
How much does input data type impact final face model accuracy?

Jiahao Luo1 Fahim Hasan Khan1 Issei Mori2 Akila de Silva1 Eric Sandoval Ruezga1

Minghao Liu1 Alex Pang1 James Davis1
1University of California, Santa Cruz; 2University of California, San Diego

{jluo53,davisje}@ucsc.edu

Abstract

Face models are widely used in image processing and
other domains. The input data to create a 3D face model
ranges from accurate laser scans to simple 2D RGB pho-
tographs. These input data types are typically deficient
either due to missing regions, or because they are under-
constrained. As a result, reconstruction methods include
embedded priors encoding the valid domain of faces. Sys-
tem designers must choose a source of input data and then
choose a reconstruction method to obtain a usable 3D face.
If a particular application domain requires accuracy X,
which kinds of input data are suitable? Does the input data
need to be 3D, or will 2D data suffice? This paper takes a
step toward answering these questions using synthetic data.
A ground truth dataset is used to analyze accuracy obtain-
able from 2D landmarks, 3D landmarks, low quality 3D,
high quality 3D, texture color, normals, dense 2D image
data, and when regions of the face are missing. Since the
data is synthetic it can be analyzed both with and with-
out measurement error. This idealized synthetic analysis is
then compared to real results from several methods for con-
structing 3D faces from 2D photographs. The experimental
results suggest that accuracy is severely limited when only
2D raw input data exists.

1. Introduction
Three dimensional face models are used in a diverse

set of application domains, including biometric identifica-
tion [10], 3D avatars [54], social media filters, and photo
editing [46]. All of these applications benefit from high ac-
curacy 3D models, however the degree of accuracy required
varies between a realistically rendered movie and a fun mo-
bile app with cartoon ears.

The input data to create a 3D face model has a wide vari-
ation, ranging from 0.1 mm accurate laser scans to simple
2D RGB photographs. Raw data is usually not directly us-
able, whether due to holes in scanned meshes or because 2D
data is insufficiently constrained to determine 3D. A com-
mon solution is to apply a model to constrain or clean up

the raw data. The model can take many forms, for example
it could be an explicit prior applied to the distribution of a
parameter space, or implied by a specific neural network ar-
chitecture and the trained node weights. In either case the
goal is to best use the limited input data to predict a valid
and complete 3D face.

System designers must choose a source of input data and
then choose a model and a method of fitting to obtain a us-
able 3D face. The vast majority of research has focused on
novel sensor designs to improve the raw data, or novel re-
construction methods and prior models which do a better
job producing faces from under-constrained data. In con-
trast, this paper seeks to answer the system designers ques-
tion - If my application domain requires accuracy X, how
good does my input data need to be? Must I start from
3D data, or can I start from a photograph and predict a 3D
model which is good enough? If my user is wearing glasses
and my data is missing eyes, can I predict something based
on observation of the rest of the face? What about if there
is a mask blocking the mouth region? How much accuracy
will that cost me? In order to provide insight into questions
of this kind, we start with an existing ground truth dataset,
use an existing prior model, and then evaluate the accuracy
obtainable from different raw data types.

Our input data is derived from a publicly available
dataset which has 100s of 3D face scans in correspondence,
as well as multi-view 2D images of the same subjects [47].
This allows us to compare final 3D accuracy when raw in-
put data is 2D feature points, 2D photographs, low quality
3D, 3D feature points, high quality 3D with partial missing
data, and complete high quality 3D.

Our primary analysis makes use of “synthetic” experi-
ments. This allows extensive analysis both with and with-
out noise. Input data is constructed directly from ground
truth by removing data to mimic measurement of only land-
marks, or only low resolution 3D, or missing eyes. These
experiments test whether the prior model can predict accu-
rate results for the unobserved portion of the face. We check
that the synthetic results generalize by conducting “real” ex-
periments using only RGB photographs as input and testing
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the behavior of several published methods on this very lim-
ited input data type.

