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Figure 1. We use Denoising Diffusion Probabilistic Models (DDPM) for inpainting. The process is conditioned on the masked input
(left). It starts from a random Gaussian noise sample that is iteratively denoised until it produces a high-quality output. Since this process
is stochastic, we can sample multiple diverse outputs. The DDPM prior forces a harmonized image, is able to reproduce texture from other
regions, and inpaint semantically meaningful content.

Abstract

Free-form inpainting is the task of adding new content
to an image in the regions specified by an arbitrary bi-
nary mask. Most existing approaches train for a certain
distribution of masks, which limits their generalization ca-
pabilities to unseen mask types. Furthermore, training with
pixel-wise and perceptual losses often leads to simple tex-
tural extensions towards the missing areas instead of se-
mantically meaningful generation. In this work, we pro-
pose RePaint: A Denoising Diffusion Probabilistic Model
(DDPM) based inpainting approach that is applicable to
even extreme masks. We employ a pretrained unconditional
DDPM as the generative prior. To condition the genera-
tion process, we only alter the reverse diffusion iterations by

sampling the unmasked regions using the given image infor-
mation. Since this technique does not modify or condition
the original DDPM network itself, the model produces high-
quality and diverse output images for any inpainting form.
We validate our method for both faces and general-purpose
image inpainting using standard and extreme masks. Re-
Paint outperforms state-of-the-art Autoregressive, and GAN
approaches for at least five out of six mask distributions.
Github Repository: git.io/RePaint

1. Introduction
Image Inpainting, also known as Image Completion,

aims at filling missing regions within an image. Such in-
painted regions need to harmonize with the rest of the im-
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age and be semantically reasonable. Inpainting approaches
thus require strong generative capabilities. To this end,
current State-of-the-Art approaches [20, 39, 47, 50] rely on
GANs [8] or Autoregressive Modeling [32, 41, 48]. More-
over, inpainting methods need to handle various forms of
masks such as thin or thick brushes, squares, or even ex-
treme masks where the vast majority of the image is miss-
ing. This is highly challenging since existing approaches
train with a certain mask distribution, which can lead to
poor generalization to novel mask types. In this work, we
investigate an alternative generative approach for inpaint-
ing, aiming to design an approach that requires no mask-
specific training.

Denoising Diffusion Probabilistic Models (DDPM) is
an emerging alternative paradigm for generative mod-
elling [12, 37]. Recently, Dhariwal and Nichol [7] demon-
strated that DDPM can even outperform the state-of-the-art
GAN-based method [4] for image synthesis. In essence,
the DDPM is trained to iteratively denoise the image by re-
versing a diffusion process. Starting from randomly sam-
pled noise, the DDPM is then iteratively applied for a cer-
tain number of steps, which yields the final image sam-
ple. While founded in principled probabilistic modeling,
DDPMs have been shown to generate diverse and high-
quality images [7, 12, 27].

We propose RePaint: an inpainting method that solely
leverages an off-the-shelf unconditionally trained DDPM.
Specifically, instead of learning a mask-conditional gener-
ative model, we condition the generation process by sam-
pling from the given pixels during the reverse diffusion it-
erations. Remarkably, our model is therefore not trained
for the inpainting task itself. This has two important ad-
vantages. First, it allows our network to generalize to any
mask during inference. Second, it enables our network to
learn more semantic generation capabilities since it has a
powerful DDPM image synthesis prior (Figure 1).

Although the standard DDPM sampling strategy pro-
duces matching textures, the inpainting is often semanti-
cally incorrect. Therefore, we introduce an improved de-
noising strategy that resamples (RePaint) iterations to better
condition the image. Notably, instead of slowing down the
diffusion process [7], our approach goes forward and back-
ward in diffusion time, producing remarkable semantically
meaningful images. Our approach allows the network to
effectively harmonize the generated image information dur-
ing the entire inference process, leading to a more effective
conditioning on the given image information.

We perform experiments on CelebA-HQ [21] and Im-
ageNet [35], and compare with other State-of-the-Art in-
painting approaches. Our approach generalizes better and
has overall more semantically meaningful inpainted re-
gions.

