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Abstract

Image segmentation is usually addressed by training a
model for a fixed set of object classes. Incorporating ad-
ditional classes or more complex queries later is expen-
sive as it requires re-training the model on a dataset that
encompasses these expressions. Here we propose a sys-
tem that can generate image segmentations based on ar-
bitrary prompts at test time. A prompt can be either a
text or an image. This approach enables us to create a
unified model (trained once) for three common segmenta-
tion tasks, which come with distinct challenges: referring
expression segmentation, zero-shot segmentation and one-
shot segmentation. We build upon the CLIP model as a
backbone which we extend with a transformer-based de-
coder that enables dense prediction. After training on an
extended version of the PhraseCut dataset, our system gen-
erates a binary segmentation map for an image based on a
free-text prompt or on an additional image expressing the
query. We analyze different variants of the latter image-
based prompts in detail. This novel hybrid input allows
for dynamic adaptation not only to the three segmentation
tasks mentioned above, but to any binary segmentation task
where a text or image query can be formulated. Finally,
we find our system to adapt well to generalized queries
involving affordances or properties. Code is available at
https://eckerlab.org/code/clipseg

1. Introduction
The ability to generalize to unseen data is a fundamental

problem relevant for a broad range of applications in artifi-
cial intelligence. For instance, it is crucial that a household
robot understands the prompt of its user, which might in-
volve an unseen object type or an uncommon expression
for an object. While humans excel at this task, this form of
inference is challenging for computer vision systems.

Image segmentation requires a model to output a predic-
tion for each pixel. Compared to whole-image classifica-
tion, segmentation requires not only predicting what can be
seen but also where it can be found. Classical semantic seg-
mentation models are limited to segment the categories they
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Figure 1. Our key idea is to use CLIP to build a flexible zero/one-
shot segmentation system that addresses multiple tasks at once.

have been trained on. Different approaches have emerged
that extend this fairly constrained setting (see Tab. 1):

• In generalized zero-shot segmentation, seen as well as
unseen categories needs to be segmented by putting
unseen categories in relation to seen ones, e.g. through
word embeddings [1] or WordNet [2].

• In one-shot segmentation, the desired class is provided
in form of an image (and often an associated mask) in
addition to the query image to be segmented.

• In referring expression segmentation, a model is
trained on complex text queries but sees all classes dur-
ing training (i.e. no generalization to unseen classes).

To this work, we introduce the CLIPSeg model (Fig. 1),
which is capable of segmenting based on an arbitrary text
query or an example image. CLIPSeg can address all three
tasks named above. This multi-modal input format goes
beyond existing multi-task benchmarks such as Visual De-
cathlon [3] where input is always provided in form of im-
ages. To realize this system, we employ the pre-trained
CLIP model as a backbone and train a thin conditional
segmentation layer (decoder) on top. We use the joint
text-visual embedding space of CLIP for conditioning our
model, which enables us to process prompts in text form as
well as images. Our idea is to teach the decoder to relate
activations inside CLIP with an output segmentation, while
permitting as little dataset bias as possible and maintaining
the excellent and broad predictive capabilities of CLIP.

We employ a generic binary prediction setting, where
a foreground that matches the prompt has to be differen-
tiated from background. This binary setting can be adapted
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unseen
classes

free form
prompt

no fixed
targets

negative
samples

Our setting ✓ ✓ ✓ ✓

Classic - - - ✓
Referring Expression - ✓ ✓ -
Zero-shot ✓ - ✓ ✓
One-shot ✓ - ✓ -

Table 1. Comparison of different segmentation tasks. Negative
means samples that do not contain the target (or one of the tar-
gets in multi-label segmentation). All approaches except classic
segmentation adapt to new targets dynamically at inference time.

to multi-label predictions which is needed by Pascal zero-
shot segmentation. Although the focus of our work is on
building a versatile model, we find that CLIPSeg achieves
competitive performance across three low-shot segmenta-
tion tasks. Moreover, it is able to generalize to classes and
expressions for which it has never seen a segmentation.

Contributions Our main technical contribution is the
CLIPSeg model, which extends the well-known CLIP trans-
former for zero-shot and one-shot segmentation tasks by a
proposing a lightweight transformer-based decoder. A key
novelty of this model is that the segmentation target can be
specified by different modalities: through text or an image.
This allows us to train a unified model for several bench-
marks. For text-based queries, unlike networks trained on
PhraseCut, our model is able to generalize to new queries
involving unseen words. For image-based queries, we ex-
plore various forms of visual prompt engineering – analo-
gously to text prompt engineering in language modeling.
Furthermore, we evaluate how our model generalizes to
novel forms of prompts involving affordances.

