo
compression and multi-modality compression. Our multi-
modality compression approach uses the cross-modality infrared
image to facilitate the compression of visible image.

visual analysis approaches [10, 13, 25, 26, 47, 48] will in-
crease the storage and transmission costs as more images
from different modalities are transmitted to the decoder side
for visual analysis. Therefore, how to design an efficient
compression method for multi-modality visual data is a new
and challenging research problem.

In the past decades, a lot of traditional and learning-
based compression methods [1,3,5,6,9,30,32,34,36–38,42]
have been proposed for image or video compression. How-
ever, most existing works focused on single-modality image
compression without considering the correlation between
different modalities. Due to the strong correlation between
the images from different modalities, we cannot use the
existing single-modality compression methods to fully ex-
ploit the compression redundancy. One of the most related
research topics is stereo image compression, where cross-
view redundancy is exploited by using various view align-
ment approaches. However, compared with the stereo im-
ages that share similar distribution, the intensity of different
modality images may be quite different (see Fig. 1). There-
fore, the commonly used alignment techniques like block-
based motion/disparity estimation [19] or homograph trans-
form [14] are not feasible enough for multi-modality com-
pression. Moreover, considering that the multi-modality
data like infrared and visible image pairs represent the same
scene in different perspectives, the compression for pixel-
wise motion/disparity information from most existing esti-
mation approaches will consume a large number of bits for
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compression, which is too expensive. Therefore, it is non-
trivial to develop a new framework for multi-modality data
compression.

In this paper, we propose a learning-based multi-
modality compression framework for the infrared and vis-
ible image pairs by exploiting the cross-modality redun-
dancy in the feature space. Considering the explicit align-
ment of different modalities is very difficult and estimated
motion/disparity information also requires a lot of transmis-
sion bitrates, we use the efficient affine transform and atten-
tion mechanism to achieve channel-wise and spatial-wise
feature alignment, respectively. Specifically, take the com-
pression procedure of visible image (i.e., RGB image) as an
example, based on the extracted features from the decoded
infrared and the original visible images, the affine transfor-
mation coefficients are estimated, which can be transmitted
to the decoder side at marginal bandwidth cost. Then we
achieve the channel-wise feature alignment based on the
affine transform, and the corresponding transformed fea-
tures from the infrared modality are used as the conditional
context for compressing the visible image. Furthermore,
we leverage the correlation of intermediate features from
different modalities in the decoding procedure through the
spatial-wise alignment module. Our module is integrated
into the visible image decoder and will spatially warp the
intermediate features from the reference modality to gener-
ate the aligned feature, which is used to further reduce the
cross-modality redundancy.

The proposed framework is very flexible, and the im-
age from one modality can be easily used as the reference
for image compression from another modality. And it can
also be easily extended for multi-modality video compres-
sion. Experimental results show that the proposed method
achieves better compression performance on several bench-
mark datasets when compared with the single-modality im-
age and video compression approaches. The contributions
of our framework are summarized as follows,

• We propose a learning-based framework to compress
image pairs from different modalities by exploiting the
cross-modality redundancy. As far as we know, it is
the first end-to-end optimized framework to compress
visible-infrared image pairs.

• Our framework introduces the channel-wise and spatial-
wise alignment modules to effectively exploit the correla-
tions between different modalities in the feature space.

• The proposed framework is very flexible and can be ex-
tended for multi-modality video compression. Exper-
imental results on several datasets demonstrate the ef-
fectiveness of the proposed multi-modality image/video
compression framework.

2. Related works
Image and Video Compression. In the past decades,

several representative compression standards [1, 9, 34, 36,
37, 42] are proposed and widely used in many practical ap-
plications. Recently, the learning based image and video
compression approaches have attracted increasing atten-
tion [3–6, 12, 15, 17, 18, 21, 21, 29, 29–33, 33, 38, 39, 44–46]
and show comparable or even better performance than the
latest image or video compression standards [9, 37]. Al-
though it is feasible to extended these methods for infrared
image or video compression [16,24], the existing standards
can only reduce the redundancy in the single modality with-
out exploiting the cross-modality information. Considering
the increasing demand for storing and transmitting multi-
modality data, like depth map, infrared image or optical
flow map, it is necessary to propose a new compression
framework for multi-modality data.