2. Related Work

Early attempts on Image Inpainting or Image Comple-
tion exploited low-level cues within the input image [1–3],
or within the neighbor of a large image dataset [10] to fill
the missing region.
Deterministic Image Inpainting: Since the introduction
of GANs [8], most of the existing methods follow a stan-
dard configuration, first proposed by Pathak et al. [31], that
is, using an encoder-decoder architecture as the main in-
painting generator, adversarial training, and tailored losses
that aim at photo-realism. Follow-up works have produced
impressive results in recent years [15, 20, 29, 33, 49].

As image inpainting requires a high-level semantic con-
text, and to explicitly include it in the generation pipeline,
there exist hand-crafted architectural designs such as Di-
lated Convolutions [16, 44] to increase the receptive field,
Partial Convolutions [19] and Gated Convolutions [47] to
guide the convolution kernel according to the inpainted
mask, Contextual Attention [45] to leverage on global in-
formation, Edges maps [9, 26, 42, 43] or Semantic Segmen-
tation maps [14, 30] to further guide the generation, and
Fourier Convolutions [39] to include both global and lo-
cal information efficiently. Although recent works produce
photo-realistic results, GANs are well known for textural
synthesis, so these methods shine on background comple-
tion or removing objects, which require repetitive structural
synthesis, and struggle with semantic synthesis (Figure 5).
Diverse Image Inpainting: Most GAN-based Image In-
painting methods are prone to deterministic transformations
due to the lack of control during the image synthesis. To
overcome this issue, Zheng et al. [54] and Zhao et al. [52]
propose a VAE-based network that trade-offs between di-
versity and reconstruction. Zhao et al. [53], inspired by the
StyleGAN2 [18] modulated convolutions, introduces a co-
modulation layer for the inpainting task in order to improve
both diversity and reconstruction. A new family of auto-
regressive methods [32, 41, 48], which can handle irregular
masks, has recently emerged as a powerful alternative for
free-form image inpainting.
Usage of Image Prior: In a different direction closer to
ours Richardson et al. [34] exploits the StyleGAN [17] prior
to successfully inpaint missing regions. However, similar
to super-resolution methods [5, 25] that leverage the Style-
GAN latent space, it is to limited specific scenarios like
faces. Noteworthy, a Ulyanov et al. [40] showed that the
structure of a non-trained generator network contains an in-
herent prior that can be used for inpaining and other ap-
plications. In contrast to these methods, we are leveraging
on the high expressiveness of a pretrained Denoising Dif-
fusion Probabilistic Model [12] (DDPM) and therefore use
it as a prior for generic image inpainting. Our method gen-
erates very detailed, high-quality images for both seman-
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tically meaningful generation and texture synthesis. More-
over, our method is not trained for the image inpainting task,
and instead, we take full advantage of the prior DDPM, so
each image is optimized independently.

Image Conditional Diffusion Models: The work by Sohl-
Dickstein et al. [37] applied early diffusion models to in-
painting. More recently, Song et al. [38] develop a score-
based formulation using stochastic differential equations for
unconditional image generation, with an additional applica-
tion to inpainting. However, both these works only show
qualitative results, and do not compare with other inpaint-
ing approaches. In contrast, we aim to advance the state-
of-the-art in image inpainting, and provide comprehensive
comparisons with the top competing methods in literature.

A different line of research is guided image synthe-
sis with DDPM-based approaches [6, 24]. In the case of
ILVR [6], a trained diffusion model is guided using the low-
frequency information from a conditional image. However,
this conditioning strategy cannot be adopted for inpainting,
since both high and low-frequency information is absent
in the masked-out regions. Another approach for image-
conditional synthesis is developed by [24]. Guided gener-
ation is performed by initializing the reverse diffusion pro-
cess from the guiding image at some intermediate diffusion
time. An iterative strategy, repeating the reverse process
several times, is further adopted to improve harmonization.
Since a guiding image is required to start the reverse pro-
cess at an intermediate time step, this approach is not ap-
plicable to inpainting, where new image content needs to
be generated solely conditioned on the non-masked pixels.
Furthermore, the resampling strategy proposed in this work
differs from the concurrent [24]. We proceed through the
full reverse diffusion process, starting at the end time, at
each step jumping back and forth a fixed number of time
steps to progressively improve generation quality.

