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Abstract

3D visual grounding aims to locate the referred target
object in 3D point cloud scenes according to a free-form
language description. Previous methods mostly follow a
two-stage paradigm, i.e., language-irrelevant detection and
cross-modal matching, which is limited by the isolated ar-
chitecture. In such a paradigm, the detector needs to sample
keypoints from raw point clouds due to the inherent proper-
ties of 3D point clouds (irregular and large-scale), to gen-
erate the corresponding object proposal for each keypoint.
However, sparse proposals may leave out the target in de-
tection, while dense proposals may confuse the matching
model. Moreover, the language-irrelevant detection stage
can only sample a small proportion of keypoints on the
target, deteriorating the target prediction. In this paper,
we propose a 3D Single-Stage Referred Point Progressive
Selection (3D-SPS) method, which progressively selects
keypoints with the guidance of language and directly lo-
cates the target. Specifically, we propose a Description-
aware Keypoint Sampling (DKS) module to coarsely focus
on the points of language-relevant objects, which are sig-
nificant clues for grounding. Besides, we devise a Target-
oriented Progressive Mining (TPM) module to finely con-
centrate on the points of the target, which is enabled by
progressive intra-modal relation modeling and inter-modal
target mining. 3D-SPS bridges the gap between detection
and matching in the 3D visual grounding task, localizing the
target at a single stage. Experiments demonstrate that 3D-
SPS achieves state-of-the-art performance on both ScanRe-
fer and Nr3D/Sr3D datasets.

1. Introduction
Visual Grounding (VG) aims to localize the target ob-

ject in the scene based on an object-related linguistic de-
scription. In recent years, the 3D VG task has received
increasing attention owing to its wide applications, such
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Figure 1. Traditional two-stage 3D VG methods are limited by the
isolation of the detection stage and the matching stage. (a) Sparse
proposals may leave out the target in detection. (b) Dense
proposals could confuse the matching model. (c) 3D-SPS progres-
sively selects keypoints (blue points→red points→green points)
and performs referring at a single stage. Noted that dense surfaces
are utilized only to help readers understand the example 3D scene,
while the input of our method only contains sparse point clouds.

as autonomous robots and human-machine interaction in
AR/VR/Metaverse. Even though much progress [29,33–38,
40, 41, 43] has been achieved in the 2D VG task, it is still
challenging to locate the referred target object in 3D scenes
since point clouds are irregular and large-scale.

Existing 3D VG methods [2, 7, 11, 39, 42, 44] are mainly
based on the detection-then-matching two-stage pipeline.
The first stage is language-irrelevant detection, where gen-
eral 3D object detectors [4, 20, 23] are adopted to produce
numerous object proposals. The second stage is cross-
modal matching, where specific vision-language attention
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mechanisms are usually designed to match the proposal and
the description. Previous methods primarily focus on the
second stage, i.e., exploring relations among proposals to
distinguish the target object.

We argue that the separation of the two stages limits the
existing methods. Previous 2D detection methods adopt
data-independent anchor boxes as proposals on regular and
well-organized images. However, the anchor-based fashion
is generally impractical for the large-scale and irregular 3D
point clouds. Consequently, the 3D detector utilized in the
first stage needs to sample a limited number of keypoints to
represent the whole scene and generate the corresponding
proposal for each keypoint. However, sparse proposals may
leave out the target in the detection stage (e.g., the sofa chair
in Figure 1 (a)), which leads to the inability to locate the tar-
get in the matching stage. Meanwhile, dense proposals may
contain redundant objects, causing the inter-proposal rela-
tionship so complex that the matching module struggles to
distinguish the target. As shown in Figure 1 (b), it is difficult
to select the right sofa chair from these numerous proposals
with similar appearances. Therefore, the two-stage ground-
ing methods face a dilemma of deciding the proposal num-
ber. Besides, the keypoint sampling strategy (e.g., Farthest
Point Sampling (FPS) [25]) usually adopted in the detec-
tor at the first stage is also language-irrelevant. The strat-
egy aims to sample keypoints to cover the entire scene as
much as possible to detect all potential objects. Thus, the
proportion of target keypoints is relatively small, which is
unfavorable for the target prediction.

