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Abstract

Optical flow is a fundamental method used for quanti-
tative motion estimation on the image plane. In the deep
learning era, most works treat it as a task of ‘matching of
features’, learning to pull matched pixels as close as possi-
ble in feature space and vice versa. However, spatial affinity
(smoothness constraint), another important component for
motion understanding, has been largely overlooked. In this
paper, we introduce a novel approach, called kernel patch
attention (KPA), to better resolve the ambiguity in dense
matching by explicitly taking the local context relations into
consideration. Our KPA operates on each local patch, and
learns to mine the context affinities for better inferring the
flow fields. It can be plugged into contemporary optical flow
architecture and empower the model to conduct comprehen-
sive motion analysis with both feature similarities and spa-
tial relations. On Sintel dataset, the proposed KPA-Flow
achieves the best performance with EPE of 1.35 on clean
pass and 2.36 on final pass, and it sets a new record of
4.60% in Fl-all on KITTI-15 benchmark. Code is pub-
licly available at https://github.com/megvii-—
research/KPAF1low.

1. Introduction

Optical flow is a fundamental technique used to charac-
terize and quantify motion between two video frames, that
facilitates a large number of real-life applications including
visual tracking [39], video inpainting [45] and autonomous
driving [8]. Recent deep learning based methods have made
significant breakthroughs by i) learning discriminative fea-
tures with advanced training paradigms (e.g., reinforce-
ment learning [!] and alternative learning [17, 34, 50]), ii)
seeking/incorporating extra clues from the given scene [32]
and iii) utilizing multi-frame information [19]. However,
most contemporary works address the cross-image match-
ing problem by learning and measuring feature similari-
ties, overlooking another core component for motion under-
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Figure 1. A challenging image pair with heavy motion blur
from the final pass of Sintel test set. Unlike previous works
(RAFT [36] and GMA [20]) suffering from ambiguous matching,
our KPA-Flow is able to simultaneously mine the context and spa-
tial affinities for better inferring the flow fields. The attention map
of GMA contains many globally misleading clues while ours ef-
fectively avoids the noise. “P” indicates the attention point.

standing — the spatial relations which reveal the underlying
affinities during motion.

Traditional optical flow algorithms formulate the dense
matching as an energy minimization problem, explicitly
considering both feature similarities and spatial smooth-
ness [5, 0, 13]. Although the hand-crafted features used by
those traditional methods suffer from scale and shape vari-
ations, the smoothness constraint, to a great extent, helps to
fix errors by taking the spatial relations into consideration.
In the deep learning era, most contemporary optical flow
methods largely focus on addressing the feature-matching
similarities (e.g., using 4D correlation volumes [36]), ex-
pecting that the extracted features by deep models are dis-
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criminative enough for estimating flow fields. Indeed,
recent advances in deep learning have provided signif-
icant improvements in the ability to extract discrimina-
tive/invariant features for matching in a data-driven manner,
largely improving the reliability of optical flow. However,
as optical flow itself is a complicated task, solely counting
on ‘perfect’ features is still sub-optimal, making the deep
model become fragile when dealing with some challenging
cases (see Fig. 1). We believe that explicitly considering
both feature similarities and spatial relations would help to
build a powerful deep model that can understand motion at
a higher level.

Using deep learning techniques to capture and model lo-
cal relations is challenging. First, because the motion of ob-
ject(s) appears locally in the visual scene, effectively captur-
ing the local relations (affinities) is vital for motion analysis.
However, common relation modeling approaches, such as
non-local operations [4 1] and graph reasoning [9,27], focus
on solving the global or long-range dependencies. How to
reasonably model the local relations is still under-explored.
Second, the local relations should be end-to-end learnable,
o as to best mine pairwise relationships described by the
affinity value. Third, optical flow estimation is a per-pixel
matching task, thus it is difficult to efficiently obtain the
pixel-wise relations. Last but not the least, the designed
module is expected to be easily plugged into contemporary
optical flow architectures.