Stereo Image and Video Compression. Stereo image
compression aims to compress a pair of images from dif-
ferent views. To exploit this inter-view redundancy, several
multi-view image/video compression standards have been
proposed based on the traditional single-view image/video
methods, like MV-HEVC [19] or MVC [41]. These ap-
proaches use the disparity-based motion compensation [35]
to improve the compression performance in addition to the
existing inter-frame compensation.

Recent works also try to employ deep neural networks
for stereo image compression [14,27]. Liu et al. introduced
the parametric skip functions to leverage the disparity-
compensated features from the reference view. In [14], the
homography matrix is estimated to warp the left view im-
age to the right view image, which reduces the view re-
dundancy. However, these learned stereo image compres-
sion approaches are still used for single-modality images
recorded by stereoscopic cameras with slightly different po-
sitions. The multi-modality data, such as visible and in-
frared paired images, are captured using different cameras.
The internal characteristics of these images are quite differ-
ent, and existing techniques like homography transform are
not feasible. Therefore, it is necessary to develop a multi-
modality image compression framework.

Multi-modality Data Compression. The multi-
modality or multi-sensor information is widely used in var-
ious computer vision tasks [10,13,25,26,47,48], especially
for the 3D vision task. For example, Liang et al. [25] uti-
lized both the images and point cloud information to im-
prove 3D object detection accuracy. Zhang et al. [47] ex-
tract the features from different modalities and fuse these
features for object tracking.

In recent years, some multi-modality data compression
methods [8,11,40] have been proposed. However, these ap-
proaches are based on hand-crafted codecs and are mostly
designed for multi-view images plus depth images or medi-
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Figure 2. (a) Our multi-modality compression framework, where the decoded infrared image x̂i is used as the reference to compress the
visible image xv . The infrared image is compressed by using the existing image compression method [30]. (b) The network architecture
of the channel-wise feature alignment module. ‘Conv(C,K,S)’ represents the convolution operation with kernel size K ×K, stride S, and
number of output channel as C. We use the spatial average pooling layer in our implementation. (c) The illustration of our Transformer-
based spatial alignment module in the decoder side. The output feature ŷi

j from the j-th deconvolution layer in the infrared modality is
warped to the visible modality and is concatenated with feature ŷv

j to improve the compression performance.

cal images plus signals. Therefore, the research on the com-
pression of visible-infrared pairs is still blank.

3. Method

3.1. Overview

The overall architecture of our multi-modality compres-
sion approach is shown in Fig.2(a). Here we use the recon-
structed infrared image x̂i as the cross-modality reference to
improve the compression performance for the visible image
xv . Our approach is flexible and the reconstructed visible
image x̂v can also be used for compressing xi.

As shown in Fig.2(a), we first use the existing image
compression method [30] to compress the infrared image
xi. Then the features of the visible image xv and the recon-
structed infrared image x̂i are extracted by the feature en-
coder module, which is implemented by using several con-
volution layers. Based on the extracted features, a channel-
wise feature alignment module is introduced to calculate
the channel-wise affine transformation coefficients β and γ
to align the feature of the infrared modality to the visible
modality. In our framework, β and γ are losslessly trans-
mitted to the decoder side. After that, the aligned feature
f̄v is fed into the visible image encoder network as the con-
text information. Here, we follow network design in [30] to
implement the image codec. Finally, the output f̂v from the
visible decoder is concatenated with the aligned feature f̄v

to produce the reconstructed frame x̂v through the feature
decoder.

Considering that the spatial correlation between features
in different modalities is not fully utilized in the channel-
wise alignment module, we further exploit the correlation
between the intermediate features from different modalities
by the spatial alignment module in the visible decoder. As
shown in Fig.2(c), ŷij and ŷvj represent the outputs of the j-
th deconvolution layers in the infrared and visible decoder,
respectively. Our spatial feature alignment module uses the
Transformer-based mechanism to spatially warp the inter-
mediate feature from the infrared modality to the visible
modality, and the warped feature is used in the decoding
procedure. More details are provided Section 3.3. Due
to the limited space, we provide the network architectures
of feature encoder/decoder and visible/infrared codec (en-
coder and decoder) in the supplementary material.