Hundreds of papers exist proposing prior models rang-
ing from simple interpolation to modern deep learning. Re-
construction accuracy is necessarily tied to the prior model
chosen, and this year’s state of the art will not be as good as
next year’s. We do not attempt to provide an indication of
the absolute accuracy obtainable, but rather provide a com-
parison of error magnitudes when starting from different
raw inputs. For our experiments, we choose a Morphable
Face Model because it is one of the most widely used mod-
els, it has existed for 20 years [9], surveys exist [18], and
it has some mathematical similarities to blendshape mod-
els that are industry standard in animation [27]. This model
is a simple linear system constructed by finding the princi-
pal components of a training set, and fitting data to a linear
sum of these components. Since this is perhaps the sim-
plest possible model (linear), it is well understood by many
researchers, and thus we hope allows easy interpretation of
our results.

The contribution of this paper is a careful analysis of 3D
facial reconstruction accuracy when starting from input data
with various levels of completeness.

2. Related Work

3D Shape Scanning: Acquiring 3D geometry is not re-
stricted to faces, has a long history, and many surveys ex-
ist [7, 12]. Methods range from laser scanning [1] to shape
from shading [51]. Modern consumer level 3D sensors
include active stereo (Intel RealSense) [25], time-of-flight
(PMD, Kinect.v2) [26], and structured light (Kinect.v1,
iPhoneX) [52]. To the extent these methods employ a prior
on shape, it is typically restricted to smoothness, continu-
ity, and other local surface constraints. High quality face
capture often uses these same 3D acquisition methods, but
with special purpose capture gantries that deliver higher ac-
curacy than consumer devices [6, 41]. The data used in this
study was acquired using a multiview stereo system with 68
cameras [47].

Morphable face models: The label Morphable Face Model
was popularized in Blanz and Vetter’s seminal paper [9],
however the general framework of representing face vari-
ation as a linear combination of principle components has
clear roots in EigenFaces in the image domain [38], and
Active Appearance Models which encode 2D shape land-
marks and appearance [13]. The variations proposed in
the last two decades are too numerous to list exhaustively
and we refer the reader to an excellent survey [18]. Most
models include variation in both identity and expression,
with these factors being combined additively [9], multi-
plicatively [39], or non-linearly [28, 29, 37]. Some methods
encode the shape deformation globally [9], some subdivide

into local parts [35], and some combine with a muscle or
other physical model [23]. In this paper we use the simplest
variant as the prior in our synthetic experiments.

Blendshapes: Animation tools such as those used in movie
and game studios often represent facial deformation as
blendshapes or morph-targets [21, 34, 36]. These are sim-
ilar to morphable models in using a linear basis to represent
shape. However instead of a orthogonal basis of principle
components, blendshapes use a non-orthogonal basis of se-
mantically meaningful exemplar facial expressions [27].

Other face reconstruction priors: Other underlying 3D face
model priors have been used. A single template mesh can
be used as a prior and warped to match features in a 2D im-
age [31]. Convolutional networks have been used directly
on meshes [30]. When no 3D model is available at all, a
collection of images can be used to train a deep neural net-
work to act as a prior on 3D reconstruction [4,20,33,43,45].
Zollhöfer et al. provide a survey article discussing many of
these [55].

3D Datasets: There are a wide variety of 3D face datasets
available. Some contain only a few individuals in animated
sequences [14], and some a large number of individuals in
only a single pose [16]. Some contain color and texture
information [15], while others do not [50]. We choose a
dataset derived from high accuracy scans, which contains
hundreds of individuals.

Accuracy comparison: Most 3D face reconstruction papers
provide evidence of reconstruction accuracy, and compari-
son with prior reconstruction methods using the same data
type is common. Comparative analysis of different models
exist [11]. However, no existing work has quantified error
as a function of source data type, the goal of this paper.

3. Synthetic Data Analysis
3.1. Method

Choice of input data impacts eventual 3D reconstruction
accuracy. Starting from our test data which contains com-
plete 3D faces, we remove part of the data to simulate com-
mon capture conditions. For each condition we predict a full
3D face, and evaluate the accuracy of reconstructed vertices
against known ground truth.

We take advantage of the fact that our test data is in
known correspondence. In real applications, a reconstruc-
tion algorithm needs to both find the best fit parameters of
the model and find the correspondence between captured
data points and model data points. Establishing correspon-
dence is itself a difficult process [2]. In these experiments
we assume perfect correspondence, to allow an evaluation
of just the reconstruction errors due to limited input data.