While we propose a method that conditions an un-
conditionally trained model, the concurrent work [28] is
based on classifier-free guidance [13] for training an image-
conditional diffusion model. Another direction for image
manipulation is image-to-image translation using diffusion
models as explored in the concurrent work [36]. It trains
an image-conditional DDPM, and shows an application to
inpainting. Unlike both these concurrent works, we lever-
age an unconditional DDPM and only condition through the
reverse diffusion process itself. It allows our approach to
effortlessly generalize to any mask shape for free-form in-
painting. Moreover, we propose a sampling schedule for the
reverse process, which greatly improves image quality.

3. Preliminaries: Denoising Diffusion Proba-
bilistic Models

In this paper, we use diffusion models [37] as a genera-
tive method. As other generative models, the DDPM learns
a distribution of images given a training set. The inference
process works by sampling a random noise vector xT and
gradually denoising it until it reaches a high-quality output
image x0. During training, DDPM methods define a diffu-
sion process that transforms an image x0 to white Gaussian
noise xT ∼ N (0, 1) in T time steps. Each step in the for-
ward direction is given by,

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

The sample xt is obtained by adding i.i.d. Gaussian noise
with variance βt at timestep t and scaling the previous sam-
ple xt−1 with

√
1− βt according to a variance schedule.

The DDPM is trained to reverse the process in (1). The
reverse process is modeled by a neural network that pre-
dicts the parameters µθ(xt, t) and Σθ(xt, t) of a Gaussian
distribution,

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

The learning objective for the model (2) is derived by con-
sidering the variational lower bound,

E [− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
(3)

= Eq

[
− log p(xT )−

∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

]
= L

As extended by Ho et al. [12], this loss can be further de-
composed as,

Eq

[
DKL(q(xT |x0) ∥ p(xT ))︸ ︷︷ ︸

LT

(4)

+
∑
t>1

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]

Importantly the term Lt−1 trains the network (2) to per-
form one reverse diffusion step. Furthermore, it al-
lows for a closed from expression of the objective since
q(xt−1|xt,x0) is also Gaussian [12].

As reported by Ho et al. [12], the best way to parametrize
the model is to predict the cumulative noise ϵ0 that is added
to the current intermediate image xt. Thus, we obtain the
following parametrization of the predicted mean µθ(xt, t),

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(5)
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Figure 2. Overview of our approach. RePaint modifies the stan-
dard denoising process in order to condition on the given image
content. In each step, we sample the known region (top) from the
input and the inpainted part from the DDPM output (bottom).

From Lt−1 in (4), the following simplified training objec-
tive is derived by Ho et al. [12],

Lsimple = Et,x0,ϵ

[
||ϵ− ϵθ(xt, t)||2

]
(6)

As introduced by Nichol and Dhariwal [27], learning the
variance Σθ(xt, t) in (2) of the reverse process helps to re-
duce the number of sampling steps by an order of magni-
tude. They, therefore, add the variational lower bound loss.
Specifically, we base our training and inference approach
on the recent work [7], which further reduced the inference
time by factor four.

To train the DDPM, we need a sample xt and corre-
sponding noise that is used to transform x0 to xt. By us-
ing the independence property of the noise added at each
step (1), we can calculate the total noise variance as ᾱt =∏t

s=1(1−βs). We can thus rewrite (1), as a single step,

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (7)

It allows us to efficiently sample pairs of training data to
train a reverse transition step.

4. Method
In this section, we first present our approach for con-

ditioning the reverse diffusion process of an unconditional
DDPM for image inpainting in Section 4.1. Then, we intro-
duce an approach to improve the reverse process itself for
inpainting in Section 4.2.