Targeting the above challenges and enabling a deeper un-
derstanding of motion, we introduce a novel kernel patch at-
tention (KPA) that explicitly focuses on local relations, and
captures motion affinities to better infer the optical flow. To
address the first two challenges, we draw inspirations from
the non-local operation [4 1] to learn the pixel-wise relations
by comparisons. But differently, our KPA is formulated
as a kernel-based operator, which conducts relation reason-
ing within each local patch and achieves the smoothed mo-
tion features in a sliding window manner. Importantly, our
KPA operates on both context and motion features; That is,
for each location, KPA mines relations over its local sur-
roundings using context features and takes advantage of the
mined information to update the motion features. For the
third challenge, our KPA is designed to work in a patch-
wise manner by treating a group of pixels as ‘centres’ and
computing local relations simultaneously so as to reduce the
computational complexity. Finally, we formulate all rela-
tion reasoning and feature updating operations with differ-
entiable operations, which are implemented by using neural
networks. Thus, it can be easily plugged into existing opti-
cal flow architecture and can be trained with other compo-
nents together.

Using 4D all-pairs correlation volume (CV), recurrent
refinement scheme [36] and our proposed KPA, we design
a powerful deep flow model, called KPA-Flow, to explicitly

handle both feature similarities and spatial affinities within
a unified framework for optical flow. Our KPA-Flow is able
to infer reliable flows in different challenging cases (see
Fig. 1), achieving top-ranked performance on both Sintel
and KITTI benchmarks. The contributions of this work are
summarized as:

e A fully-differentiable approach for explicitly con-
ducting the smooth constraint. To the best of our
knowledge, we are the first to explicitly handle the lo-
cal relations for optical flow based on the context and
spatial affinities. We present a kernel-based function
to effectively mine local relations and use the mined
information to infer the flow fields.

* A novel operator for comprehensive optical flow es-
timation. We propose kernel patch attention (KPA)
operator with a specific patch-based sliding window
strategy, which is simple yet effective for reliable mo-
tion understanding.

 State-of-the-art results on widely-used bench-
marks. The fully-equipped KPA-Flow can reliable in-
fer the optical flow in challenging scenes, which sets
new records on both Sintel and KITTI benchmarks
with limited extra computational cost.

2. Related Work

Optical Flow Estimation. Optical flow is the task of es-
timating per-pixel motion between video frames. In the
early stage, researchers [4—0, | 3] treat this task as an energy
minimization problem, leveraging both feature similarities
(i.e., data term) and motion smoothness (i.e., smoothness
term) to infer the flow fields. Although the handcrafted
features are weak in describing high-level context infor-
mation, the smoothness term helps to largely reduce am-
biguity in dense matching with the carefully designed opti-
mization objective. However, considering the overall accu-
racy and speed, traditional methods can only handle some
simple cases reliably. In the deep learning era, early at-
tempts [2, 43] simply treat the prediction of flow fields as
a mapping process — directly mapping two given frames
to the corresponding flow fields, and expect that the match-
ing can be implicitly learned by neural networks. Thanks
to the power of data, these approaches achieve better per-
formance than traditional approaches. However, without an
explicit matching process, the performance gains achieved
by those approaches are still limited. Recent deep learn-
ing approaches design different neural modules to explicit
pixel-wise-relation modeling [15, 30, 35, 46] to largely im-
prove the reliability of optical flow estimation. However,
as motion itself would introduce a lot of clutters and cre-
ate unpredictable variations, those approaches are still un-
reliable for ambiguous regions, e.g., occlusions and object-
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boundary regions. To alleviate the above difficulties, ad-
vanced strategies, such as the joint representation learn-
ing [49], feature-driven flow regularization [16], iterative
refinement [15,17,35] and holistic motion reasoning [20,27]
are applied to further improve the reliability of feature
matching. Moreover, the smoothness constraint is also con-
sidered in the loss function by existing models [24, 47],
with a desire to enforce the model to learn consistent fea-
tures for creating smooth flow fields. However, as these
approaches cannot take the spatial information into consid-
eration for handling the smoothness issue, the results are
still sub-optimal. Unlike all existing approaches, we pro-
pose to explicitly mine the local relations and conduct flow
smoothness for better flow estimation.