Dataset: Our training and testing data is derived from high
resolution face scans of 766 people and is reported by the
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Figure 1. Comparison of reconstruction error, when using a variety of source data types. Numeric results are averages over the test dataset,
reported for both mean absolute error (MAE) and max error after rejecting 10% outliers (M90). Also shown is one specific example face
with corresponding colored error maps, MAE, and M90. The prior model is sufficiently powerful that any source data type can produce
a reasonable face, even when sections of the face are missing entirely. Drastically reduced input data types such as Landmarks result in
overly smooth meshes with high error. 2D data performs noticeably worse than 3D, even when 3D data is low resolution. Two viewpoints
of 2D data performs much better than one viewpoint, and provides excellent accuracy. Since we are most interested in comparing predicted
shape from limited data, we calculate error over only the missing data when applicable.
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dataset creators to be 0.3mm accurate [47]. The data is
provided in correspondence, meaning that the data is in a
shared 3D mesh topology. All faces have the same number
of vertices (26,317), and the same triangulation. Each 3D
face, fi, can thus be represented as a single vector contain-
ing vertex locations, i.e. fi = [x1, y1, z1, ...xn, yn, zn]

T .
When using additional data such as texture, we append the
color values to fi. We segment this dataset randomly into
677 training faces and 89 testing faces.

Prior: The prior for faces in our synthetic analysis is a
Morphable Model. We intentionally choose the simplest
variation and introduce it only briefly, since it is widely un-
derstood [9].

A morphable model is created as a linear combination of
faces. We subtract the mean face, fM , from each face to
produce vectors that encode only variation from the mean,
f̂i = fi − fM . All faces, including both males and fe-
males, are stacked into a single matrix F̂ = [f̂1, f̂2..f̂677].
We use Principal Component Analysis (PCA) on F̂ to find
principal components, C. A new face, f̂x = C ∗ w, can be
created as a linear combination of these components, where
w = [w1, w2, ...wi]

T are the relative weights of the first i
components. The number of components to retain is deter-
mined experimentally.

A newly observed face can be approximately represented
as a least squares fit, solving for weights using the pseudo-
inverse of C, w = C−1 ∗ f̂x. There will frequently be miss-
ing or additional data in the vector f̂x, for example because
only some of the 3D points are available, or data such as
texture is appended. In these cases an optimization of the
correct weights, w̃, can still be obtained as a least squares
fit to all the data which does exist. A prediction of the full
3D face is obtainable with C and w̃.

Input data types:
We consider data types which match the options practi-

cally available in real systems.

Full 3D: We suppose a 3D scanner returns a complete head
scan, with no missing data. We fit all 3D data to the model.
Errors are due to the limited representational ability of the
model itself. This is the minimum achievable error given a
specific prior model.

Missing eyes, missing mouth: A common scenario is users
wearing glasses/mask. This results in missing data near the
eyes/mouth. We remove these datapoints to understand how
well the model can predict this information from the context
of the rest of the face.

Low-res-3D: The 3D cameras built into consumer devices
are much lower resolution than our dataset. In order to eval-
uate whether this lower resolution data is sufficient to pre-
dict high accuracy faces we randomly select 800 data points,
and use this lower resolution model to predict a complete
face.

Landmark-2D, Landmark-3D: Data in many published
methods is restricted to an image from which facial land-
marks are extracted. In the 3D case this data might come
from a very limited 3D camera. In the 2D case, we fac-
tor out camera viewpoint by assuming a frontal image. We
keep only the 2D projection of 68 landmarks, discarding the
depth.

Texture, Dense2D, Normal: In the case of a 2D RGB image
there are several sources of data. If a model is used to ren-
der a synthetic face from the camera viewpoint then there
is an implied correspondence between model vertices and
pixel information. The information at each point includes
both texture color and the 2D position of the pixel itself.
If we consider photometric stereo and shape-from-shading
methods then the surface normal may be available as well.
Many published methods assume dense 2D color and posi-
tional data is enough to find correct model parameters. We
separate these sources of data to better understand their con-
tributions to recovering face shape. For Texture we use only
the color in a normalized texture space, discarding the po-
sitional data at each vertex. For Dense2D we project all the
vertices to a frontal plane, and keep only the information
that is contained in an image, the 2D component of posi-
tion. For Normals, we retain only the orientation at each
vertex.