To address the aforementioned issues, we propose a
3D Single-Stage Referred Point Progressive Selection (3D-
SPS) method in this paper. Our main idea is to progres-
sively select keypoints under the guidance of the language
description throughout the whole process, as shown in Fig-
ure 1 (c). Based on this idea, we propose a Description-
aware Keypoint Sampling (DKS) module to coarsely fo-
cus on the points of language-relevant objects, e.g., sofa
chair, couch, and table in Figure 1 (c). These keypoints
provide significant clues for localizing the grounding target
in the following cross-modal interaction. Besides, we de-
vise a Target-oriented Progressive Mining (TPM) module,
which conducts progressive mining to finely figure out the
target. We leverage the self/cross-attention mechanism to
model intra/inter-modal relationships respectively. In addi-
tion, we fuse the keypoint features with point features of the
whole scene to achieve global localization perception. To
progressively select keypoints of the target, we utilize the
language-points cross-attention map to select the keypoints
that the language pays more attention to and discard irrele-
vant points. The model gradually concentrates on the target
and obtains a condensed set of keypoints through multiple
layers. Thus, the proportion of target points will gradually
increase with richer target-related features, which benefits

the target box regression. Finally, 3D-SPS distinguishes
the target from the condensed keypoint set and regresses its
bounding box. Note that 3D-SPS is also consistent with the
commonsense of how human finds the target object. Com-
monly, a human first selects a coarse candidate set accord-
ing to the language description and then finely recognize
and judge it to select the target object. [16, 31]

In summary, we make the following contributions:

• We propose the 3D-SPS method, which directly per-
forms 3D VG at a single stage to bridge the gap be-
tween detection and matching. To the best of our
knowledge, 3D-SPS is the first work investigating
single-stage 3D VG.

• We treat the 3D VG task as a keypoint selection prob-
lem. Two selection modules, i.e., DKS and TPM,
are designed to progressively select target-related key-
points. DKS samples the coarse language-relevant
keypoints, and TPM finely mines the cross-modal re-
lationship to distinguish the target.

• Extensive experiments confirm the effectiveness of our
method. 3D-SPS achieves the state-of-the-art per-
formance on both ScanRefer [2] and Nr3D/Sr3D [1]
datasets. The code is provided in https://
github.com/fjhzhixi/3D-SPS.

2. Related Work

Visual Grounding on 2D Images. The goal of visual
grounding on 2D images is to select a referred target ac-
cording to the referring expression [8,14,22,40]. Two main-
stream frameworks have been proposed in succession: two-
stage and one-stage methods. Specifically, two-stage meth-
ods [13, 19, 33–36, 40, 41, 43, 46] first generate region pro-
posals with object detectors and then select the target region
by matching the language features with the proposals. Each
proposal is treated the same in the matching stage, despite
their importance in the referring context varies. Besides,
one-stage methods [3,6,17,29,37,38] eliminate the proposal
generation and feature extraction stage in two-stage frame-
works. In these methods, linguistic features are densely
fused with each pixel or patch to generate multi-modal fea-
ture maps for regressing the bounding box.

However, one-stage methods in 2D VG could not be di-
rectly lifted to 3D VG. Firstly, 3D point clouds are numer-
ous and noisy. Therefore, it is computationally unaccept-
able [9, 10, 45] to treat each point as a candidate. Then,
due to the large-scale and complexity of 3D scenes, it is
not easy to model the relationship of all objects and figure
out the target [11, 39, 44]. Moreover, 2D one-stage meth-
ods adopt the sliding-window manner like [12, 30], which
cannot deal with 3D points since 2D input is highly regu-
lar while 3D points are inherently sparse, unordered, and
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Figure 2. 3D-SPS framework. We take the 3D VG task as a keypoint selection problem and avoid the separation of detection and
matching. Specifically, we use PointNet++ as the backbone to extract point seeds Pseed from Pcloud. After that, we coarsely sample the
language-relevant keypoints P0 by DKS with word features L0, which are mostly on the kitchen cabinets, refrigerator and oven in the
figure. Then, TPM finely selects target keypoints PT and predict referring confidence scores sr . Here the keypoints are concentrated on
the target kitchen cabinet. Finally, the target box is regressed from the keypoint with the highest sr in PT . The blue box is the ground
truth. The yellow boxes are objects of the same category as the target. The green box is our target prediction. Best viewed in color.