The compression network for the visible image is opti-
mized by using the following rate-distortion loss function,

λD +R = λd(xv, x̂v) +H(ŷv) +H(γ) +H(β) (1)

where d(xv, x̂v) denotes the distortion between the input
image xv and the reconstructed image x̂v . H(·) repre-
sents the number of bits used for encoding the represen-
tations. In our framework, the latent representation ŷv

is encoded by using the entropy model in [30], and the
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channel-wise affine transformation coefficients γ, β are di-
rectly stored and transmitted in Float format at negligible
bandwidth cost. λ is a hyperparameter used to control the
rate-distortion trade-off.

In contrast to the video compression task or the stereo
image compression task, the image pairs in multi-modality
compression do not share a similar intensity distribution,
and the existing alignment approaches like optical flow are
not feasible. Therefore, we adopt both channel-wise and
spatial-wise feature space alignment approach. Further-
more, considering that the image pairs in different modal-
ities usually represent the same scenario, we only encode
the compact affine coefficients β and γ for a better rate-
distortion trade-off.

3.2. Channel-wise Alignment Module

In our proposed framework, we use the channel-wise
alignment in the feature space to reduce the redundancy
between the reconstructed infrared image x̂i and the vis-
ible image xv . The network architecture of our channel-
wise alignment module is shown in Fig.2(b). Given the
extracted features fv and f̂ i from the visible image and
the reconstructed infrared image, we feed them to several
convolutional layers. After that, we use the spatial aver-
age pooling to generate the affine transform coefficients
γ, β ∈ R64×1×1. Then the feature f̂ i from the decoded
infrared image is aligned to the visible modality as follows,

f̄v = γ × f̂ i + β (2)

where × and + represents the channel-wise multiplication
and addition, respectively. And f̄v is the aligned feature
map. In the encoder side, the aligned feature f̄v and the
original feature fv are concatenated as the input for the fol-
lowing encoder network. Besides, other alternative solu-
tions like encoding the residual between f̄v and fv are also
feasible in our framework, and we provide more experimen-
tal results in Section 4.4.

At the decoder side, the received affine transform coeffi-
cients β and γ are used to produce the aligned feature f̄v ,
which will be concatenated with the outputs of the decoder
to obtain the final reconstructed frame x̂v through the fea-
ture decoder. Considering that these coefficients are com-
pact, we do not perform any compression, and they are loss-
lessly sent to the decoder side at negligible cost.

3.3. Spatial Alignment Module

Since the channel-wise alignment module only exploits
the cross-modality redundancy by channel-wise transform,
the spatial correlation between features in different modali-
ties is not fully utilized. Our visible decoder uses the spatial
feature alignment module to spatially warp the feature from
the infrared to the visible modality, based on the similarity
between these two features. The whole network architecture

Figure 3. The implementation of our spatial feature alignment
module. ŷv

j and ŷi
j represent the output intermediate features of

the j-th deconvolution layers in the decoder for visible image and
infrared images. ȳv

j is the aligned feature from the thermal modal-
ity to visible modality. We follow the design in [28] to implement
the LayerNorm and MLP networks.

of the spatial alignment module is shown in Fig.3. Inspired
by the Swin-Transformer [28], we use the Transformer-
based mechanism to exploit the correlation between the in-
termediate features from the infrared image xi and the visi-
ble image xv in the decoding procedure.

Specifically, let ŷij ∈ R192×H×W and ŷvj ∈ R192×H×W

represent the outputs of the j-th deconvolution layer of the
decoder network for xi and xv in Fig.2, respectively. We
first perform a p × p patch embedding operation by using
a convolutional layer and generate the corresponding em-
bedding êij ∈ R96×H

p ×W
p and êvj ∈ R96×H

p ×W
p , where p

is set as 2. Then, the êij and êvj are fed into the LayerNorm
and Multi-head Cross Attention (MCA) module, where the
features from different modalities are used to calculate the
attention matrices and the infrared embedding êij is warped
to generate corresponding aligned feature ẽvj . After that, we
use LayerNorm and MLP networks to further enhance the
feature transform [28]. Besides, the residual connection is
added to help the training procedure and this Transformer
based block is formulated as follows,

ẽvj = MCA(LN(êvj ),LN(êij)) + êvj

ēvj = MLP(LN(ẽvj )) + ẽvj
(3)