Self-Attention Operation. Self-attention was originally de-
signed for machine translation by computing relations
within the sequence [38]. In computer vision, the self-
attention operation has been widely used to mine global
relationship/context of images or videos [41,42,51]. For
example, in [41], non-local operations are used to cap-
ture long-range dependencies for video classification, ob-
ject detection and segmentation, and pose estimation. Wang
et. al [42] integrates non-local operations with U-Net [3 1] to
conduct more reliable media image analysis. Luo et. al [26]
leverage the mined low-dimensional supportive knowledge
to enhance the semantic feature with an attention approach.
To reduce the computational complexity, Zhu ez. al [51]
propose the asymmetric non-local operation to explore the
long-range spatial relevance among features. Similarly,
Huang er. al [14] propose to adaptively captures contextual
information on the criss-cross path. For optical flow estima-
tion, GMA [20] mines the global context to resolve ambigu-
ities caused by occlusions via self-attention. Different from
these works, we focus on how to effectively and efficiently
capture local relations to refine the motion features, which
has been never explored before.

3. Methodology
3.1. Problem Formulation

Given a pair of input consecutive images, i.e., source
image I, and target image I, the task of optical flow es-
timation is to predict a dense displacement field between
them. Deep learning based flow networks commonly em-
ploy an encoder-decoder pipeline to first extract context fea-
ture f. and motion feature f,,,, and then make flow predic-
tion based on the combination of these two features in a
recurrent/coarse-to-fine manner.

In our approach, we propose a simple yet effective op-
erator, named kernel patch attention (KPA), and plug it
into the feature fusion procedure, which is formulated as
£, = Frea(fe, £). Specifically, KPA operator explicitly
takes scene context and spatial affinities into consideration,

and exploits the learned feature relations to better infer the
flow fields. After the motion feature refinement, context
and updated motion features are fed into decoder modules
for several runs of residual flow estimation.

3.2. Kernel Patch Attention for Optical Flow

The architecture of the proposed kernel patch attention
(KPA) for optical flow is depicted in Fig. 2. We follow
prior works [20,21,36] to develop our model in a recurrent
refinement scheme. Specifically, given an input image pair
(I1,1Is), we first employ two residual-based encoders [12]
to extract a feature pair (f1, f2) and context feature f., re-
spectively. Then, 4D correlation volumes can be built upon
all vector pairs within the feature f; and f5 in four scales.
Based on a pre-defined searching window, we capture the
motion feature f,,, by applying a motion encoder on the seg-
mented matching costs.

3.2.1 Kernel Function Based Definition

Given the context feature f. from F, € R*"*% and mo-
tion feature f,, from F,, € R*"*% extracted by en-
coder networks, we design KPA to extract feature relations
from scene context, and then treat the mined relations as
the smooth constraint to guide the learning of motion fea-
tures. Specifically, inspired by image and point convolu-
tions [23,37], we formulate KPA as a kernel-based operator,
which is generally given by:

FxK) (@)= Y Koo f)p(En), (D
x,v,ENI

where x; indicates the position ¢ in 2D grid space of neigh-
borhoods N, (also termed as kernel window) around z.
K(2;—a)(+) is a kernel function taking the neighbor points
as inputs, and p(-) is a linear projection that maps the input
motion feature to an embedding space. f. denotes the con-
text feature in the center patch window of AV, (please refer
to Fig. 3 and Sec. 3.2.2 for more details about the kernel and
its center patch windows). From the perspective of attention
mechanism, £, is used to produce the query vectors, and the
corresponding key and value vectors can be embedded from
f. and f,,, within \V,_.

The kernel function is the core component in our KPA,
which can be commonly defined as:

K(ti)(fw fo) =S, in)w(ti)(fm f.), 2

where t; = z; — x, and Z,, means the coordinate of position
n in kernel region. Then, S(¢;, &, ) stands for a scale func-
tion, which produces a scale map based on the Euclidean
distance between t; and Z,, in grid space. The weight func-
tion Wy, (f.,f.) is used to produce kernel weights.
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Figure 2. Architecture of the proposed kernel patch attention for optical flow (KPA-Flow). “C” indicates concatenation and “x” denotes
multiplication. “CV” means the 4D correlation volumes. “Dec” denotes flow decoding process. Best viewed in color.