2. Related Work
Foundation Models and Segmentation Instead of learn-
ing from scratch, modern vision systems are commonly pre-
trained on a large-scale dataset (either supervised [4] or self-
supervised [5, 6]) and use weight transfer. The term foun-
dation model has been coined for very large pre-training
models that are applicable to multiple downstream tasks [7].
One of these models is CLIP [8], which has demonstrated
excellent performance on several image classification tasks.
In contrast to previous models which rely on ResNet [9]
backbones, the best-performing CLIP model uses a novel
visual transformer [10] architecture. Analogously to im-
age classification, there have been efforts to make use of
transformers for segmentation: TransUNet [11] and SETR
[12] employ a hybrid architecture which combine a visual
transformer for encoding with a CNN-based decoder. Seg-
former [13] combines a transformer encoder with an MLP-
based decoder. The Segmentor model [14] pursues a purely

transformer-based approach. To generate a segmentation,
either a projection of the patch embeddings or mask trans-
former are proposed. Our CLIPSeg model extends CLIP
with a transformer-based decoder, i.e. we do not rely on
convolutional layers.

Referring Expression Segmentation In referring ex-
pression segmentation a target is specified in a natural
language phrase. The goal is to segment all pixels that
match this phrase. Early approaches used recurrent net-
works in combination with CNNs to address this problem
[15, 16, 17, 18]. The CMSA module, which is central to
the approach of Ye et al. [19], models long-term dependen-
cies between text and image using attention. The more re-
cent HULANet method [20] consists of Mask-RCNN back-
bone and specific modules processing categories, attributes
and relations, which are merged to generate a segmenta-
tion mask. MDETR [21] is an adaptation of the detec-
tion method DETR [22] to natural language phrase input.
It consists of a CNN which extracts features and a trans-
former which predicts bounding boxes for a set of query
prompts. Note that referring expression segmentation does
not require generalization to unseen object categories or
understanding of visual support images. Several bench-
marks [20, 23, 24] were proposed to track progress in re-
ferring expression segmentation. We opt for the PhraseCut
dataset [20] which is substantially larger in terms of images
and classes than other datasets. It contains structured text
queries involving objects, attributes and relationships. A
query can match multiple object instances.

Zero-Shot Segmentation In zero-shot segmentation the
goal is to segment objects of categories that have not been
seen during training. Normally, multiple classes need to be
segmented in an image at the same time. In the general-
ized setting, both seen and unseen categories may occur. A
key problem in zero-shot segmentation addressed by sev-
eral methods is the bias which favors seen classes. Bucher
et al. [25] train a DeepLabV3-based network to synthesize
artificial, pixel-wise features for unseen classes based on
word2vec label embeddings. These features are used to
learn a classifier. Follow-up work explicitly models the re-
lation between seen and unseen classes [26]. Others add se-
mantic class information into dense prediction models [27].
More recent approaches use a joint space for image features
and class prototypes [28], employ a probabilistic formula-
tion to account for uncertainty [29] or model the detection
of unseen objects explicitly [30].

One-Shot Semantic Segmentation In one-shot seman-
tic segmentation, the model is provided at test time with
a single example of a certain class, usually as an image
with a corresponding mask. One-shot semantic segmenta-
tion is a comparably new task, with the pioneering work
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being published in 2017 by Shaban et al. [31], which in-
troduced the Pascal-5i dataset based on Pascal images and
labels. Their simple model extracts VGG16-features [32]
from a masked support image to generate regression pa-
rameters that are applied per-location on the output of a
FCN [33] to yield a segmentation. Later works introduce
more complex mechanisms to handle one-shot segmenta-
tion: The pyramid graph network (PGNet) [34] generates
a set of differently-shaped feature maps obtained through
adaptive pooling and processes them by individual graph at-
tention units and passed through an atrous spatial pyramid
pooling (ASPP) block [35]. The CANet network [36] first
extracts images using a shared encoder. Then predictions
are iteratively refined through a sequence of convolutions
and ASPP blocks. Several approaches focus on the mod-
eling of prototypes [37, 38, 39]. PFENet [40] uses a prior
computed on high-level CNN-features to provide an auxil-
iary segmentation that helps further processing. A weakly-
supervised variant as introduced by Rakelly et al. [41] re-
quires only sparse annotations in form of a set of points.
In one-shot instance segmentation [42], instead of a binary
match/non-match prediction, individual object instances are
segmented.