4.1. Conditioning on the known Region

The goal of inpainting is to predict missing pixels of an
image using a mask region as a condition. In the remain-
ing of the paper, we consider a trained unconditional de-
noising diffusion probabilistic model (2). We denote the
ground truth image as x, the unknown pixels as m⊙ x and
the known pixels as (1−m)⊙ x.

Since every reverse step (2) from xt to xt−1 depends
solely on xt, we can alter the known regions (1 −m) ⊙ xt

as long as we keep the correct properties of the correspond-
ing distribution. Since the forward process is defined by a
Markov Chain (1) of added Gaussian noise, we can sam-
ple the intermediate image xt at any point in time using (7).
This allows us to sample the know regions m ⊙ xt at any
time step t. Thus, using (2) for the unknown region and (7)
for the known regions, we achieve the following expression
for one reverse step in our approach,

xknown
t−1 ∼ N (

√
ᾱtx0, (1− ᾱt)I) (8a)

xunknown
t−1 ∼ N (µθ(xt, t),Σθ(xt, t)) (8b)

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1 (8c)

Thus, xknown
t−1 is sampled using the known pixels in the given

image m ⊙ x0, while xunknown
t−1 is sampled from the model,

given the previous iteration xt. These are then combined
to the new sample xt−1 using the mask. Our approach is
illustrated in Figure 2.

4.2. Resampling

When directly applying the method described in Sec-
tion 4.1, we observe that only the content type matches with
the known regions. For example, in Figure 3 n = 1, the in-
painted area is a furry texture matching the hair of the dog.
Although the inpainted region matches the texture of the
neighboring region, it is semantically incorrect. Therefore,
the DDPM is leveraging on the context of the known region,
yet it is not harmonizing it well with the rest of the image.
Next, we discuss possible reasons for this behavior.

From Figure 2, we analyze how the method is condition-
ing the known regions. As shown in (8), the model predicts
xt−1 using xt, which comprises the output of the DDPM (2)
and the sample from the known region. However, the sam-
pling of the known pixels using (7) is performed without
considering the generated parts of the image, which intro-
duces disharmony. Although the model tries to harmonize
the image again in every step, it can never fully converge
because the same issue occurs in the next step. Moreover,
in each reverse step, the maximum change to an image de-
clines due to the variance schedule of βt. Thus, the method
cannot correct mistakes that lead to disharmonious bound-
aries in the subsequent steps due to restricted flexibility. As
a consequence, the model needs more time to harmonize
the conditional information xknown

t−1 with the generated infor-
mation xunknown

t−1 in one step before advancing to the next
denoising step.

Since the DDPM is trained to generate an image that
lies within a data distribution, it naturally aims at produc-
ing consistent structures. In our resampling approach, we
use this DDPM property to harmonize the input of the
model. Consequently, we diffuse the output xt−1 back to
xt by sampling from (1) as xt ∼ N (

√
1− βtxt−1, βtI).

Although this operation scales back the output and adds
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Input n = 1 n = 2 n = 3 n = 4 n = 5 n = 10 n = 20

Figure 3. The effect of applying n sampling steps. The first example with n = 1 is the DDPM baseline, the second with n = 2 is with
one resample step. More resampling steps lead to more harmonized images. The benefit saturates at about n = 10 resamplings.

noise, some information incorporated in the generated re-
gion xunknown

t−1 is still preserved in xunknown
t . It leads to a new

xunknown
t which is both more harmonized with xknownt and

contains conditional information from it.
Since this operation can only harmonize one step, it

might not be able to incorporate the semantic information
over the entire denoising process. To overcome this prob-
lem, we denote the time horizon of this operation as jump
length, which is j = 1 for the previous case. Similar to
the standard change in diffusion speed [7] (a.k.a. slowing
down), the resampling also increases the runtime of the re-
verse diffusion. Slowing down applies smaller but more
resampling steps by reducing the added variance in each
denoising step. However, that is a fundamentally different
approach because slowing down the diffusion still has the
problem of not harmonizing the image, as described in our
resampling strategy. We empirically demonstrate this ad-
vantage of our approach in Sec. 5.6.