irregular [24, 25]. In this paper, we propose 3D-SPS to ad-
dress the problems introduced by 3D point clouds, which
becomes the leading 3D VG solution.
Visual Grounding on 3D Point Clouds. With the preva-
lence of deep learning technologies on 3D point clouds, the
3D VG task has attracted much attention. Chen et al. [2] re-
leased a 3D VG dataset ScanRefer, in which the bounding
boxes of objects are referred by their corresponding descrip-
tions in an indoor scene. ReferIt3D [1] also proposes two
datasets, i.e., Sr3D and Nr3D, for the 3D VG task.

Existing 3D VG works [2,7,11,15,28,39,42,44] mainly
focus on better modeling the relationship among objects to
locate the target object, e.g., adopting graph neural net-
work [15], and attention mechanisms [44]. To the best
of our knowledge, previous 3D grounding approaches can
generally be concluded into a detection-then-matching two-
stage framework. In these methods, the detection stage
fails to leverage the language context to concentrate on the
points that are more essential to the referring task. To over-
come those shortcomings, we propose the first single-stage
method in 3D VG to progressively select keypoints under
the guidance of the description.

3. Method

In this section, we detail the 3D-SPS method. In Sec 3.1,
we present an overview of 3D VG task and our method. In
Sec 3.2 and Sec 3.3, we dive into the technical details and

how we obtain the target by progressive keypoint selection.
In Sec 3.4, we introduce the training objectives of 3D-SPS.

3.1. Overview

In the 3D VG task, the inputs are the point clouds
Pcloud ∈ RN×(3+F ) and a free-form plain text description
D of the target object with W words, where Pcloud contains
3D coordinates and F -dimensional auxiliary feature (RGB,
normal vectors, etc.) of N points. The goal of this task is to
locate the target object (i.e., the most relevant object to the
description) and predict its bounding box.

The main idea of 3D-SPS is the progressive keypoint
selection process, as shown in Figure 2. Firstly, we
adopt a widely used PointNet++ [25] as the backbone net-
work to extract point features from Pcloud. The backbone
outputs M seed points with (x, y, z) coordinates and C-
dimensional enriched local features Pseed ∈ RM×(3+C).
Meanwhile, we use the language encoder to extract H-
dimensional word features L0 ∈ RW×H from W -length de-
scription D. Secondly, DKS module selects K0 language-
relevant keypoints with features P0 ∈ RK0×(3+C) from M
seed points based on word features L0. These keypoints
belong to the objects whose categories are mentioned in the
description, providing significant clues to distinguishing the
grounding target. Thirdly, TPM module takes point features
P0 and word features L0 as inputs. The t-th layer of the
TPM module takes Pt−1 and Lt−1 as inputs and outputs
Pt and Lt. TPM progressively distinguishes the grounding
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Figure 3. The DKS module. We use object confidence score so
to select points near object centers and description relevance score
sd to select language-relevant points.

target by multi-layer cross-modal transformers. We select
KT keypoints with features PT ∈ RKT×(3+C) and up-
date the word features as LT . Lastly, we predict the re-
ferring confidence score sr based on keypoint features PT

and cross-modally aligned word features LT by a simple
MLP head. The keypoint feature with the highest sr is used
to regress the bounding box of the grounding target as the
center c ∈ R3 and the size s ∈ R3.

By treating the 3D VG task as a keypoint selection prob-
lem, our 3D-SPS concentrates on distinguishing the key-
points of the target object from point clouds for predicting
the bounding box directly, which is more effective than tra-
ditional detection-then-matching two-stage methods.

3.2. Description-aware Keypoint Sampling

Since the search space of 3D anchor boxes is huge,
the data-independent anchor assignment strategy widely
adopted in 2D object detection [27] is impractical when
lifted to 3D [20]. To this end, most 3D object detection
methods [4, 20, 23] usually adopt sampling methods (e.g.,
FPS [25]) to sample keypoints from seed points and gener-
ate a proposal for each selected point. Existing detection-
then-matching methods for the 3D VG task usually use the
same strategy at the detection stage. However, directly
adopting the sampling strategy in detection to the 3D VG
task is not sensible because of the divergence of interest
of the two tasks. The sampling objective of 3D object de-
tection is to cover the entire scene as much as possible for
detecting potential objects, while the goal of 3D VG is to
locate the referred target.