CLIP Extensions Despite CLIP [8] being fairly new,
multiple derivative works across different sub-fields have
emerged. CLIP was combined with a GAN to modify im-
ages based on a text prompt [43] and in robotics to general-
ize to unseen objects in manipulations tasks [44]. Other
work focused on understanding CLIP in more detail. In
the original CLIP paper [8], it was found that the design of
prompts matters for downstream tasks, i.e. instead of using
an object name alone as a prompt, adding the prefix “a photo
of” increases performance. Zhou et al. [45] propose context
optimization (CoOp) which automatically learns tokens that
perform well for given downstream tasks. Other approaches
rely on CLIP for open-set object detection [46, 47].

3. CLIPSeg Method
We use the visual transformer-based (ViT-B/16) CLIP

[8] model as a backbone (Fig. 2) and extend it with a small,
parameter-efficient transformer decoder. The decoder is
trained on custom datasets to carry out segmentation, while
the CLIP encoder remains frozen. A key challenge is to
avoid imposing strong biases on predictions during segmen-
tation training and maintaining the versatility of CLIP. We
do not use the larger ViT-L/14@336px CLIP variant as its
weights were not publicly released as of writing this work.

Decoder Architecture Considering these demands, we
propose CLIPSeg: A simple, purely-transformer based de-
coder, which has U-Net-inspired skip connections to the
CLIP encoder that allow the decoder to be compact (in

terms of parameters). While the query image (RW×H×3)
is passed through the CLIP visual transformer, activations
at certain layers S are read out and projected to the token
embedding size D of our decoder. Then, these extracted ac-
tivations (including CLS token) are added to the internal ac-
tivations of our decoder before each transformer block. The
decoder has as many transformer blocks as extracted CLIP
activations (in our case 3). The decoder generates the binary
segmentation by applying a linear projection on the tokens
of its transformer (last layer) R(1+W

P ×H
P )×D 7→ RW×H ,

where P is the token patch size of CLIP. In order to in-
form the decoder about the segmentation target, we mod-
ulate the decoder’s input activation by a conditional vector
using FiLM [48]. This conditional vector can be obtained in
two ways: (1) Using the CLIP text-transformer embedding
of a text query and (2) using the CLIP visual transformer
on a feature engineered prompt image. CLIP itself is not
trained, but only used as a frozen feature extractor. Due to
the compact decoder, CLIPSeg has only 1,122,305 trainable
parameters for D = 64.

The original CLIP is constrained to a fixed image size
due to the learned positional embedding. We enable dif-
ferent image sizes (including larger ones) by interpolating
the positional embeddings. To validate the viability of this
approach, we compare prediction quality for different im-
age sizes and find that for ViT-B/16 performance only de-
creases for images larger than 350 pixels (see supplemen-
tary for details). In our experiments we use CLIP ViT-B/16
with a patch size P of 16 and use a projection dimension of
D = 64 if not indicated otherwise. We extract CLIP activa-
tions at layers S = [3, 7, 9], consequently our decoder has
only three layers.

Image-Text Interpolation Our model receives informa-
tion about the segmentation target (“what to segment?”)
through a conditional vector. This can be provided either by
text or an image (through visual prompt engineering). Since
CLIP uses a shared embedding space for images and text
captions, we can interpolate between both in the embedding
space and condition on the interpolated vector. Formally,
let si be the embedding of the support image and ti the text
embedding of a sample i, we obtain a conditional vector xi

by a linear interpolation xi = asi + (1 − a)xi, where a is
sampled uniformly from [0, 1]. We use this randomized in-
terpolation as a data augmentation strategy during training.

3.1. PhraseCut + Visual prompts (PC+)

We use the PhraseCut dataset [20], which encompasses
over 340,000 phrases with corresponding image segmenta-
tions. Originally, this dataset does not contain visual sup-
port but only phrases and for every phrase a corresponding
object exists. We extend this dataset in two ways: visual
support samples and negative samples. To add visual sup-
port images for a prompt p, we randomly draw from the
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Figure 2. Architecture of CLIPSeg: We extend a frozen CLIP model (red and blue)
with a transformer that segments the query image based on either a support image or
a support prompt. N CLIP activations are extracted after blocks defined by S. The
segmentation transformer and the projections (both green) are trained on PhraseCut
or PhraseCut+.
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Figure 3. Different forms of combining an im-
age with the associated object mask to build a
visual prompt have a strong effect on CLIP pre-
dictions (bar charts). We use the difference in
the probability of the target object (orange) in
the original image (left column) and the mask-
ing methods for our systematic analysis.