5. Experiments
We perform extensive experiments for face and generic

inpainting, compare to the state-of-the-art solutions, and
conduct an ablative analysis. In Section 5.3 and 5.4, we

Algorithm 1 Inpainting using our RePaint approach.

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: for u = 1, . . . , U do
4: ϵ ∼ N (0, I) if t > 1, else ϵ = 0
5: xknown

t−1 =
√
ᾱtx0 + (1− ᾱt)ϵ

6: z ∼ N (0, I) if t > 1, else z = 0

7: xunknown
t−1 = 1√

αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz

8: xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1

9: if u < U and t > 1 then
10: xt ∼ N (

√
1− βt−1xt−1, βt−1I)

11: end if
12: end for
13: end for
14: return x0
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Figure 4. CelebA-HQ Qualitative Results. Comparison against
the state-of-the-art methods for Face Inpainting over several mask
settings. Zoom-in for better details.

report a detailed discussion of mask robustness and diver-
sity, respectively. We also report with additional results,
analysis, and visuals in the supplement.
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5.1. Implementation Details

We validate our solution over the CelebA-HQ [21], and
Imagenet [35] datasets. As our method relies on a pre-
trained guided diffusion model [7], we use the provided Im-
ageNet model. For CelebA-HQ, we follow the same train-
ing hyper-parameters as for ImageNet. We use 256 × 256
crops in three batches on 4×V100 GPUs each. In contrast
to the pretrained ImageNet model, the CelebA-HQ one is
only trained for 250,000 iterations during roughly five days.
Note that all our qualitative and quantitative results in the
main paper are for 256 image size.

For our final approach, we use T = 250 timesteps, and
applied r = 10 times resampling with jumpy size j = 10.

5.2. Metrics

We compare our RePaint with the baseline methods in a
user study described as follows. The user is shown the input
image with the blanked missing regions. Next to this image,
we display two different inpainting solutions. The user is
asked to select “Which image looks more realistic?”. The
user thus evaluates the realism of our RePaint to the result of
a baseline. To avoid biasing the user towards an approach,
the methods were anonymized shown in a different random
order for each image. Moreover, each user was asked every
question twice and could only submit their answer if they
were consistent with themselves in at least 75% of their an-
swer. A self-consistency in 100% of the cases is often not
possible since, for example, the LaMa method can have a
very similar quality to RePaint on the mask settings they
provide. Our user study evaluates all 100 test images of
the test datasets CelebA-HQ and ImageNet for the follow-
ing masks: Wide, Narrow, Every Second Line, Half Image,
Expand, and Super-Resolve. We use the answers of five
different humans for every image query, resulting in 1000
votes per method-to-method comparison in each dataset and
mask setting, and show the 95% confidence interval next to
the mean votes. In addition to the user study, we report the
commonly reported perceptual metric LPIPS [51], which is
a learned distance metric based on the deep feature space
of AlexNet. We compute the LPIPS over the same 100 test
images used in the user study. The results are shown in
Table 1. Furthermore, please refer to the supplement for
additional quantitative results.

5.3. Comparison with State-of-the-Art

In this section, we first compare our approach against
state-of-the-art on standard mask distributions, commonly
employed for benchmarking. We then analyze the general-
ization capabilities of our method against other approaches.
To this end, we evaluate their robustness under four chal-
lenging mask settings. Firstly, two different masks that
probe if the methods can incorporate information from thin
structures. Secondly, two masks that require to inpaint a
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Figure 5. ImageNet Qualitative Results. Comparison against
the state-of-the-art methods for pluralistic inpainting methods over
different mask settings. Zoom-in for better details.