Similar to widely-used 2D convolution kernels, we de-
vise W;,)(-) to provide different weights for each posi-
tion of ¢;. However, different from image convolution ker-
nels, which simply define a learnable matrix W;, we take a
step further by taking the context relations in kernel region
into consideration. Specifically, given the context features
£, and f., we utilize the embedded Gaussian with normal-
ization [41] to measure the correlations between all pairs

among them, which can be formulated as:

exp(f) 0ED)
o exp(0(E") 6(£:")
where 0(f) = Wyf and ¢(f) = Wf are two linear projec-
tions to preform feature embeddings. The dimension of the
produced adaptive weights are N x K, where N = hxw de-
notes the pixel-wise spatial dimension of the entire feature
map, and K = k x k indicates the size of kernel window.

The other component of kernel function is the scale func-
tion S(¢;, 2y ). In image convolutions [10,23], the scalar is
simply set to 1 for all positions in kernel. One reason is
that the learnable weights from W, (-) can be trained to
fit for the weighted summation in Eqn. 1, which inherently
contains the scale balance among all points. Besides, the
widely-used networks like VGG [33] and ResNet [12] typ-
ically tend to stack several convolutions with kernel size of
1 x 1 and 3 x 3, thus the distances between ¢; and Z,, should
be small and cannot provide additional distinctive informa-
tion. On the contrary, we hope to ensure that a single KPA
operator is capable of obtaining a large receptive field so
as to cover instance-level information. Thus it should be
equipped with a scale factor mask based on the distance
between t; and ,, for spatial constraints. Specifically, we

W(t7) (fca fc) =

adopt the linear correlation to formulate the scale function
as:
. . k

S(ti, Zn) = max(0,1 + abs(a(||t; — Zn| — 5))), 4)
where k denotes the size of kernel window, [ is the base
scalar and a is a learnable parameter indicating the influ-
ence of the point-wise distance. This function produces a
scalar map, in which the value for each point is in reverse
proportion to the Euclidean distance ||t; — &, |.

3.2.2 Kernel Patch Attention with Sliding Window

Previous work has shown that performing flow feature re-
finement with global motion constraints is an effective strat-
egy for flow estimation [20]. However, as shown in Fig. 1,
directly applying the non-local method based on context
feature may involve some unreliable guidance for motion
feature refinement.

Here, we introduce KPA to enable the optical flow model
to have a suitable receptive field for smooth constraint of
motion feature, and avoid the misleading information from
long-range context. Specifically, we devise a sliding win-
dow based scheme for motion feature smoothing. Given
a feature map f € R*"X%  we first split it into non-
overlapping patches, and each patch with size of p X p is
regarded as a feature group. So all feature vectors within
the feature map is divided into h x @ patch windows, where

h = {%J and w = [¥]. We treat each group of feature
vectors within the patch window as a base element f with
size of ¢ X p x p. Like the basic settings that image con-
volutions [23] commonly use kernel size of odd numbers,
we define the size of kernel window as k = k x p, where
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Figure 3. A toy example of KPA with sliding window. The
box denotes the kernel window, and the red one indicates the
corresponding center patch window. Best viewed in color.

ke {1,3, ..., 2i + 1}. Thus the patch-wise kernel shape is
denoted as (k x k).

A toy example of sliding window implementation of our
KPA is illustrated in Fig. 3, where the patch size p = 2,
the kernel shape k x k is 3 x 3, h and w are set to 4 and
5, respectively. The left subfigure depicts a sliding kernel
window N, (the orange one) working on a splitted feature
map in step t. Here we treat each patch as a base element,
and use e;, where j € {1,2,...,9}), to denote each element
(patch) in the kernel window. As can be seen, the core el-
ement is es in step t, where the feature representations in
the center patch window (the red one) will be updated. In
practice, we first employ the weight function W, (-) on
f.% and fCE (where E denotes all ¢; in N,) to produce
adaptive weights, as in Eqn. 3. Specifically, there are two
kinds of dot-product similarity measurements involved in
this process, i.e., intra- and inter-patch similarities between
some patch windows. For instance, the feature vectors in e5
can perform self-attention-like similarity measurement with
themselves, and simultaneously obtain correlations with the
features in eight other patch windows by cross-attention-
like interactions. Then the kernel K, is built with Eqn. 2.
Finally, we perform the kernel patch attention on motion
features with Eqn. 1, as £/, = 37, _ 5 K¢, p(fm). The
output motion feature f;n% is finally produced by a resid-
ual operation as f;nef) =1, + af’,,°®, where « indicates
a learnable parameter that is initialized as 0 and gradually
performs a weighted summation.