set of all samples Sp, which share the prompt p. In case
the prompt is unique (|Sp| = 1), we rely only on the text
prompt. Additionally, we introduce negative samples to the
dataset, i.e. samples in which no object matches the prompt.
To this end, the sample’s phrase is replaced by a differ-
ent phrase with a probability qneg . Phrases are augmented
randomly using a set of fixed prefixes (as suggested by the
CLIP authors). On the images we apply random cropping
under consideration of object locations, making sure the ob-
ject remains at least partially visible. In the remainder of
this paper, we call this extended dataset PhraseCut+ (ab-
breviated by PC+). In contrast to the original PhraseCut
dataset, which uses only text to specify the target, PC+ sup-
ports training using image-text interpolation. This way, we
can train a joint model that operates on text and visual input.

4. Visual Prompt Engineering
In conventional, CNN-based one-shot semantic segmen-

tation, masked pooling [31] has emerged as a standard tech-
nique to compute a prototype vector for conditioning. The
provided support mask is downsampled and multiplied with
a late feature map from the CNN along the spatial dimen-
sions and then pooled along the spatial dimensions. This
way, only features that pertain to the support object are
considered in the prototype vector. This method cannot be
applied directly to transformer-based architectures, as se-
mantic information is also accumulated in the CLS token
throughout the hierarchy and not only in the feature maps.
Circumventing the CLS token and deriving the conditional
vector directly from masked pooling of the feature maps is
not possible either, since it would break the compatibility
between text embeddings and visual embeddings of CLIP.

To learn more about how target information can be incor-
porated into CLIP, we compare several variants in a simple
experiment without segmentation and its confounding ef-
fects. We consider the cosine distance (alignment) between

visual and text-based embedding and use the original CLIP
weights without any additional training.

Specifically, we use CLIP to compute the text embed-
dings ti which correspond to object names in the image.
We then compare those to (1) the visual embedding of the
original image without modifications, so and (2) the visual
embedding sh highlighting the target object using a modi-
fied RGB image or attention mask (both techniques are de-
scribed in detail below). By softmax-normalizing the vec-
tor of alignments [sht0, sht1, . . . ] for different highlighting
techniques and images, we obtain the distributions shown
in Fig. 3. For quantitative scores, we consider only the tar-
get object name embedding t0, which we expect to have a
stronger alignment with the highlighted image embedding
sh than with the original image embedding s0 (Fig. 3). This
means, if a highlighting technique improves the alignment,
the increase in object probability ∆P(object) = sht0−sot0
should be large. We base this analysis on the LVIS dataset
[49] since its images contain multiple objects and a rich set
of categories. We sample 1,600 images and mask one target
object out of all objects present in this image.

CLIP-Based Masking The straightforward equivalent to
masked pooling in a visual transformer is to apply the mask
on the tokens. Normally, a visual transformer consists of a
fixed set of tokens which can interact at every layer through
multi-head attention: A CLS token used for read-out and
image-region-related tokens which were originally obtained
from image patches. Now, the mask can be incorporated by
constraining the interaction at one (e.g. the last layer 11)
or more transformer layers to within-mask patch tokens as
well as the CLS token only. Our evaluation (Tab. 2, left)
suggests that this form of introducing the mask does not
work well. By constraining the interactions with the CLS
token (Tab. 2, left, top two rows) only a small improvement
is achieved (in last layer or in all layers) while constraining
all interactions decreases performance dramatically. From
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CLIP modification & extras ∆P(object)

CLIP masking CLS in layer 11 1.34
CLIP masking CLS in all layers 1.71
CLIP masking all in all layers -14.44
dye object red in grays. image 1.21
add red object outline 2.29

background modific. ∆P(object)

BG intensity 50% 3.08
BG intensity 10% 13.85
BG intensity 0% 23.40
BG blur 13.15
+ intensity 10% 21.73

cropping & combinations ∆P(object)

crop large context 6.27
crop 13.60
crop & BG blur 15.34
crop & BG intensity 10% 21.73
+ BG blur 23.50

Table 2. Visual prompt engineering: Average improvement of object probability for different forms of combining image and mask over
1,600 samples. Cropping means cutting the image according to the regions specified by the mask, “BG” means background.

this we conclude that more complex strategies are necessary
to combine image and mask internally.