Therefore, we propose DKS to help the model focus on
the keypoints of language-relevant objects instead of the
whole scene. Specifically, we bring word features into the
sampling process to select keypoints of the objects whose
categories are mentioned in the description. These key-
points contain the information of not only the target object
but also related objects to help determine the target.

Figure 3 details the DKS. We first obtain an object con-
fidence score so based on point features Pseed to clarify
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Figure 4. The TPM module. It is a two-stream cross-modal trans-
former model. We select the keypoints of the target based on the
language-points cross-attention map At at the t-th layer.

whether the point is near an object center. The keypoint
features Pobj with top ko highest so are selected as:

so = MLP(Pseed),

Pobj = Pseed [argtopk(so, ko)] .
(1)

Then a description relevance score sd is utilized to select
top kd keypoints as P0 that are related to the description
context L0. We jointly use point features Pobj and global
word features to predict the sd of each point, which can be
formulated as:

sd = MLP(Pobj || MaxPool(L0)),

P0 = Pobj [argtopk(sd, kd)] .
(2)

3.3. Target-oriented Progressive Mining

With the coarsely selected language-relevant keypoints
by DKS, we perform fine target mining with the TPM mod-
ule. TPM is constructed by a T -layer stacked multi-modal
two-stream transformer model, where both word features
and keypoint features are processed in separate streams and
interact through cross-modal attention layers to model the
relationship and mine the target. At the t-th layer, TPM
selects Pt from Pt−1. TPM progressively selects the key-
points and concentrates the attention by discarding target-
irrelevant keypoints in each layer.
Intra/inter-modal Modeling. As Figure 4 shows, we em-
ploy the attention mechanism [32] to learn intra-modal rela-
tionships. For point features, the point self-attention block
helps to refine point visual features and exploits their spatial
relationship. For word features, the language self-attention
block is used to extract context relationships.
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Specially, we leverage a point cross-attention block to
model the global location of keypoints in the scene be-
cause the interaction of selected keypoints could not well
model descriptions which include the global location like
“in the center/corner of room”. Therefore, the scene point
clouds Pseed (point features before DKS) are fused to ac-
quire global scene features.

Next, point features and word features interact in cross-
modal attention blocks. In these blocks, the points branch is
assisted by word features to distinguish the target, while the
language branch fuses the scene information by attending
to point features.
Attention-guided Keypoint Selection. TPM reduces the
keypoint set at each layer and gradually focuses on the tar-
get, as shown in Figure 4. We make use of the language-
points cross-attention map At, which represents the impor-
tance of keypoints to the referring task. Specifically, we
perform average pooling on At and obtain point-wise at-
tention scores ât ∈ RKt−1 . Then the keypoints with top kr
highest ât are selected for the next layer as follow:

ât = AvgPool(At),

Pt = Pt−1 [argtopk(ât, kr)] .
(3)

3.4. Training Objectives

Visual Grounding Loss. 3D VG loss LVG is the primary
loss of our framework. In the training phase, we supervise
referring confidence scores sr predicted from PT with the
target label. During inference, we only choose the keypoint
with the highest sr from PT to predict the target box. We
adapt the loss in ScanRefer [2] to our framework. In Scan-
Refer, the target label of sr is a one-hot label. The keypoint
whose proposal box has the highest IoU with the ground
truth target box is set to 1, and others are set to 0. However,
in 3D-SPS, we usually obtain several feasible keypoints of
the target after TPM since the model aims to select points
on it. Therefore, we modify this target label from one-hot
to multi-hot. Specifically, we assign 1 to keypoints whose
predicted boxes’ IoUs with the ground truth target box are
the top k1 highest and greater than the threshold θ.
DKS Loss. In the DKS module, we apply LDKS to super-
vise the object confidence score so and the description rel-
evance score sd with Focal Loss [18]. The so is supervised
by whether the point is inside an object box and belongs
to the k2-closest points to the object center. The sd is su-
pervised by whether the point belongs to any object whose
category is mentioned in the description.
Detection Loss. Following the loss used in [20,23], we use
the object detection loss LDet as an auxiliary loss for VG
task. Specifically, LDet comprises object semantic classifi-
cation loss LCls, objectness binary classification loss LObj,
center offset regression loss LCenter, and bounding box re-
gression loss LBox. In the training phase, we supervise the

box of objects predicted by all keypoints of each TPM layer.
During inference, we only use the box prediction of the key-
point with the highest sr from the last TPM layer as our
predicted grounding target.
Language Classification Loss. Following [2], we also in-
troduce the language classification loss LLang as an auxil-
iary loss, which includes a multi-class object classification
loss for the target category based on the updated language
features of each TPM layer.