large connected area of the image. All quantitative results
are reported in Table 1 and visual results in Figure 4 and 5.
Methods: We compare our approach against several state-
of-the-art autoregressive-based or GAN-based approaches.
The autoregressive methods are DSI [32] and ICT [41],
and the GAN methods are DeepFillv2 [46], AOT [50], and
LaMa [39]. We use their publicly available pretrained mod-
els. We used the existing FFHQ [17] pretrained model of
ICT for our CelebA-HQ testing. As LaMa does not provide
ImageNet models, we trained their system for 300,000 iter-
ations of batch size five using the original implementation.
Settings: We use 100 images of size 256×256 from
CelebA-HQ [21] and ImageNet test sets. The resulting
LPIPS and the average votes of the user study are shown
in Table 1. Additionally, refer to the supplement for quali-
tative and quantitative results over the Places2 [55] dataset.
Wide and Narrow masks: To validate our method on the
standard image inpainting scenario, we use the LaMa [39]
settings for Wide and Narrow masks. RePaint outperforms
all other methods with a significance margin of 95% in both
CelebA-HQ and ImageNet, for both Wide and Narrow set-
tings. See qualitative results in Figure 4 and 5 and quantita-
tive in Table 1. The best autoregressive method ICT seems
to have less global consistency as observed in Figure 4 in the
second row, where the eyes do not to match well. In general,
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CelebA-HQ Wide Narrow Super-Resolve 2× Altern. Lines Half Expand
Methods LPIPS↓ Votes [%] LPIPS↓ Votes [%] LPIPS↓ Votes [%] LPIPS↓ Votes [%] LPIPS↓ Votes [%] LPIPS↓ Votes [%]

AOT [50] 0.104 11.6± 2.0 0.047 12.8± 2.1 0.714 1.1± 0.6 0.667 2.4± 1.0 0.287 9.0± 1.8 0.604 8.3± 1.7
DSI [32] 0.067 16.0± 2.3 0.038 22.3± 2.6 0.128 5.5± 1.4 0.049 5.1± 1.4 0.211 4.5± 1.3 0.487 4.7± 1.3
ICT [41] 0.063 27.6± 2.8 0.036 30.9± 2.9 0.483 4.2± 1.2 0.353 0.7± 0.5 0.166 12.7± 2.1 0.432 8.8± 1.8
DeepFillv2 [46] 0.066 23.9± 2.6 0.049 21.0± 2.5 0.119 9.8± 1.8 0.049 10.6± 1.9 0.209 4.1± 1.2 0.467 13.1± 2.1
LaMa [39] 0.045 41.8± 3.1 0.028 33.8± 3.0 0.177 5.5± 1.4 0.083 20.6± 2.5 0.138 35.6± 3.0 0.342 24.7± 2.7
RePaint 0.059 Reference 0.028 Reference 0.029 Reference 0.009 Reference 0.165 Reference 0.435 Reference

ImageNet Wide Narrow Super-Resolve 2× Altern. Lines Half Expand
Methods LPIPS↓ Votes [%] LPIPS↓ Votes [%] LPIPS↓ Votes [%] LPIPS↓ Votes [%] LPIPS↓ Votes [%] LPIPS↓ Votes [%]

DSI [32] 0.117 31.7± 2.9 0.072 28.6± 2.8 0.153 26.9± 2.8 0.069 23.6± 2.6 0.283 31.4± 2.9 0.583 9.2± 1.8
ICT [41] 0.107 42.9± 3.1 0.073 33.0± 2.9 0.708 1.1± 0.6 0.620 6.6± 1.5 0.255 51.5± 3.1 0.544 25.6± 2.7
LaMa [39] 0.105 42.4± 3.1 0.061 33.6± 2.9 0.272 13.0± 2.1 0.121 9.6± 1.8 0.254 41.1± 3.1 0.534 20.3± 2.5
RePaint 0.134 Reference 0.064 Reference 0.183 Reference 0.089 Reference 0.304 Reference 0.629 Reference

Table 1. CelebA-HQ (top) and ImageNet (bottom) Quantitative Results. Comparison against the state-of-the-art methods. We compute
the LPIPS (lower is better) and Votes for six different mask settings. Votes refers to the ratio of votes with respect to ours.