Visual Prompt Engineering Instead of applying the
mask inside the model, we can also combine mask and im-
age to a new image, which can then processed by the visual
transformer. Analogous to prompt engineering in NLP (e.g.
in GPT-3 [50]), we call this procedure visual prompt en-
gineering. Since this form of prompt design is novel and
strategies which perform best in this context are unknown,
we conduct an extensive evaluation of different variants of
designing visual prompts (Tab. 2). We find that the exact
form of how the mask and image are combined matters a
lot. Generally, we identify three image operations that im-
prove the alignment between the object text prompts and
the images: decreasing the background brightness, blurring
the background (using a Gaussian filter) and cropping to the
object. The combination of all three performs best (Tab. 2,
last row). We will use this variant in the remainder.

5. Experiments

We first evaluate our model on three established segmen-
tation benchmarks before demonstrating the main contribu-
tion of our work: flexible few-shot segmentation that can be
based on either text or image prompts.

Metrics Compared to approaches in zero-shot and one-
shot segmentation (e.g. [25, 26]), the vocabulary we use
is open, i.e. the set of classes or expressions is not fixed.
Therefore, throughout the experiments, our models are
trained to generate binary predictions that indicate where
objects matching the query are located. If necessary, this
binary setting can be transformed into a multi-label setting
(as we do in Section 5.2).

In segmentation, intersection over union (IoU, also Jac-
card score) is a common metric to compare predictions with
ground truth. Due to the diversity of the tasks, we em-
ploy different forms of IoU: Foreground IoU (IoUFG) which
computes IoU on foreground pixels only, mean IoU, which
computes the average over foreground IoUs of different
classes and binary IoU (IoUBIN) which averages over fore-
ground IoU and background IoU. In binary segmentation,
IoU requires a threshold t to be specified. While most of

the time the natural choice of 0.5 is used, the optimal val-
ues can strongly deviate from 0.5 if the probability that an
object matching the query differs between training and in-
ference (the a-priori probability of a query matching one or
more objects in the scene depends highly on context and
dataset). Therefore, we report performance of one-shot seg-
mentation using thresholds t optimized per task and model.
Additionally, we adopt the average precision metric (AP) in
all our experiments. Average precision measures the area
under the recall-precision curve. It measures how well the
system can discriminate matches from non-matches, inde-
pendent of the choice of threshold.

Models and Baselines In our experiments we differen-
tiate two variants of CLIPSeg: One trained on the original
PhraseCut dataset (PC) and one trained on the extended ver-
sion of PhraseCut which uses 20% negative samples, con-
tains visual samples (PC+) and uses image-text interpola-
tion (Sec. 3). The robust latter version we call the universal
model. To put the performance of our models into perspec-
tive, we provide two baselines:

• CLIP-Deconv encompasses CLIP but uses a very basic
decoder, consisting only of the basic parts: FiLM con-
ditioning [48], a linear projection and a deconvolution.
This helps us to estimate to which degree CLIP-alone
is responsible for the results.

• ViTSeg shares the architecture of CLIPSeg, but uses
an ImageNet-trained visual transformer as a backbone
[51]. For encoding text, we use the same text trans-
former of CLIP. This way we learn to which degree
the specific CLIP weights are crucial for good perfor-
mance.

We rely on PyTorch [52] for training and use an image size
of 352 × 352 pixels throughout our experiments (for details
see appendix).

5.1. Referring Expression Segmentation

We evaluate referring expression segmentation perfor-
mance (Tab. 3) on the original PhraseCut dataset and com-
pare to scores reported by Wu et al. [20] as well as the
concurrently developed transformer-based MDETR method
[21]. For this experiment we trained a version of CLIPSeg
on the original PhraseCut dataset (CLIPSeg [PC]) using
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t mIoU IoUFG AP

CLIPSeg (PC+) 0.3 43.4 54.7 76.7
CLIPSeg (PC, D = 128) 0.3 48.2 56.5 78.2
CLIPSeg (PC) 0.3 46.1 56.2 78.2
CLIP-Deconv 0.3 37.7 49.5 71.2
ViTSeg (PC+) 0.1 28.4 35.4 58.3
ViTSeg (PC) 0.3 38.9 51.2 74.4

MDETR [21] 53.7 - -
HulaNet [20] 41.3 50.8 -
Mask-RCNN top [20] 39.4 47.4 -
RMI [20] 21.1 42.5 -

Table 3. Referring Expression Segmentation performance on
PhraseCut (t refers to the binary threshold).

only text labels in addition to the universal variant which
also includes visual samples (CLIPSeg [PC+]).