In summary, the total loss is: L = α1LVG + α2LDKS +
α3LDet + α4LLang, where the weights α1, α2, α3, α4 are
used for balancing different loss terms.

4. Experiments
4.1. Datasets

ScanRefer. The ScanRefer dataset [2] is a 3D visual
grounding dataset with 51, 583 descriptions based on the
800 ScanNet [5] scenes. Each scene has 13.81 objects and
64.48 descriptions on average. The evaluation metric of the
dataset is the Acc@mIoU, which means the fraction of de-
scriptions whose predicted box overlaps the ground truth
with IoU > m, where m ∈ {0.25, 0.5}. The accuracy is
reported in unique and multiple categories. Specifically, a
target object is classified as unique if it is the only object of
its class in the scene; otherwise, it is classified as multiple.
Nr3D and Sr3D. The ReferIt3D dataset [1] is also based on
the ScanNet [5] scenes. It contains two subsets: Sr3D and
Nr3D. Sr3D (Spatial Reference in 3D) contains 83, 572 syn-
thetic expressions generated by templates and Nr3D (Natu-
ral Reference in 3D) consists of 41, 503 human expressions.
It directly provides segmented point clouds for each object
as inputs rather than the whole scene. The evaluation metric
of ReferIt3D is the accuracy, i.e., whether the model cor-
rectly selects the target among objects.

4.2. Implementation Details

Our model is trained end-to-end with the AdamW opti-
mizer [21] and a batch size of 32 for 32 epochs. The initial
learning rates of TPM layers and the rest of the model are
empirically set to 1e− 4 and 1e− 3, respectively. We apply
learning rate decay at epoch {16, 24, 28} with a rate of 0.1.
We adopt the pre-trained PointNet++ [25] following the set-
tings in [20] and the language encoder in [26], while the
rest of the network is trained from scratch. For the Scan-
Refer dataset, we use xyz coordinates, RGB values, normal
vectors, and extracted multiview features as inputs follow-
ing [2]. The number M of Pseed is empirically set to 1024.
The number K0 of P0 is empirically set to 512. The number
T of TPM layers is set to 4, and we select 50% keypoints in
each layer, i.e., {Kt|t ∈ {1, 2, 3, 4}} = {256, 128, 64, 32}.
The loss weights are empirically set to α1 = 0.1, α2 = 0.8,
α3 = 5, α4 = 0.1 for balancing terms. We set k1 to 4, θ to
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Method Pub. Input
Unique Multiple Overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

SCRC [14] CVPR16 2D only 24.03 9.22 17.77 5.97 18.70 6.45
One-stage [38] ICCV19 2D only 29.32 22.82 18.72 6.49 20.38 9.04
ScanRefer [2] ECCV20 3D only 67.64 46.19 32.06 21.26 38.97 26.10
TGNN [15] AAAI21 3D only 68.61 56.80 29.84 23.18 37.37 29.70
IntanceRefer [42] ICCV21 3D only 77.45 66.83 31.27 24.77 40.23 32.93
SAT [39] ICCV21 3D only 73.21 50.83 37.64 25.16 44.54 30.14
3DVG-Transformer [44] ICCV21 3D only 77.16 58.47 38.38 28.70 45.90 34.47
3D-SPS (Ours) - 3D only 81.63 64.77 39.48 29.61 47.65 36.43
ScanRefer [2] ECCV20 2D + 3D 76.33 53.51 32.73 21.11 41.19 27.40
InstanceRefer [42] ICCV21 2D + 3D 75.72 64.66 29.41 22.99 38.40 31.08
3DVG-Transformer [44] ICCV21 2D + 3D 81.93 60.64 39.30 28.42 47.57 34.67
3D-SPS (Ours) - 2D + 3D 84.12 66.72 40.32 29.82 48.82 36.98

Table 1. Comparison on ScanRefer. The unique stands for samples with no distracting objects and multiple for remaining samples. We
measure the percentage of predictions whose IoU with the ground truth is greater than {0.25, 0.5}.