In our implementation, we use two Transformer blocks
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Figure 4. The framework of our Multi-Modality Video Compression Framework. Due to space limitation, we only keep the relevant
components like residual decoder for infrared video compression. For visible video compression, the motion compensated feature f̄v,m

t

and the channel-wise aligned thermal feature f̄v,a
t are fused together as the predicted feature f̄v

t to calculate the residual. In addition,
we also integrate the spatial alignment module into the residual decoder network for visible video compression and further exploit the
cross-modality information from infrared videos.

and the embeddings are shifted before the second Trans-
former Block. At the end, the generated embedding ēvj is
recovered to the intermediate feature ȳvj by using a decon-
volution layer, which is a reverse process of patch embed-
ding. We use three spatial feature alignment modules on the
decoder side, and the output from our module will be fed to
the next deconvolutional layer as shown in Fig. 2(c).

Multi-head Cross Attention. The multi-head cross at-
tention module will produce the aligned embedding from
the infrared image. Specifically, the input embedded fea-
tures are partitioned into non-overlapping M×M windows
with a shape HW

p2M2 ×M2 × 96, where HW
p2M2 represents the

number of windows, and M is set as 4. Then, the mod-
ule calculates the local attention between the windows of
infrared modality and visible modality. Take the n-th local
window êvj (n) and êij(n) ∈ RM2×96 in the visible and in-
frared image embedding as an example, the corresponding
query, key, and value matrices Q, K and V ∈ RM2×96/h×h

are computed as

Q = êvj (n)PQ, K = êij(n)PK , V = êij(n)PV (4)

where h is the number of heads in multi-head attention,
which is set as 3, PQ, PK and PV are the projection ma-
trices in the spatial feature alignment module shared across
windows. Then the value V generated from the infrared
image feature is aligned to the visible feature as follows,

A = SoftMax(QKT /
√
d+B)V (5)

where B is the learnable relative positional encoding, and
d = 96/h is the number of channels in each head. A is
the multi-head cross attention (MCA) output for the local
window êij(n) and is considered as the aligned embedding
result from the infrared image to the visible image.

3.4. Multi-modality Video Compression

In practical applications like autonomous driving, the
sensors usually capture multi-modality video information
for the downstream analysis tasks. Since our approach is
very flexible, we also extend the proposed framework for
multi-modality video compression.

The overall pipeline is shown in Fig. 4, x̂i
t and xv

t repre-
sent the reconstructed infrared frame and to be encoded visi-
ble frame at time step t, respectively. Here we re-implement
the existing learning-based video compression method FVC
as our baseline method [21]. FVC follows the hybrid cod-
ing framework and employs the deformable convolution to
estimate the motion information for the subsequent motion
compensation and residual coding.

In our multi-modality video compression approach, we
first use FVC to compress the infrared video sequence. For
each frame xv

t from the visible video sequence, in addition
to the original motion compensation based on the previous
reconstructed frame x̂v

t−1, we further produce the aligned
feature f̄v,a

t based on the reconstructed infrared image x̂i
t at

the same time step. Here, we use the channel-wise align-
ment module discussed in Section 3.2 to align the feature in
the infrared modality to that in the visible modality. Then
we use one convolutional layer to fuse the motion compen-
sated feature f̄v,m

t from the previous visible frame x̂v
t−1 and

the feature f̄v,a
t from the infrared frame x̂i

t, and generate the
final predicted feature f̄v

t , which will be encoded by using
the following residual compression module. Since the auto-
encoder network is also used in learning-based video com-
pression systems, like FVC, to compress residual and mo-
tion information, our spatial alignment module can be eas-
ily integrated into the existing framework with better com-
pression performance. In our implementation, we will ex-
ploit the correlation between the intermediate features in the
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Figure 5. Visible image compression results from different approaches on the KAIST dataset in terms of PSNR, MS-SSIM and FID.
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Figure 6. Infrared image compression results from different approaches on the KAIST dataset in terms of PSNR, MS-SSIM and FID.

residual decoder networks from different modalities. Due to
the space limitation, we provide more implementation de-
tails for the multi-modality video compression in the sup-
plementary materials. Although we use FVC [21] as an ex-
ample to better introduce the proposed multi-modality com-
pression framework, any other learning-based video com-
pression approaches with both motion compensation and
residual coding can also be integrated into our proposed
framework.