The right subfigure in Fig. 3 illustrates that the kernel
window slides to the next region in step ¢ + 1. Since we
treat each patch as the base element in our approach, the
sliding stride of kernel window should be equivalent to the
patch size p. Besides, to ensure that the size of feature map
can be divisible by p, and the center patch windows are able
to cover all positions within the entire feature map by slid-
ing, we apply zero-padding for feature dilation. Therefore,
all patches within the motion feature f,,, can be refined for
smoothing by our KPA operator. It is worth noting that each

sliding step in KPA operation does not rely on the results of
others. Thus, like image convolution, the whole operator
can be processed in parallel for end-to-end training.

Discussion: Comparison with Convolutions. The func-
tion of image convolution can be generally formulated as:

(@ xw)(t) = ) wt—a)u(a), (5)

aE./\/}

where a denotes all pixels in kernel region Ny, and w(-) in-
dicates the kernel function. Although our approach shares
the same pattern with image convolution as the kernel-based
operation, the inherent formulations are totally different.
First, image convolutions simply define the kernel function
w(-) as learnable weights W, while our KPA defines it with
a scale function to provide learnable scalar and an adaptive
weight function based on context relations. During infer-
ence, our weight function W, (f., f.) is able to provide
the dynamic kernel map, in which each weight varying with
the corresponding context feature. In contrast, W is a static
weight and shared in all sliding positions after training. Sec-
ond, image convolutions require more parameters to work
on both channel dimension and spatial dimension. Never-
theless, our KPA only needs linear projections on channel
dimension, which helps to significantly reduce the computa-
tional overhead when the kernel region is large. Please refer
to Sec. 4.3 for quantitative comparisons with convolutional
operators in flow network.

Discussion: Comparison with NL-like Operators. The
proposed KPA operator is capable of capturing the region-
based scene context to guide the learning of motion fea-
tures. Therefore, compared to global non-local-like opera-
tors [20], KPA consumes less computational overhead. For
instance, given a feature with dimension ¢ X h X w, the
computational complexity of our KPA and NL are:

Q(KPA) = 4N¢? 4 2cNK, (6)
Q(NL) = 4Nc? 4 2¢N?, (7
where N = h x w denotes the spatial dimension, and

K = k x k indicates the dimension of kernel window. The
feature size is generally larger than kernel size by a large
margin, i.e., N > K. Besides, the shape of attention map
in our KPA is N x K, which is smaller than NL attentions of
N x N, indicating less GPU memory cost. Moreover, the
NL attention maps may involve many global noises from
unconstrained scene context, which are not fit for motion
guidance (see Fig. | and Fig. 5).

3.3. Network Instantiation

Following the success of prior works [20,21,36], we de-
velop our KPA-Flow network based on RAFT. Specifically,
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Sintel (val)

KITTI-15 (val)  Sintel (test)  KITTI-15 (test)