the best GAN approach LaMa [39] has better global con-
sistency, yet it produces notorious checkerboard artifacts.
Those observations might have influenced the users to vote
for RePaint for the majority of images, in which our method
generates more realistic images.
Thin Masks: Similar to a Nearest-Neighbor Super Resolu-
tion problem, the “Super-Resolution 2×” mask only leaves
pixels with a stride of 2 in height and width dimension, and
the “Alternating Lines” mask removes the pixels every sec-
ond row of an image. As seen in Figure 4 and 5, AOT [50]
fails completely, while the others either produce blurry im-
ages or generate visible artifacts, or both. These observa-
tions are also confirmed by the user study, where RePaint
achieves between 73.1% and 99.3% of the user votes.
Thick Masks: The “Expand” mask only leaves a center
crop of 64× 64 from a 256× 256 image, and “Half” mask,
which provides the left half of the image as input. As there
is less contextual information, most of the methods struggle
(see Figure 4 and 5). Qualitatively, LaMa comes closer to
ours, yet our generated images are sharper and have over-
all more semantic hallucination. Noteworthy, LaMa outper-
forms RePaint in therms of LPIPS on “Expand” and “Half”
for both CelebA and ImageNet (Tab. 1). We argue that this
behavior is due to our method being more flexible and di-
verse in the generation. By generating a semantically differ-
ent image than that in the Ground-Truth, it makes the LPIPS
an unsuitable metric for this particular solution.

The artifacts produced by the baselines can be explained
by strong overfitting to the training masks. In contrast, as
our method does not involve mask training, our RePaint
can handle any type of mask. In the case of large-area in-
painting, RePaint produces a semantically meaningful fill-
ing, while others generate artifacts or copy texture. Finally,
RePaint is preferred by the users with confidence 95% ex-
cept for the inconclusive result of ICT with “Half” masks
as shown in Table 1.

Input Apple Samples Head Cabbage Broccoli Cauliflower Knot

Figure 6. Visual results for class guided generation on ImageNet.

5.4. Analysis of Diversity

As shown in (2), every reverse diffusion step is in-
herently stochastic since it incorporates new noise from a
Gaussian Distribution. Moreover, as we do not directly
guide the inpainted area with any loss, the model is, there-
fore, free to inpaint anything that semantically aligns with
the training set. Figure 1 illustrates the diversity and flexi-
bility of our model.

5.5. Class conditional Experiment

The pretrained ImageNet DDPM is capable of class-
conditional generation sampling. In Figure 6 we show
examples for the “Expand” mask for the “Granny Smith”
class, as well as other classes.

5.6. Ablation Study

Comparison to slowing down: To analyze if the increased
computational budget causes the improved performance of
resampling, we compare it with the commonly used tech-
nique of slowing down the diffusion process as described in
Section 4.2. Therefore, in Figure 7 and Table 2, we show a
comparison resampling and the slow down in diffusion us-
ing the same computational budget for each setting. We ob-
serve that the resampling uses the extra computational bud-
get for harmonizing the image, whereas there is no visible
improvement at slowing down the diffusion process.
Jumps Length: Moreover, to ablate the jump lengths j
and the number of resampling r, we study nine different
settings in Table 3. We obtain better performance at apply-
ing the larger jump j = 10 length than smaller step length

11467



T r LPIPS T r LPIPS T r LPIPS T r LPIPS

Slowing down 250 1 0.168 500 1 0.167 750 1 0.179 1000 1 0.161
Resampling 250 1 0.168 250 2 0.148 250 3 0.142 250 4 0.134

Table 2. Analysis of the use of computational budget. We com-
pare slowing down the diffusion process and resampling. We use
the ImageNet validation set with 32 images over the LaMa [39]
Wide mask setting. The number of diffusion steps is denoted by
T , and the number of resamplings by r.
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Input T=250, r=1 T=500, r=1 T=750, r=1 T=1000, r=1

R
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Figure 7. Qualitative Analysis of the use of computational bud-
get. RePaint produces higher visual quality with the same compu-
tational budget by resampling (bottom) compared to slowing down
the diffusion process (top). The number of diffusion steps is de-
noted by T and resamplings by r.