Method Pub. Easy Hard View-dep. View-indep. Overall

Nr3D
ReferIt3DNet [1] ECCV20 43.6% ± 0.8% 27.9% ± 0.7% 32.5% ± 0.7% 37.1% ± 0.8% 35.6% ± 0.7%
TGNN [15] AAAI21 44.2% ± 0.4% 30.6% ± 0.2% 35.8% ± 0.2% 38.0% ± 0.3% 37.3% ± 0.3%
IntanceRefer [42] ICCV21 46.0% ± 0.5% 31.8% ± 0.4% 34.5% ± 0.6% 41.9% ± 0.4% 38.8% ± 0.4%
3DVG-Transformer [44] ICCV21 48.5% ± 0.2% 34.8% ± 0.4% 34.8% ± 0.7% 43.7% ± 0.5% 40.8% ± 0.2%
LanguageRefer [28] CoRL21 51.0% 36.6% 41.7% 45.0% 43.9%
SAT [39] ICCV21 56.3% ± 0.5% 42.4% ± 0.4% 46.9% ± 0.3% 50.4% ± 0.3% 49.2% ± 0.3%
3D-SPS (Ours) - 58.1% ± 0.3% 45.1% ± 0.4% 48.0% ± 0.2% 53.2% ± 0.3% 51.5% ± 0.2%

Sr3D
ReferIt3DNet [1] ECCV20 44.7% ± 0.1% 31.5% ± 0.4% 39.2% ± 1.0% 40.8% ± 0.1% 40.8% ± 0.2%
TGNN [15] AAAI21 48.5% ± 0.2% 36.9% ± 0.5% 45.8% ± 1.1% 45.0% ± 0.2% 45.0% ± 0.2%
IntanceRefer [42] ICCV21 51.1% ± 0.2% 40.5% ± 0.3% 45.4% ± 0.9% 48.1% ± 0.3% 48.0% ± 0.3%
3DVG-Transformer [44] ICCV21 54.2% ± 0.1% 44.9% ± 0.5% 44.6% ± 0.3% 51.7% ± 0.1% 51.4% ± 0.1%
LanguageRefer [28] CoRL21 58.9% 49.3% 49.2% 56.3% 56.0%
SAT [39] ICCV21 - - - - 57.9% ± 0.1%
3D-SPS (Ours) - 56.2% ± 0.6% 65.4% ± 0.1% 49.2% ± 0.5% 63.2% ± 0.2% 62.6% ± 0.2%

Table 2. Comparison on Nr3D and Sr3D. Easy samples contain no distractor, and the remaining belong to Hard. View-dep./View-indep.
refer to whether the description is dependent or independent on the camera view.

0.25 in LVG, and k2 to 5 in LDKS. All experiments are im-
plemented with PyTorch on a single NVIDIA V100 GPU.
More implementation details on the ReferIt3D dataset can
be obtained in the supplementary material.

4.3. Quantitative Comparison

In Table 1 and 2, we compare 3D-SPS with existing
3D VG works on ScanRefer and Nr3D/Sr3D datasets. The
methods involved are 2D-based methods SCRC [14] and
One-stage [38], the segmentation-based two-stage methods
TGNN [15] and InstanceRefer [42], the detection-based
two-stage methods SAT [39], 3DVG-Transformer [44],
ScanRefer [2], and ReferIt3DNet [1].

ScanRefer. 3D-SPS outperforms the existing methods by a
large margin, as shown in Table 1. In the Input column, 3D

only stands for xyz + RGB + normals, and 2D + 3D means
an extra 128-dimensional multiview feature for each point is
added to 3D only. We concatenate these multiview features
with our point features from the backbone and feed them
into TPM together. In the 3D only setting, 3D-SPS has im-
proved by +1.96% at Acc@0.5 and +1.75% at Acc@0.25
compared to the existing state-of-the-art methods. In the
2D+3D setting, 3D-SPS outperforms the existing methods
by 2.31% at Acc@0.5 and 1.25% at Acc@0.25.