Training Data Method

Clean  Final EPE Fl-all Clean Final Fl1-all
PWC-Net [34] 2.55 3.93 10.35 337 - - -
FlowNet2 [ 18] 2.02 3.54  10.08 30.0 396 6.02 -
RAFT [36] 1.43 2.71 5.04 17.4 - - -
SCV [21] 1.29 2.95 6.80 19.3 - - -
C+T GMA [20] 1.30 2.74 4.69 17.1 - - -
AGFlow [27] 1.31 2.69 4.82 17.0 - - -
SeperableFlow [48] 1.30 2.59 4.60 15.9 - - -
Flow1D [44] 1.98 327 6.69 2295 - - -
KPA-Flow (ours) 1.28 2.68 4.46 15.9 - - -
IRR-PWC [17] (1.92) (2.51) (1.63) (5.3) 3.84 458 7.65
VCN [46] (1.66) (2.24) (1.16) (4.1 2.81 4.40 6.30
MaskFlowNet [50] - - - - 2.52 4.17 6.10
ScopeFlow [3] - - - - 3.59 4.10 6.82
DICL [40] (1.11) (1.60) (1.02) (3.6) 212 344 6.31
C+T RAFT [36] 0.77) (1.27) (0.63) (1.5 1.61 2.86 5.10
+S+K SCV [21] 0.86) (1.75) (0.75) (2.1 1.77  3.88 6.17
+H) GMA [20] 0.62) (1.06) (0.57) (1.2) 1.39 247 5.15
AGFlow [27] 0.65) (1.07) (0.58) (1.2) 1.43 247 4.89
SeperableFlow [48] 0.69) (1.10) (0.69) (1.6) 1.50 2.67 4.64
Flow1D [44] (0.84) (1.25) - (1.6) 224  3.81 6.27
KPA-Flow (ours) 0.60) (1.02) (0.52) (1.1) 1.35 236 4.60

Table 1. Quantitative comparison with state-of-the-arts in EPE and F1-all metrics. We follow prior works [

] to compare our results

s ]

with all published works on two standard benchmarks. Models pre-trained on FlyingChairs(C) and FlyingThing(T) are compared in “C +

T” for generalization ability evaluation. “+ S + K (+ H)”” denotes the training data combining Sintel, KITTI and HD1K(optional [

best results are marked in bold for better comparison.

we build the motion encoder based on six residual blocks
with three stridings, and the channel dimension of output
feature map is set to 256. The context encoder shares the
same structure with the motion encoder. We construct the
4D correlation volume in four scales, i.e., by pooling with
kernel sizes of {1, 2,4, 8}, for all feature pairs.

In the residual updating scheme, a motion encoder is ap-
plied to capture motion feature f,,, from matching costs.
The channel dimensions ¢ of context feature and motion
feature are both set to 128, and the spatial dimension is % of
input shape. Then context and motion features are fed into
the proposed KPA operator for feature refinement. We set
the recurrent iteration N = 12 for training.

4. Experimental Results
4.1. Implementation Details

We implement KPA-Flow and conduct experiments
based on PyTorch toolbox. In our model, we empirically
set the kernel shape k x k to 3 x 3. The patch sizes p are set
to 19 and 9 on Sintel and KITTI, respectively.

During training, we follow prior work [36] to adopt
AdamW optimizer with one-cycle learning rate policy, and
conduct model pretraining on synthetic data as the standard
optical flow training procedure. The model is pre-trained
on FlyingChairs [! 1] for 120k iterations and then on Fly-

1). The

ingThings [28] for 180k iterations. After that, we fine-tune
the model on the combined data from Sintel [7], KITTI-
2015 [29], and HD1K [22] for 180k iterations, and then
submit the flow prediction to Sintel server [7] for online
evaluation. Finally, additional 60k iterations of finetuning
are performed on KITTI-2015 [29] for KITTI online eval-
uation. We use 4 GeForce GTX 2080Ti GPUs to train all
models, and adopt a single one for evaluation and time test-
ing. The batch sizes are set to 8 and 1 for training and test-
ing, respectively.

4.2. Comparison with State-of-the-Arts

Results on Sintel. The comparisons of generalization abil-
ity are shown in “C + T” of Tab. 1. The proposed KPA-
Flow achieves an EPE score of 1.28 on clean pass of Sintel
dataset, which is better than recent arts, including SCV [21],
GMA [20] and SeperableFlow [48], and outstrips the well-
known RAFT [36] by 10.5% (1.43 — 1.28). On final
pass, it obtains an average EPE of 2.68, surpassing the
previous state-of-the-art methods SCV and GMA by 9.2%
(2.95 — 2.68) and 2.2% (2.74 — 2.68), respectively. Be-
sides, our approach significantly outperforms recent work
Flow1D [44] by 34.3% (1.98 — 1.30) in clean pass and
18.0% (3.27 — 2.68) in final. The results demonstrate the
promising cross dataset generalization of our model.