steps. We observe that for jump length j = 1, the DDPM is
more likely to output a blurry image. Furthermore, this ob-
servation is stable across different numbers of resampling.
Furthermore, the number of resamplings increases the per-
formance.
Comparison to alternative sampling strategy: To com-
pare our resampling approach to SDEdit [24], we first per-
form reverse diffusion from t = T to t = T/2 to obtain
the required initial inpainting at t = T/2. We then apply
the resampling method from SDEdit, which repeats the re-
verse process from t = T/2 to t = 0 several times. The
results are shown in Table 4. Our approach achieves signif-
icantly better performance across all mask types except for
one “Expand” case, where LPIPS > 0.6 is outside a mean-
ingful range for comparisons. In case of ‘super-resolution
masks’, our approach reduces the LPIPS by over 53% on all
datasets, clearly demonstrating the advantage of our resam-
pling strategy.

j = 1 j = 5 j = 10
r LPIPS Votes [%] LPIPS Votes [%] LPIPS Votes [%]

5 0.075 42.50±7.7 0.072 46.88±7.8 0.073 53.12±7.8
10 0.088 42.50±7.7 0.073 45.62±7.8 0.068 56.25±7.8
15 0.065 46.25±7.8 0.063 53.12±5.5 0.065 53.75±7.8

Table 3. Ablation Study. Analysis of length of the jumps j and
number of resamplings r. We report LPIPS and the average user-
study votes with respect to LaMa [39]. We use 32 images from the
CelebA validation set, and use the LaMa Wide mask setting.

Dataset Method Wide Narrow Super-Res. Alt. Lin. Half Expand

ImageNet SDEdit [24] 0.1532 0.0952 0.3902 0.1852 0.3272 0.6281
RePaint (Ours) 0.1341 0.0641 0.1831 0.0891 0.3041 0.6292

Places2 SDEdit [24] 0.1302 0.0622 0.2712 0.1302 0.3042 0.6202
RePaint (Ours) 0.1051 0.0441 0.0991 0.0511 0.2861 0.6151

CelebA-HQ SDEdit [24] 0.0762 0.0462 0.1132 0.0302 0.1892 0.4492
RePaint (Ours) 0.0591 0.0281 0.0291 0.0091 0.1651 0.4351

Table 4. Comparison with the resampling schedule proposed
in [24] in terms of LPIPS. The resampling method proposed in
our RePaint (Sec. 4.2) achieves substantially better results, in par-
ticular for the Super-Resolution masks.

6. Limitations
Our method produces sharp, highly detailed, and seman-

tically meaningful images. We believe that our work opens
interesting research directions for addressing the current
limitations of the method. Two directions are of particu-
lar interest. First, naturally, the per-image DDPM optimiza-
tion process is significantly slower than the GAN-based and
Autoregressive-based counterparts. That makes it currently
difficult to apply it for real-time applications. Nonetheless,
DDPM is gaining in popularity, and recent publications are
working on improving the efficiency [22,23]. Secondly, for
the extreme mask cases, RePaint can produce realistic im-
ages completions that are very different from the Ground
Truth image. That makes the quantitative evaluation chal-
lenging for those conditions. An alternative solution is to
employ the FID score [11] over a test set. However, a reli-
able FID for inpainting is usually computed with more than
1,000 images. For current DDPM, this would result in a
runtime that is not feasible for most research institutes.

7. Potential Negative Societal Impact
On the one hand, RePaint is an inpainting method that

relies on an unconditional pretrained DDPM. Therefore, the
algorithm might be biased towards the dataset on which it
was trained. Since the model aims to generate images of
the same distribution as the training set, it might reflect the
same biases, such as gender, age, and ethnicity. On the other
hand, RePaint could be used for the anonymization of faces.
For example, one could remove the information about the
identity of people shown at public events and hallucinate
artificial faces for data protection.

8. Conclusions
We presented a novel denoising diffusion probabilistic

model solution for the image inpainting task. In detail, we
developed a mask-agnostic approach that widely increases
the degree of freedom of masks for the free-form inpaint-
ing. Since the novel conditioning approach of RePaint com-
plies with the model assumptions of a DDPM, it produces a
photo-realistic image regardless of the type of the mask.
Acknowledgements: This work was supported by the ETH
Zürich Fund (OK), a Huawei Technologies Oy (Finland)
project, and an Nvidia GPU grant.
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