Dense2D-Two-Views: We include a special data type meant
to simulate two images, which we encode as 2D positional
data from two viewpoints. In principle this implicitly en-
codes 3D information, although “two images” is normally
considered as a separate data type from true 3D data in the
literature.

Combinations: The above fundamental data sources can be
used in every possible combination. We select a few com-
binations to report on in the paper text, and included more
in the supplemental materials.

3.2. Analysis Without Noise

Error is calculated for each evaluated input data condi-
tion over all 89 faces in the test dataset. In order to focus on
error related to the choice of datatype, we factor out other
sources of noise, assuming no measurement noise and per-
fect correspondence between data and model points.

Figure 1 shows one example face from our test dataset as
well as aggregate error measures across the entire dataset.
More face examples are available in supplemental mate-
rials. We report mean absolute error (MAE) of predicted
points as well as maximum error after accounting for out-
liers by using the 90th percentile value rather than absolute
max (M90).

We start by questioning the validity of the entire exper-
iment. Does a simple linear model have sufficient repre-
sentational ability for this analysis? Notice that when Full
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Figure 2. Cumulative error distribution, showing the fraction of
reconstructed vertices with error less than a given threshold. Each
solid line represents reconstruction from one type of raw input
data. The dashed lines are combinations of different data types.
Notice that very sparse data such as 2D and 3D Landmarks can
not make accurate predictions. The highest accuracy comes from
3D data, including the implicit 3D data encoded in Two-View
Dense2D.

3D data is available for fitting, M90 error is 0.3mm, match-
ing the reported accuracy of the data itself. While there is
no question that more complex models such as CoMA and
FLAME are better [28, 30], this indicates that our simple
model is capable of representing faces accurately, and thus
sufficient for this analysis.

Next we consider occluded regions. Experts in 3D scan-
ning who are accustomed to highly controlled data capture
often suggest that it’s necessary to scan all surfaces. How-
ever, when large regions of the face are occluded, such as
eyes or mouth, the model does a surprisingly good job of
predicting these regions, with correct visual appearance and
maximum error staying below 2mm. The reconstruction
is near perfect in the observed regions, so we report error
numbers only on the predicted vertices. Notice in the color
coded error map that it is possible to see the region that was
reconstructed without data.

Experts in 3D scanning often dismiss consumer grade
3D as insufficient for high quality scans. However the Low-
res-3D data type contains only 800 datapoints, and the re-

sulting face prediction is high accuracy, with error less than
1mm.

We turn next to the data present in a single 2D image.
Based on the number of papers published each year intro-
ducing new methods for predicting 3D faces from single im-
ages [19,20,22,32,33,44,49,53], many researchers believe
this data to be sufficient. Unfortunately none of the data
types available in a single image do a good job in our anal-
ysis. Dense2D contains thousands of positional data points,
but has M90 error above 3mm, and Normals are similar.
Texture used alone is a terrible predictor of 3D shape with
error above 6mm, suggesting that texture is best used as
a tool for establishing correspondence between model and
image, not as a direct predictor of shape. Combinations of
this data such as Dense2D+Texture and Dense2D+Normal
do better, suggesting that it is important to use all the infor-
mation in the image, but these still have max error (M90)
above 2mm. This analysis suggests that a single 2D image
isn’t a good choice of data type if you have any other option.

Some published methods include the use of very sparse
data like 2D and 3D Landmarks [5, 17, 24, 28, 40, 48]. In
our experiment, used alone these data sources produce very
poor accuracy with M90 error above 5mm. The data is just
too limited to constrain the search for the right face param-
eters. Interestingly, 3D Landmarks when used in combi-
nation with Dense2D provides accuracy of 1.3mm (M90),
more than twice as good as either data source used alone.
We hypothesize that the dense data from 2D images con-
tains the details of face shape, but used alone without depth
information can’t distinguish between a shallow face and a
deep face. If this is true, even the small number of 3D points
available in 3D Landmarks is enough to constrain the over-
all low frequency face shape, resulting in good results when
combined. This is interesting because it means that while
a single image isn’t a sufficient data source, even a tiny
amount of 3D, such as what might be obtained from finding
landmarks in both views on a dual-camera mobile phone,
could be enough to substantially improve reconstruction al-
gorithms.