On Sintel test set, we utilize the warm-start strategy
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Figure 4. Qualitative comparisons with RAFT [36] on Sintel test set. All results are provided by the official website of Sintel. Quantita-
tive results are shown in corresponding Error map with EPE metric for better comparison (the lower the better).

and submit the predicted results to the official server for
online evaluation like prior works [36, 48]. Our KPA-
Flow achieves a score of 1.35 in EPE on Sintel clean pass,
which surpasses top-ranked methods SeperableFlow [48]
and GMA [20] by 10.0% (1.50 — 1.35) and 2.9% (1.39 —
1.35), respectively. Besides, it obtains EPE = 2.36 on fi-
nal pass, significantly outperforming recent arts SCV [21]
and Flow1D [44] by a large margin (39.2% and 38.1%). It
is worth noting that our KPA-Flow ranks 1st on both clean
and final passes of Sintel benchmark among all published
and unpublished approaches at the time of submission.

Fig. 4 provides some qualitative comparisons with the

well-known RAFT [36] on the challenging final pass of Sin-
tel dataset. The results demonstrate that our model is able
to fully exploit scene context to effectively perform motion
refinement with the proposed KPA operator, which helps to
reduce the matching uncertainty and produce more accurate
and smooth flow fields.
Results on KITTI. The results of our approach on KITTI-
15 dataset are also shown in Tab. 1. As we can see, KPA-
Flow achieves an average EPE of 4.46 and Fl-all score
of 15.9% on KITTI-15 validation set, which largely sur-
passes the recent arts SCV [21] and Flow 1D [44] by 29.1%
(6.80 — 4.82) in EPE, 11.9% (19.3 — 17.0) in Fl-all,
and 29.1% (6.80 — 4.82) in EPE, 11.9% (19.3 — 17.0) in
F1-all, respectively.

Besides, our approach sets a new records of 4.60% in F1-
all on KITTI-15 benchmark, which outperforms top-ranked
methods GMA [20] and RAFT [36] by 10.7% (5.15 —
4.60) and 12.2% (5.10 — 4.60), respectively. Some qual-
itative comparisons with state-of-the-art works on KITTI
dataset are illustrated in the supplementary material.

4.3. Ablation Analysis

Comparison with Convolutional Operators. We first
compare the proposed KPA operator with the widely-used
convolutional blocks, dense and dilated convolutions [17,

], in flow network. Similar to our KPA, we plug the
convolutional blocks into the motion feature refinement

Method Param | (A) KITTI-15 (val)  Sintel (val)

EPE Fl-all clean final
RAFT [36] 5.26 (-) 5.04 17.4 143 271
+ DenseConv [35] 8.6 (+3.34) 4.99 17.1 1.39 273
+ DilatedConv [35] 6.11 (+0.85) 5.08 17.3 142 276

+ SwinTrans [25] 6.15 (+0.89) 4.82 17.1 1.38 270
+ GMA [20] 5.80 (+0.54) 4.69 17.1 1.30 2.74
+ KPA 5.80 (+0.54) 4.46 15.9 1.28  2.68

Table 2. Quantitative comparisons with related methods (refer to
Sec. 4.3 for more details). We build KPA-Flow both on RAFT. All
methods are trained on C + T for fair comparison.

process. As shown in Tab. 2, dense and dilated convo-
lutions slightly improve the flow accuracy with relatively
heavy computation complexity. In contrast, our KPA-Flow
achieves better performance, yet only needs additional 0.54
M parameters. This demonstrates that simply applying con-
volutions is not fit for motion enhancement, while the pro-
posed KPA with dynamic kernel map based on the context
and spatial affinities for motion constraint is a simple yet
effective approach for flow estimation.