Our approaches outperform the two-stage HULANet ap-
proach by Wu et al. [20]. Especially, a high capacity de-
coder (D = 128) seems to be beneficial for PhraseCut.
However, the performance worse than MDETR [21], which
operates at full image resolution and received two rounds
of fine-tuning on PhraseCut. Notably, the ViTSeg baseline
performs generally worse than CLIPSeg, which shows that
CLIP pre-training is helpful.

5.2. Generalized Zero-Shot Segmentation

In generalized zero-shot segmentation, test images con-
tain categories that have never been seen before in addition
to known categories. We evaluate the model’s zero-shot
segmentation performance using the established Pascal-
VOC benchmark (Tab. 4). It contains five splits involving
2 to 10 unseen classes (we report only 4 and 10 unseen
classes). The latter is the most challenging setting as the
set of unseen classes is large. Since our model was trained
on foreground/background segmentation we cannot directly
use it in a multi-label setting. Therefore, we employ a sim-
ple adaptation: Our model predicts a binary map indepen-
dently for each of the 20 Pascal classes. Across all 20 pre-
dictions we determine the class with the highest probability
for each pixel.

We train on PhraseCut+ but remove the unseen Pascal
classes from the dataset. This is carried out by assigning
the Pascal classes to WordNet synsets [2] and generating a
set of invalid words by traversing hyponyms (e.g. different
dog breeds for dog). Prompts that contain such a word are
removed from the dataset.

The idea of conducting this experiment is to provide a
reference for the zero-shot performance of our universal
model. It should not considered as competing in this bench-
mark as we use a different training (CLIP pre-training, bi-
nary segmentation on PhraseCut). The results (Tab. 4) indi-
cate a major gap between seen and unseen classes in mod-
els trained on Pascal-VOC, while our models tend to be

unseen-10 unseen-4
pre-train. mIoUS mIoUU mIoUS mIoUU

CLIPSeg (PC+) CLIP 35.7 43.1 20.8 47.3
CLIP-Deconv (PC+) CLIP 25.1 36.7 25.9 41.9
ViTSeg (PC+) IN 4.2 19.0 6.0 24.8

SPNet [27] IN 59.0 18.1 67.3 21.8
ZS3Net [25] IN-seen 33.9 18.1 66.4 23.2
CSRL [53] IN-seen 59.2 21.0 69.8 31.7
CaGNet [54] IN - - 69.5 40.2
OSR [30] IN-seen 72.1 33.9 75.0 44.1
JoEm [28] IN-seen 63.4 22.5 67.0 33.4

Table 4. Zero-shot segmentation performance on Pascal-VOC
with 10 unseen classes. mIoUS and mIoUU indicate performance
on seen and unseen classes, respectively. Our model is trained on
PhraseCut with the Pascal classes being removed but uses a pre-
trained CLIP backbone. IN-seen indicates ImageNet pre-training
with unseen classes being removed.

more balanced. This is due to other models being trained
exclusively on the 10 or 16 seen Pascal classes in contrast
to CLIPSeg which can differentiate many more classes (or
phrases). In fact, our model performs better on unseen
classes than on seen ones. This difference is likely because
the seen classes are generally harder to segment: For the
unseen-4 setting, the unseen classes are “airplane”, “cow”,
“motorbike” and “sofa”. All of them are large and compar-
atively distinct objects.

5.3. One-Shot Semantic Segmentation

In one-shot semantic segmentation, a single example im-
age along with a mask is presented to the network. Regions
that pertain to the class highlighted in the example image
must be found in a query image. Compared to previous
tasks, we cannot rely on a text label but must understand the
provided support image. Above (Sec. 4) we identified the
best method for visual prompt design, which we use here:
cropping out the target object while blurring and darkening
the background. To remove classes that overlap with the re-
spective subset of Pascal during training, we use the same
method as in the previous section (Sec. 5.2). Other than
in zero-shot segmentation, in one-shot segmentation, Ima-
geNet pre-trained backbones are common [37, 40]. PFENet
particularly leverages pre-training by using high-level fea-
ture similarity as a prior. Similarly, HSNet [55] processes
correlated activations of query and support image using 4D-
convolutions at multiple levels.