Given the poor performance of 2D image information as
a data type, we included a test of Dense2D positional data
from two viewpoints. If we think like a stereo vision re-
searcher then this should be equivalent to 3D data and pro-
vide very high accuracy, but if we think of this as just a
second image input to a deep learning model then many ex-
isting papers find only a marginal effect on accuracy. In
our results, the linear model is able to untangle the relation-
ship between the two sets of 2D information and provides
accuracy of 0.35mm M90 error, nearly as good as having
full 3D information. This implies that giving single image
reconstruction algorithms access to a second image should
in principle produce substantially better results. Since a
second image is usually easy to obtain, this seems like a
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promising avenue for future exploration.
One last thing to notice about Figure 1 has nothing to do

with the error numbers themselves. All the rendered faces
look nearly visually identical. Only in the case of Land-
marks can the authors tell the difference from ground truth.
On the one hand this is excellent news. If the goal is to pro-
duce a 3D face that looks right, then almost any input data
coupled with even a very simple model is good enough. On
the other hand, rendered models are perhaps the most com-
monly presented evaluation metric in published papers, but
these results suggest that visual inspection is a terrible way
to judge real 3D accuracy, since these visually identical re-
sults have M90 errors ranging more than an order of mag-
nitude from only 0.3mm to over 5mm.

We designed a user study to test this observation in
which we asked Mechanical Turk users to choose which
of eight face reconstructions was closest to a compari-
son ground truth image. One option had very low error
(< 0.3mm MAE) while the remaining seven had high er-
ror (> 1.0mm MAE). We collected 100 trials (10 different
faces each with 10 different users). When the user was pre-
sented with the same face options in three re-shuffled posi-
tions on the page, they were able to consistently make the
correct choice only 3% of the time. Viewers indeed found it
difficult to judge accuracy from rendered images alone. In
comparison, when presented with color coded error maps,
users correctly identified the low error model 99% of the
time.

Any single measure of error, such as MAE or M90, only
tells part of the story. We also evaluated median, MSE, sev-
eral other outlier ratios, and true max. We chose MAE and
M90 as the most representative in the analysis above. Fig-
ure 2 shows error for each datatype as a cumulative distri-
bution function, which provides a more complete picture.
A horizontal line through the plot at 0.9 is identical to the
M90 error metric reported above. However this plot can be
read in the other direction as well. Suppose a application
requires error below 2mm. We can see that only 32% of the
points derived from 2D landmarks are within this tolerance,
while 95% of those from low resolution 3D are.

Evaluating error across data types is a challenge. It is in-
sufficient to use exactly the same model in all cases. Most
prior models contain thresholds and hyperparameters that
require tuning, and a fair comparison demands tuning for
each scenario. Importantly, we want to use a model which
allows maximum face shape variability, without overfitting
the available data. There are multiple ways to constrain
variability including a prior on the allowed distribution of
model parameters. In the case of morphable models, heav-
ily regularizing higher dimensional eigenvectors forces low
variability in these components limiting the models range
of expressiveness and thus tendency to overfit. To produce
as fair a comparison as possible, we started with 600 eigen-

Figure 3. In order to evaluate whether our analysis generalizes
when noise is present, we plot the cumulative error distribution
when input has 1mm Gaussian noise added, showing the fraction
of reconstructed vertices with less than a given threshold error.
The overall relationship between datatypes is the same as in the
no noise analysis. Median error increased in each case, but by less
than the 1mm noise that was added.

vectors and then checked for overfitting using each input
datatype. We reduced expressiveness of the model when
needed by exhaustively searching for the optimum number
of eigenvectors which minimized MAE error.

3.3. Analysis With Noise

One possible limitation of our analysis is that real data is
corrupted with noise caused by poor image sensors, failed
landmark detectors, and incorrect correspondence. In our
primary analysis we intentionally removed these factors to
understand the data types under optimal conditions. In order
to investigate the affects of noise, in this section we treat
these sources together and add Gaussian random noise to
each “measured” datapoint.