Comparison with Swin Transformer. Swin Trans-
former [25] can be directly regarded as a self-attention
method for motion feature enhancement, which relies on
a few blocks to perform the shifting strategy and inevitably
requires more parameters and computational complexity. In
contrast, the proposed KPA contains intra- and inter-patch
similarity measurements between patch windows in a single
operator, which can leverage the kernel shape to change the
size of operating region and needs no additional parameters.
As shown in Tab. 2, requiring fewer parameters, the pro-
posed KPA outperforms Swin Transformer in two datasets.
Comparison with GMA. We compare our KPA with GMA
on the same baseline mode for fair comparison. As can be
seen in Tab. 2, with the same parameters, our KPA outper-
forms GMA [20] by 4.9% (4.69 — 4.46) in EPE and 7.0%
(17.1 — 15.9) in Fl-all on KITTI. Besides, a qualitative
comparison is shown in Fig. 5. As we can see, a strip on the
arm moves out of the figure, so the motion must be inferred
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Figure 5. A challenging image pair with fog from the final pass
of Sintel test set. The strip moves out of the field-of-view. “P”
indicates the attention point. (Best viewed in color.)

based on surrounding relevant points. GMA adopts the non-
local attention, taking global motions with all feature sim-
ilarities into consideration, while our KPA focuses on the
local region for motion reasoning. The results demonstrate
that the region kernel based attention approach is better than
global attention for optical flow. This is because the non-
local-like attention method takes the whole scene context
into consideration, which also contains the long-range sim-
ilarities in appearance yet improper for motion guidance.
Ablation for Patch Size. We empirically analyze the com-
putational cost and the corresponding performance gain by
changing the patch size in our KPA-Flow. As we can see
in Tab. 3, when larger patch size are set (5 — 7 — 9),
the performance are gradually increased from 4.72 in EPE
and 16.8 in F1-all on KITTI validation set to 4.46 and 15.9,
respectively. However, if we further enlarge the patch size
(9 — 11 — 13), the flow accuracy slightly decreases and
the computational overhead is largely increased by around
2 times. This is because the large patch size leads to a
large kernel region, where some long-range context affini-
ties bring more unreliable guidance for flow refinement.
Ablation for Kernel Shape. In Tab. 3, we provide the
comparisons between different kernel shapes with compu-
tational complexity. Following the basic settings in image
convolution, we set the kernel shape k x kto1 x 1,3 x 3
and 5 x 5 for comparisons. As we can see, the larger ker-
nel shape directly leads to more computational cost. How-
ever, the best flow accuracy is achieved in the middle set-
ting. This is because the large kernel shape also results in
some unreliable clues for motion refinement.

Ablation for Feature Summation. We also evaluate the in-
fluence of weighted summation in Tab. 3. As we can see, o
sum is a cost-effective method, which surpasses other ones
yet with negligible computation cost.

Ablation for Scale Function. We evaluate the influence of

KITTI-15 (val)

Settings  FLOPs (G) |
EPE  Fl-all
5 43 472 168
7 73 458 163
g.amh 9 11.2 446 159
1zep 11 16.1 449 16.1
13 22.1 451 163
Kernel — 1x 1 23 491 172
Shape 3x3 11.2 4.46 15.9
Exk  5x5 29.0 457 162
Feat sum 11.2 4.59 16.1
Uead‘;z o sum 11.2 446 159
P replace 11.2 471 166
Scale On 11.2 446 159
Function  Off 11.2 458 162

Table 3. Ablation analysis for different settings of our KPA-Flow.
All settings are trained on C + T for fair comparison. Underline
indicates the default settings in our model.

the scale function S(-) in Tab. 3. As can be seen, the pro-
posed scale function is better than a static mask with val-
ues of 1 for all positions. The results demonstrate that the
constraint of spatial affinities can effectively boost the flow
performance.

5. limitation

A limitation of our approach is that the fixed kernel
shapes are inflexible for handling some challenging cases,
like two similar objects on different motions entangling
with each other. Under this circumstance, both the context
and spatial affinities cannot provide valid information for
motion guidance. A possible solution for this problem is
to learn deformable kernels for adaptive motion reasoning.
We will work on this direction in future work.

6. Conclusion

This work proposes a new model to mine region-based
context relations and leverage the learned information to
better infer the flow fields. To this goal, we design a learn-
able kernel patch attention (KPA) module to reason over the
local context for obtaining spatial affinities, and use them to
refine the motion features. Therefore, our fully-equipped
KPA-Flow is able to explicitly deal with both feature simi-
larities and spatial consistencies, which sets new records on
both Sintel and KITTI benchmarks. We expect our work to
inspire more future efforts towards this promising direction.
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