Note that TGNN and InstanceRefer both rely on a pre-
fixed 3D instance segmentation model. Thus InstanceRefer
performs better on the Acc@0.5 score in the Unique subset.

Nr3D & Sr3D. The task of the ReferIt3D dataset (Nr3D
& Sr3D) is to identify the target object among the given
ground truth object bounding boxes. We modify 3D-SPS
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Figure 5. Effectiveness Validation. (a) As the point number
sampled from Pseed increases, our 3D-SPS performs better. The
performance of the two-stage baseline first increases and then de-
creases. (b) As the progressive language-relevant keypoint selec-
tion goes, the ratio of target keypoints in our 3D-SPS increases af-
ter each selection. Also, this ratio keeps outperforming language-
irrelevant sampling (e.g., FPS) used in the two-stage baseline.

Acc@0.25 Acc@0.5
FPS 43.83 31.88

DKS (w/o sd) 46.15 34.95
DKS (w/o so) 46.06 35.19

DKS 47.65 36.43

Table 3. Ablations on the sampling strategy of DKS.

T 1 2 3 4 5
Acc@0.25 45.37 45.99 46.48 47.65 47.02
Acc@0.5 33.13 33.97 34.53 36.43 36.07

Table 4. Ablations on the layer number T in TPM.

accordingly, removing DKS and only verifying the effec-
tiveness of TPM. For fair comparisons, we adopt 2D se-
mantic assisted training proposed by SAT [39] in the train-
ing process and only use 3D inputs in the inference process.
Results in Table 2 show progressive selection is effective for
referring tasks. 3D-SPS significantly improves the ground-
ing accuracy by +2.3% in Nr3D and +4.7% in Sr3D. Al-
though LanguageRefer performs better on the Easy subset
of the synthetic dataset Sr3D, 3D-SPS outperforms it by a
large margin on the more challenging Hard subset.

Effectiveness Validation. Figure 5 confirms that our main
idea, i.e., progressive keypoint selection, can address the is-
sues from the motivation in Sec. 1. We analyze 3D-SPS and
the two-stage method baseline [2] on the entire validation
set of ScanRefer. As shown in Figure 5 (a), the two-stage
baseline faces the dilemma of the point number sampled
from Pseed. In contrast, 3D-SPS benefits from more sam-
pled points. According to Figure 5 (b), the two-stage base-
line is limited by the small ratio of target keypoints due to
the language-irrelevant keypoint sampling, while the ratio
in 3D-SPS increases significantly after each selection.

Keypoints w/o selection w/ selection
Num 32 64 128 256 512 512 → 32

Acc@0.25 42.06 44.77 46.30 46.38 46.09 47.65
Acc@0.5 31.89 33.88 34.99 35.53 34.98 36.43

Table 5. Ablations of TPM on whether to select keypoints and
different keypoint numbers. Our default setting is w/ selection,
where we progressively select keypoints from 512 to 32.

4.4. Ablation Study

In this subsection, we investigate the contribution of the
proposed DKS and TPM module. We take ScanRefer as an
example and report the Overall accuracy in 3D only setting.
Sampling Strategy of DKS. Table 3 shows the ablations
of sampling strategy in the DKS module. FPS [25] is a
widely adopted point sampling method, which makes an ef-
fort to cover the whole scene without special attention to the
language-relevant points. DKS (w/o sd) means that only the
object confidence score so is utilized, and DKS (w/o so) rep-
resents that only the description relevance score sd is used.
DKS means that both so and sd are adopted and is the full
version of the proposed DKS module. According to the re-
sults in Table 3, so and sd are both beneficial to the refer-
ring task, helping DKS select description-related keypoints
near object centers. The joint use of so and sd can produce
promising results.
Layer Number of TPM. We investigate the performance
on different TPM layer numbers T ∈ {1, 2, 3, 4, 5}. As
shown in Table 4, more TPM layers bring higher accuracy,
which demonstrates that TPM and the progressive mining
are essential to grounding. We take T = 4 as the default
setting since more layers might force the model to leave
out some keypoints of the target object and miss the best
bounding box.
Progressive Selection of TPM. To further confirm the ef-
fectiveness of progressive keypoint selection, we compare
the results on whether to adopt keypoint selection, as shown
in Table 5. In detail, for the w/o selection setting, we only
conduct multi-modal self/cross-attention. In this way, the
number of keypoints does not change in TPM, and the pre-
dicted box is chosen from all keypoints after TPM. From
Table 5, with the increase of keypoint numbers, the perfor-
mance of the w/o selection setting rises at first and then de-
clines. 3D-SPS (w/ selection) achieves significant improve-
ment compared to the w/o selection settings. This observa-
tion proves the benefits of progressive keypoint selection.