Figure 3 shows a cumulative distribution plot in the pres-
ence of Gaussian noise with 1.0mm standard deviation.
Other choices of noise distribution and magnitude are re-
ported in the supplemental material. We include only pri-
mary data types, not combinations, and leave out Texture
and Normals since it’s not possible to directly compare
color and orientation noise with positional noise. Notice
that the overall relationship between datatypes is similar to
the no-noise case. The error has somewhat increased, but
the conclusions of the synthetic analysis appear to general-
ize when noise is present.

3.4. Sensitivity to Structured Errors

Real errors in measurement are often structured as op-
posed to Gaussian. To investigate the possible effects of
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structured bias we consider the case of Two View Dense 2D.
In the primary analysis we assumed perfect knowledge of
camera calibration between the two viewpoints. A fair crit-
icism would be that unlike our analysis, real methods must
simultaneously estimate camera viewpoint and face shape.
We thus introduce a structured error in terms of incorrectly
estimated camera viewpoint. Figure 4 shows MAE as a
function of angular error in estimating camera viewpoint.
Although MAE does increase with viewpoint estimation er-
ror, note that sensitivity is relatively low. Within a relatively
large range of ±10 degrees of viewpoint estimation error,
MAE stays below 0.75mm, better than all other combina-
tions of 2D image derived data types. Thus in this case,
the conclusions of the primary noise-free analysis appear to
generalize when structured errors are present.

Figure 4. Reconstruction is performed using Two-view Dense2D
data with varying amounts of error in the assumed camera view-
point. Incorrect camera viewpoint increases reconstruction error,
but even with 10 degree angular error in camera viewpoint, recon-
struction MAE remains below 0.75mm.

Figure 5. Changes to input data, even within a single data type
matter. We show the effect of viewing angle on reconstruction
MAE when using single view Dense2D positional data to recon-
struct shape. A frontal face is at 0 degrees, while a profile view is
90 degrees. Note that error is substantially lower when the face is
viewed at a 45 degree angle, rather than frontally at 0 degrees.

3.5. Within Data Type Variation

The primary analysis of this paper investigates how
much changing input data type impacts accuracy. However,
even within a single data type seemingly simple changes
can have an effect on accuracy. As an example, consider
Dense2D data available from a 2D image. Does the angle
of viewing matter?

We rotated our training and test data to simulate different
viewing angles and trained a linear model for each angle.
Using the matching Dense2D test data, always in perfect
correspondence with correct view angle, we reconstructed
3D faces. A plot of MAE as a function of viewing angle
is provided in Figure 5. Note that error is strongly affected
by view angle, and minimized when the face is viewed at
a 45 degree angle. The change in error between frontal
(1.45mm) and 45 degrees (1.2mm) is 20%. This is a signif-
icant change in accuracy, especially considering that many
papers introducing new models report 5-10% improvements
over prior work. Input data choices clearly matter in non-
obvious and subtle ways, and carefully investigating the
properties of input data is thus worth research attention.

3.6. Generalization to Modern Methods

Modern face reconstruction methods are substantially
more sophisticated than a simple linear model. Our syn-
thetic analysis suggested that high quality reconstruction
is not possible using only 2D data. However it is pos-
sible that our analysis does not generalize, and modern
computer vision models perform better. In order to in-
vestigate this possibility, we try nine existing methods
[3,4,6,20,22,32,42,44,49]. Each is provided with example
photographs and ground truth 3D from our test dataset.

We derive a 3D mesh in each case using author sup-
plied code without modification. The 3D mesh is scaled
and aligned to ground truth using the Iterative Closest Point
(ICP) algorithm [8]. Each vertex in the ground truth mesh
is assumed to be in correspondence with the closest point
on the reconstructed mesh for purposes of computing error.
The tested methods often produce an incomplete face due to
visibility in a single image, and the coverage of the face is
inconsistent. Thus we limit error computation to “valid” re-
gions by manually cropping the ground truth mesh to match
each specific reconstructed example.

We chose five recent methods which take a single 2D
image as input, and three recent methods which allow three
images as input. We also test two-view passive stereo, be-
cause Two-View Dense2D produced excellent results in our
analysis and because multiview stereo is the approach used
in high accuracy face scanners [6].