On Pascal-5i we find our universal model CLIPSeg
(PC+) to achieve competitive performance (Tab. 5) among
state-of-the-art methods, with only the very recent HSNet
performing better. The results on COCO-20i (Tab. 6)
show that CLIPSeg also works well when trained on other
datasets than PhraseCut(+). Again HSNet performs bet-
ter. To put this in perspective, it should be considered that
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t vis. backb. mIoU IoUBIN AP

CLIPSeg (PC+) 0.3 ViT (CLIP) 59.5 75.0 82.3
CLIPSeg (PC) 0.3 ViT (CLIP) 52.3 69.5 72.4
CLIP-Deconv (PC+) 0.2 ViT (CLIP) 48.0 65.8 68.0
ViTSeg (PC+) 0.2 ViT (IN) 39.0 59.0 62.4

PPNet [39] RN50 52.8 69.2 -
RePRI [57] RN50 59.7 - -
PFENet [40] RN50 60.2 73.3 -
HSNet [55] RN50 64.0 76.7 -

PPNet [39] RN101 55.2 70.9 -
RePRI [57] RN101 59.4 - -
PFENet [40] RN101 59.6 72.9 -
HSNet [55] RN101 66.2 77.6 -

Table 5. One-shot performance on Pascal-5i (CLIPSeg and ViT-
Seg trained on PhraseCut+).

t vis. backb. mIoU IoUBIN AP

CLIPSeg (COCO) 0.1 ViT (CLIP) 33.2 58.4 40.5
CLIPSeg (COCO+N) 0.1 ViT (CLIP) 33.3 59.1 41.7
CLIP-Deconv (COCO+N) 0.1 ViT (CLIP) 29.8 56.8 40.8
ViTSeg (COCO) 0.1 ViT (IN) 14.4 46.1 15.7

PPNet [39] RN50 29.0 - -
RePRI [57] RN50 34.0 - -
PFENet [40] RN50 35.8 - -
HSNet [55] RN50 39.2 68.2 -

HSNet [55] RN101 41.2 69.1 -

Table 6. One-shot performance on COCO-20i (CLIPSeg trained
on PhraseCut), +N indicates 10% negative samples.

Pascal-5i t vis. backb. mIoU IoUBIN AP

CLIPSeg (PC+) 0.3 ViT (CLIP) 72.4 83.1 93.5
CLIPSeg (PC) 0.3 ViT (CLIP) 70.3 81.6 84.8
CLIP-Deconv (PC+) 0.3 ViT (CLIP) 63.2 77.3 85.3
ViTSeg (PC+) 0.2 ViT (IN) 39.0 59.0 62.4

LSeg [58] ViT (CLIP) 52.3 67.0 -
PFENet [40] VGG16 54.2 - -

Table 7. Zero-shot performance on Pascal-5i. The scores were ob-
tained by following the evaluation protocol of one-shot segmenta-
tion but using text input.

HSNet (and PFENet) are explicitly designed for one-shot
segmentation, rely on pre-trained CNN activations and can-
not handle text by default: Tian et al. [40] extended PFENet
to zero-shot segmentation (but used the one-shot protocol)
by replacing the visual sample with word vectors [1, 56] of
text labels. In that case, CLIPSeg outperforms their scores
by a large margin (Tab. 7).

5.4. One Model For All: Generalized Prompts

We have shown that CLIPSeg performs well on a variety
of academic segmentation benchmarks. Next, we evaluate
its performance “in the wild” in unseen situations.

Affordances Attributes Meronymy
mIoU AP mIoU AP mIoU AP

CLIPSeg (PC+) 36.9 50.5 26.6 43.0 25.7 29.0
CLIPSeg (LVIS) 37.7 44.6 18.4 16.6 18.9 13.8
CLIP-Deconv 32.2 43.7 23.1 35.6 21.1 27.1
VITSeg (PC+) 19.2 23.5 26.8 28.0 18.4 15.9

Table 8. Performance for generalized prompts. While the PC+-
model has seen prompts during training (colliding prompts with
test set were removed), the LVIS version was trained on object
classes only and is able to generalize due to the CLIP backbone.
We use the best threshold t for each model.

Qualitative Results In Fig. 4 we show qualitative results
divided into two groups: (1, left) Affordance-like [59, 60]
(“generalized”) prompts that are different from the descrip-
tive prompts of PhraseCut and (2, right) prompts that were
taken from the PhraseCut test set. For the latter we add
challenging extra prompts involving an existing object but
the wrong color (indicated in orange). Generalized prompts,
which deviate from the PhraseCut training set by referring
to actions (“‘something to ...”) or rare object classes (“‘cut-
lery”) work surprisingly well given that the model was not
trained on such cases. It has learned an intuition of stuff that
can be stored away in cupboards, where sitting is possible
and what “living creature” means. Rarely, false positives
are generated (the bug in the salad is not a cow). Details in
the prompt are reflected by the segmentation (blue boxes)
and information about the color influences predicted object
probabilities strongly (orange box).