4.5. Qualitative comparison

In this subsection, we perform a qualitative comparison
on ScanRefer validation set to show how 3D-SPS works.
Language-relevant Keypoints. We visualize the progres-
sive keypoint selection process of 3D-SPS in Figure 6 and
compare it with the two-stage baseline ScanRefer [2]. En-
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This sink is between
another sink and a paper
towel dispenser. A trash
can is besides the paper
towel dispenser.

This coffee table is in
front of a chair on the
left, and a small round
table on it's right. To
the left of the coffee
table is an orange stool.

On the wall hangs a
shelf. Beneath it is a
sink followed by
washing machines from
left to right.

Description Ground Truth 3D-SPS Two-stage Baseline

(a) P0 (b) PT (c) Pred. (d) P0 (e) Pred.

Figure 6. The two-stage baseline (ScanRefer) fails while our 3D-SPS predicts correctly since 3D-SPS can select more valuable keypoints.
(a) Language-relevant keypoints P0 sampled by DKS. (b) Target keypoints PT selected by TPM. (c) Bounding boxes predicted by 3D-
SPS. (d) Language-irrelevant keypoints sampled by FPS. (e) Bounding boxes predicted by ScanRefer.

Description: There is a square table. It is between two armchairs.Description: The black table is between two gray armchairs. 
Behind the black table are windows.

Description : this is a brown shelf. it is on the desk. Description: The object is a small set of shelf. It is sitting 
under the bed.

Ground Truth

Ground Truth

bed

desk

window

(a) P0 (b) PT (c) Pred. (a) P0 (b) PT (c) Pred.

(a) P0 (b) PT (c) Pred.(a) P0 (b) PT (c) Pred.

Figure 7. Visualization of the same referring target with different descriptions in 3D-SPS. (a) P0 sampled by DKS. Comparing the left
and right subfigures in each row, when the language-relevant objects change (e.g., window, desk, bed), 3D-SPS focuses on different
keypoints (red keypoints). (b) PT selected by TPM. (c) The predicted target bounding box.

abled by DKS and TPM, 3D-SPS gradually focuses on the
target. In contrast, the attention of ScanRefer is scattered
everywhere in the scene and ultimately fails to locate the
target due to the separation of detection and matching.
Language-adapted Keypoints. 3D-SPS selects different
keypoints for the same target with different descriptions. As
shown in Figure 7 (upper), to locate the table, 3D-SPS se-
lects some keypoints on the window for subsequent mining
when window is mentioned in the left sample. On the right,
when only armchairs is mentioned, 3D-SPS only selects
keypoints on armchairs and tables. In Figure 7 (lower), for
the target shelf, 3D-SPS finds more keypoints related to the
desk when the shelf is described as on the desk in the left
sample. When the description contains under the bed, the
model pays more attention to the bed.

5. Conclusion and Discussion
In this work, we propose a brand new 3D visual ground-

ing framework on point clouds named 3D Single-Stage Re-

ferred Point Progressive Selection method (3D-SPS). Under
the guidance of language, it progressively selects keypoints
following a coarse-to-fine pattern and directly localizes the
target at a single stage. Comprehensive experiments reveal
that our method outperforms the existing 3D VG methods
on both ScanRefer and Nr3D / Sr3D datasets by a large mar-
gin, leading to the new state-of-the-art performance.
Limitation. The limitation of 3D-SPS exists due to the
complexity of 3D point clouds and free-form description,
although we have made significant improvements on exist-
ing methods. The view-dependent descriptions and the am-
biguous queries can both confuse the model. These limita-
tions could guide our future work.
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