4. Results

4.1. Experimental Setup

FLIR Thermal Dataset [2] It contains more than 10K
pairs of 8-bit infrared (thermal) images and 24-bit visible
images, including people, vehicles, bicycles, and other ob-
jects at both day and night scenes. The resolution of the
infrared images is 640×512, while the corresponding reso-
lution of visible images vary from 720×480 to 2048×1536.
We resize each visible image to 1280×1024 in our exper-
iments. The default FLIR training dataset is used as our
training dataset, and 20 color-thermal pairs from the FLIR
validation set are randomly selected as the testing dataset.

KAIST Multispectral Pedestrian Dataset [22] The
dataset consists of 95K color-thermal pairs (640×480,
20Hz), containing 41 sequences from 12 sets. We employ
10 sets for multi-modality video training, while using the

Table 1. The BDBR [7] results of our method and Minnen’s ap-
proach when compared with BPG for the visible or infrared image
compression on FLIR and KAIST datasets.

Methods FLIR KAIST
visible infrared visible infrared

Minnen [30] -22.342 -14.960 -3.624 -8.751
Ours -30.226 -21.621 -18.639 -21.289

first 100 frames of each sequence in the other two sets(set06
and set10) as our testing dataset. In addition, 18 color-
thermal pairs are chosen from the KAIST dataset as another
testing dataset for multi-modality image compression and
the infrared images are resized to 320×240.

Evaluation Metrics The bpp (bit per pixel) measures
the average bits consumption in the compression procedure.
In addition to the PSNR and MS-SSIM [43], we also use
FID [20] metric, which is more consistent with human per-
ception, to measure the distortion between the reconstructed
image and the ground truth visible/infrared image.

Implementation Details When we use the infrared im-
age as the reference to encode the visible image, we first
train the infrared data compression network, and then we
optimize the network for visible data compression by freez-
ing the infrared image compression. These networks are
implemented based on PyTorch with CUDA support and
trained on a V100 GPU card. Specifically, for the multi-
modality image compression, we set different λ values (λ
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Figure 7. Visual quality comparison for the visible image compression results from BPG [1], Minnen [30] and ours.

= 256, 512, 1024, 2048, 4096) and use the Adam opti-
mizer [23] by setting the initial learning rate, β1 and β2 as
1e-4, 0.9, 0.999, respectively. The learning rate is reduced
to 1e-5 after 1.8M steps when the loss becomes stable. The
mini-batch size is set as 4. It takes about 8 days for the
training stage. For the multi-modality image compression,
we first train our model on the FLIR dataset and finetune the
pretrain model on the KAIST training dataset to evaluate
results for KAIST testing dataset. For the multi-modality
video training, we first train the FVC model on the Vimeo-
90k dataset by following its default setting [21] and finetune
the model on the KAIST dataset for another 500K steps.

4.2. Experimental Results

Multi-modality Image Compression To demonstrate
the effectiveness of our method, we compare our method
with the traditional single-modality image compression
method BPG [1] and the learned image compression ap-
proach proposed by Minnen et al. [30] on both FLIR and
KAIST testing datasets. Besides, for fair comparison, both
our model and the baseline method [30] are optimized using
the same multi-modality data based on the MSE(i.e., PSNR)
metrics. The BDBR results are provided in Table 1.

Fig. 5 shows the rate-distortion curves from different
compression approaches for visible image compression on
the KAIST dataset. Compared with the separately opti-
mized single-modality compression method [30], our ap-
proach using the infrared image as the reference can im-
prove the compression performance by more than 0.7dB on
the KAIST dataset. Besides, our approach also achieves
much better compression performance than the traditional
image compression method BPG. More results on the FLIR
dataset are provided in the supplementary materials.

Similar results can also be observed for infrared image
compression in Fig. 6, where we use the visible image as
the reference. Our multi-modality compression approach
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Figure 8. Experimental results from different video compression
approaches on the KAIST dataset.

has nearly 0.7dB improvement compared with the baseline
method [30] without cross-modality reference.

Multi-modality Video Compression In Fig. 8, we com-
pare our method with the traditional single-modality codec
H.265 [37] and the deep learning-based approach FVC [21].
The GoP size is set as 10 for the KAIST testing dataset.
Similar to image compression, our model and the baseline
model [21] are optimized on the MSE metrics on the same
datasets. In addition, we follow the setting in [21] to pro-
duce the results of H.265. The experimental results show
that when compared with the FVC and H.265, our approach
has about 0.7dB and 3dB improvement by using the com-
plementary information from infrared modality on visible
sequences compression. It demonstrates that our proposed
framework is very general and can be applied to the multi-
modality image and video compression tasks.