Systematic Analysis To quantitatively assess the perfor-
mance for generalized queries, we construct subsets of the
LVIS test datasets containing only images of classes that
correspond to affordances or attributes. Then we ask our
model to segment with these affordances or attributes as
prompts. For instance, we compute the foreground inter-
section of union between armchair, sofa and loveseat ob-
jects when “sit on” is used as prompt. A complete list
of which affordances or attributes are mapped onto which
objects can be found in the appendix. We find (Tab. 8)
that the CLIPSeg version trained on PC+ performs better
than the CLIP-Deconv baseline and the version trained on
LVIS, which contains only object labels instead of com-
plex phrases. This result suggests that both dataset variabil-
ity and model complexity are necessary for generalization.
ViTSeg performs worse, which is expected as it misses the
strong CLIP backbone, known for its generalization capa-
bilities.

5.5. Ablation Study

In order to identify crucial factors for the performance
of CLIPSeg, we conduct an ablation study on PhraseCut
(Tab. 9). We evaluate text-based and visual prompt-based
performance (obtained using our modifications on Phrase-
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Figure 4. Qualitative predictions of CLIPSeg (PC+) for various prompts, darkness indicates prediction strength. The generalized prompts
(left) deviate from the PhraseCut prompts as they involve action-related properties or new object names.

Text-based Visual-based
mIoU AP mIoU AP

CLIPSeg (PC+) 43.6 76.7 25.4 55.6
no CLIP pre-training 13.1 12.6 12.7 -
no visual 46.4 77.8 14.4 31.0
D = 16 37.4 71.5 24.7 51.2
only layer 3 31.9 64.9 21.5 48.6
highlight mask 43.4 75.4 23.3 43.8

Table 9. Ablation study conducted on PhraseCut, involving text
(left) and visual prompts (right) at test time. We use the best
threshold t for each model.

Cut) separately for a complete picture. Both text-based and
visual performance drops when random weights instead of
CLIP weights are used (“no CLIP pre-training”). When the
number of parameters is reduced to 16 (“D = 16”) per-
formance decreases substantially, which indicates the im-
portance of the information processing in the decoder. Us-
ing an unfavourable visual prompting technique (“highlight
mask”) degrades performance on visual input, which sup-
ports our findings from Sec. 4. Using only early activations
from layer 3 decreases performance (“only layer 3”), from
which we conclude that higher level features of CLIP are
useful for segmentation. Training without visual samples
(“no visual”) decreases the performance on visual samples,
which is expected as visual and text vectors do not align
perfectly. The gap in text-based performance to the hybrid
version (PC+) is negligible.

6. Conclusion
We presented the CLIPSeg image segmentation ap-

proach that can be adapted to new tasks by text or image

prompts at inference time instead of expensive training on
new data. Specifically, we investigated the novel visual
prompt engineering in detail and demonstrated competitive
performance on referring expression, zero-shot and one-
shot image segmentation tasks. Beyond that, we showed –
both qualitatively and quantitatively – that our model gen-
eralizes to novel prompts involving affordances and prop-
erties. We expect our method to be useful, especially for
inexperienced users for building a segmentation model by
specifying prompts and in robotic setups when interaction
with humans is desired. We believe that tackling multi-
ple tasks is a promising direction for future research toward
more generic and real-world compatible vision systems. In
a wider context, our experiments, in particular the compar-
ison to the ImageNet-based ViTSeg baseline, highlight the
power of foundation models like CLIP for solving several
tasks at once.

Limitations Our experiments are limited to only a small
number of benchmarks, in future work more modalities
such as sound and touch could be incorporated. We depend
on a large-scale dataset (CLIP) for pre-training. Note, we do
not use the best-performing CLIP model ViT-L/14@336px
due to weight availability. Furthermore, our model focuses
on images, an application to video might suffer from miss-
ing temporal consistency. Image size may vary but only
within certain limits (for details see supplementary).

Broader Impact There is a chance that the model repli-
cates dataset biases from PhraseCut but especially from the
unpublished CLIP training dataset. Provided models should
be used carefully and not in tasks depicting humans. Our
approach enables adaptation to new tasks without energy-
intensive training.
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