All methods were given access to high resolution images
as input, although some methods used downsampled data
for reasons of efficiency. Thus the comparison provided
is not completely fair. The multiview methods including
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Figure 6. When reconstructing 3D faces using published meth-
ods on real 2D photographs, single view 2D methods have low
accuracy. Multi-view 2D methods have access to implicit 3D in-
formation, and perform better. Stereo does not make use of any
face prior, but explicitly reconstructs 3D and shows the highest
accuracy. This improvement from adding a second viewpoint is
significant. For example, if 2mm accuracy is required, the single
view methods provide less than 60% of data within this tolerance,
while Stereo provides 90%. These experiments on real data sup-
port the conclusions of our primary analysis on synthetic data.

stereo had access only to images, not camera information.
Figure 6 provides cumulative error curves for each test.

We have intentionally avoided labeling curves with the pre-
cise paper citation because we want the focus to be on in-
put data type, not the specific model. All of the papers
we selected are highly regarded, including a CVPR best
paper award and multiple highly ranked methods from the
NoW Challenge. We want to caution against inadvertently
assuming poor performance of specific methods, because
we did not adjust model parameters perfectly and because
our ICP alignment was not as carefully tweaked as it could
be. Instead we want to focus on the aggregate observations
across methods, and the relative performance of different
data types.

The single view methods that have access to only 2D in-
formation show the least overall accuracy. The multiview
methods perform better, presumably because they have ac-
cess to 3D information encoded implicitly in the multiple
views. Two-view stereo reconstruction explicitly estimated
camera pose, used the multiview information to compute
3D, and performed well. The cumulative error curve for
Stereo shows that the majority of datapoints are below 1mm
error, and 90% of the datapoints are within 2mm of ground
truth. The overall trends match our synthetic results using
a simple linear model, and seem to suggest that the results
in this paper generalize to modern models as well as real
image conditions.

4. Discussion
This work arose from a query by a company shipping a

3D face scanning product. The question posed to us as aca-
demic researchers was ”Can we replace the 3D camera on
mobile phones with a regular 2D camera and still get good
results?” Unfortunately, the company couldn’t get a consis-
tent answer from academics. When you ask this question
to someone who designs 3D cameras they will say “No!
You must have a 3D camera for high accuracy”. In con-
trast when you ask this question to someone who works on
Machine Learning they will say ”There are lots of recent
papers that get great results using only 2D images. There
is no longer a need for 3D cameras”. Both of these posi-
tions are partially correct, and we could find no prior work
rigorously comparing input data types, so we ran this study.

This paper provides evidence that given a well trained
prior model, almost any input data is sufficient to recover
a 3D face which visually looks correct. This includes fill-
ing in missing data which wasn’t observed by the sensor.
For applications which just need to look right, 2D input
data is very likely sufficient. However 2D input data, even
dense 2D data, seems insufficient for applications intended
for high accuracy 3D use such as measuring physical dis-
tances on the face. When this is the application need, it
appears that 3D input data is required.

Our experimental results that 3D raw data contains more
information than 2D data is not itself surprising, and cer-
tainly other researchers have noted the limitations of geom-
etry from 2D images [5, 18, 32]. However, this study pro-
vides a numerical comparison across many input datatypes
which has not previously existed.

As an example of how this analysis might influence re-
search choices, many researchers are actively working on
3D faces from 2D RGB photographs. The analysis in this
paper suggests when the goal is accuracy, increasing the
input data to include low resolution 3D, or to include two
image viewpoints instead of one, may result in substantial
accuracy gains. Since many modern mobile phones contain
low resolution 3D sensors, and dual cameras, this seems like
a promising avenue for increased research attention.

There are limitations to this study of course. There are
many possible variations of data, model, error metric and
existing methods. It’s unlikely that we happened to choose
the reader’s preferred combination and we hope followup
papers will address more possibilities. In addition, many
published papers seek to deal with facial expressions, a fac-
tor completely ignored in this study.

This paper provides a careful evaluation of relative 3D
facial reconstruction accuracy while varying the input data
type. We hope this work inspires both additional research
on the merits of various input data types, as well as encour-
aging researchers to consider selection of data as carefully
as they consider selection of model.
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