4.3. Ablation Study

In Fig. 9, we provide the ablation study results on the
KAIST dataset for the visible image compression. Here
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Figure 9. Ablation Study. Ours(CA) and Ours(SA) represent
our models when only using the channel-wise alignment module
and spatial-wise alignment module, respectively. Ours is our full
model. Ours(Res) represents our model encoding residual infor-
mation fv − f̄v . Ours(Cat) represents simply concatenating xv

and xi as the input for visible image compression.

Ours(CA) and Ours(SA) represent our proposed method us-
ing only channel-wise alignment module and spatial wise
alignment module, respectively. And Ours denotes the
full model in our implementation. It is observed that the
channel-wise alignment module, i.e. Ours(CA), can im-
prove the compression performance by more than 0.4dB
when compared with the baseline method. At the same
time, it brings nearly 0.3dB gain by using the spatial
alignment module (see Ours(SA)). Furthermore, our whole
model has more than 0.7dB improvement over the baseline
method by integrating both channel-wise and spatial-wise
alignment modules. The experiments show that it is benefi-
cial to exploit the complementary cross-modality informa-
tion for the multi-modality data compression.

4.4. Model Analysis

Element-wise Affine Transformation In our imple-
mentation, we estimate the channel-wise affine transform
coefficients. Here, we also provide the experimental re-
sults when using the element-wise affine transform. Specif-
ically, we directly estimate the element-wise affine coeffi-
cients by removing the spatial-wise average pooling layer in
Fig. 2(b). Considering the element-wise compression will
consume a lot of bits, we further introduce another auto-
encoder network to lossy compress these coefficients. Ex-
perimental results show that this new setting will deterio-
rate the compression performance by more than 6dB. The
rate-distortion curve is provided in the supplementary ma-
terial due to its much worse performance than the baseline
method. One possible explanation is that the element-wise
affine coefficients will consume much more bitrates, which
leads to worse rate-distortion performance.

Concatenation of the input multi-modality images.
We also provide a straightforward solution for multi-
modality compression by concatenating the infrared and
visible images as input to reconstruct the visible im-
age. Experimental results show this straightforward solu-
tion (Ours(Cat)) has little improvement, which cannot re-
duce the cross-modality redundancy effectively.

Residual Compression In our framework, the output of
the channel-wise feature alignment module is concatenated
with the visible feature as the context information. In addi-
tion, we also try to compress the residual between aligned
feature and visible feature, and found a performance drop
of 0.14dB (see Fig. 9 Ours(CA) and Ours(Res)). In other
words, although there is a certain amount of cross-modality
redundancy between different modalities, it is difficult to
compress the corresponding residual information.

Qualitative Results In Fig. 7, we also provide the qual-
itative results, and it is observed that our approach pro-
vides more visually plausible results. For example, the elec-
tric wire in the first-row image from our approach is much
clearer when compared with that from BPG [1] or Minnen’s
approach [30].

Joint Optimization We also try to jointly optimize the
infrared image compression and visible image compression
in an end-to-end fashion. Experimental result shows that it
only brings 0.02db improvement, and therefore we do not
use it as we prefer a simple yet effective solution.

Running Time and Complexity The model parameters
of our framework and the baseline method are 31M and
26M, respectively. We evaluate our framework with paired
1280×1024 visible image and 640×512 infrared image on
a single V100 machine. The encoding speeds of our frame-
work and the basic model are basically the same, and the
decoding speeds are 340ms and 67ms, respectively.

5. Conclusions
In this work, we have proposed a multi-modality com-

pression framework for visible and infrared image pairs.
To exploit the complementary information, we introduce
the channel-wise and spatial feature alignment modules.
The experimental results on multiple benchmark datasets
demonstrate the effectiveness of our multi-modality image
and video compression approaches. In addition, our frame-
work can also be extended for other multi-modality data that
are close to each other, but may not work well for multi-
modality data like images plus text descriptions and visual
images plus point clouds as there is much less redundancy
between different modalities. In the future, we will inves-
tigate new compression approaches for compressing more
challenging multi-modality data.
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