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Abstract

The performance of current Scene Graph Generation
models is severely hampered by some hard-to-distinguish
predicates, e.g., “woman-on/standing on/walking on-
beach” or “woman-near/looking at/in front of-child”.
While general SGG models are prone to predict head
predicates and existing re-balancing strategies prefer
tail categories, none of them can appropriately handle
these hard-to-distinguish predicates. To tackle this issue,
inspired by fine-grained image classification, which focuses
on differentiating among hard-to-distinguish object classes,
we propose a method named Fine-Grained Predicates
Learning (FGPL) which aims at differentiating among
hard-to-distinguish predicates for Scene Graph Gener-
ation task. Specifically, we first introduce a Predicate
Lattice that helps SGG models to figure out fine-grained
predicate pairs. Then, utilizing the Predicate Lattice,
we propose a Category Discriminating Loss and an
Entity Discriminating Loss, which both contribute to
distinguishing fine-grained predicates while maintaining
learned discriminatory power over recognizable ones. The
proposed model-agnostic strategy significantly boosts the
performances of three benchmark models (Transformer,
VCTree, and Motif) by 22.8%, 24.1% and 21.7% of Mean
Recall (mR@100) on the Predicate Classification sub-task,
respectively. Our model also outperforms state-of-the-art
methods by a large margin (i.e., 6.1%, 4.6%, and 3.2% of
Mean Recall (mR@100)) on the Visual Genome dataset.
Codes are publicly available1.

1. Introduction
Scene graph generation plays a vital role in visual un-

derstanding, which intends to detect instances together with

*Corresponding author.
1https://github.com/XinyuLyu/FGPL
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Figure 1. The illustration of handling hard-to-distinguish pred-
icates for SSG models. (b) Transformer (FGPL) outperforms
both Transformer and Transformer (Re-weight) on Group Mean
Recall. (c) Transformer [20, 23] is prone to predict head pred-
icates. (d) Transformer (Re-weight) prefers tail categories. (e)
Transformer (FGPL) can appropriately handle hard-to-distinguish
predicates, e.g., “woman-on/standing on/walking on-beach” or
“woman-near/looking at/in front of-child”.

their relationships. By ultimately representing image con-
tents in a graph structure, scene graph generation serves as a
powerful means to bridge the gap between visual scenes and
human languages, benefiting several visual-understanding
tasks, such as image retrieval [16, 33], image captioning [6,
30], and visual question answering [9,10,12,17,18,22,26].

Prior works [8, 13, 14, 19, 22, 27, 32] have devoted great
efforts to exploring representation learning for scene graph
generation, but the biased prediction is still challenging be-
cause of the long-tailed distribution of predicates in SGG
datasets. Trained with severely skewed class distributions,
general SGG models are prone to predict head predicates,
as results of Transformer [20, 23] shown in Fig. 1(c). Re-
cent works [2, 7, 11, 31] have exploited re-balancing meth-
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ods to solve the biased prediction problem for scene graph
generation, making predicates distribution balanced or the
learning process smooth. As demonstrated in Fig. 1(b),
Transformer (Re-weight) achieves a more balanced perfor-
mance than Transformer. However, relying on the class dis-
tribution, existing re-balancing strategies prefer predicates
from tail categories while being hampered by some hard-to-
distinguish predicates. For instance, as shown in Fig. 1(d),
Transformer (Re-weight) misclassifies “woman-in front of-
child” as “woman-looking at-child” in terms of visual cor-
relations between “in front of” and “looking at”.

The origin of the issue lies in the fact that differentiating
hard-to-distinguish predicates requires exploring their cor-
relations. Underestimating correlations among predicates,
existing methods [28,31] cannot choose hard-to-distinguish
ones for sufficient punishment. To acquire complete predi-
cate correlations, we consider contextual information since
correlations between a pair of predicates may dramatically
vary with contexts as stated in [15]. Particularly, con-
texts are regarded as visual or semantic information of
predicates’ objects and subjects in scene graph generation.
Take predicate correlations analysis between “watching”
and “playing” as an example. “Watching/playing” is weakly
correlated or distinguishable in Fig. 2(b), while they are
strongly correlated or hard-to-distinguish in Fig. 2(a).

Inspired by the above observations, we propose a Fine-
Grained Predicates Learning (FGPL) framework by thor-
oughly exploiting predicate correlations. We first introduce
a Predicate Lattice to help understand ubiquitous predicate
correlations concerning all scenarios in the SGG dataset.
With the Predicate Lattice, we devise a Category Discrim-
inating Loss (CDL) and an Entity Discriminating Loss
(EDL), which both discriminate hard-to-distinguish predi-
cates while maintaining learned discriminatory power over
recognizable ones. In particular, Category Discriminating
Loss (CDL) attempts to figure out and differentiate hard-to-
distinguish predicates. Furthermore, as predicates’ correla-
tion varies with contexts of entities, Entity Discriminating
Loss (EDL) adaptively adjusts the discriminating process
according to predictions of entities. Using CDL and EDL,
our method can determine whether predicate pairs are hard-
to-distinguish or not during training, which guarantees a
more balanced learning process among different categories
than previous methods [2, 7, 11, 28, 31].
Contribution: Our main contributions are summarized as
follows: 1). We propose a novel plug-and-play Fine-
Grained Predicates Learning (FGPL) framework to differ-
entiate hard-to-distinguish predicates for scene graph gen-
eration. 2). We devise a Predicate Lattice to obtain com-
plete predicate correlations between each predicate pair
concerning context information. Category Discriminating
Loss (CDL) aims at figuring out and differentiating hard-
to-distinguish predicates. Moreover, Entity Discriminating
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Figure 2. The illustration of predicate correlations concern-
ing contexts. The predicate correlation between “watching” and
“playing” varies with contexts. Especially, “watching/playing” is
weakly correlated or distinguishable in (b), while they are strongly
correlated or hard-to-distinguish in (a).

Loss (EDL) adaptively adjusts the discriminating process
according to predictions of entities. 3). Our FGPL greatly
boosts performances of three benchmark models (Trans-
former, VCTree, and Motif) by 22.8%, 24.1%, and 21.7%
of Mean Recall (mR@100) on Predicate Classification sub-
task and achieves superior performances over state-of-the-
art methods by a large margin (i.e., 6.1%, 4.6% and 3.2% of
Mean Recall (mR@100)) on Visual Genome dataset.

2. Related work
Scene Graph Generation: Suffering from biased predic-
tion, today’s SGG task is far from practical. To deal with
the problem, some methods [1, 11, 21] are proposed to bal-
ance discriminating process in accordance with class distri-
bution or visual clues. [28,31] explore predicate correlations
with hierarchical or global structures to discriminate predi-
cates. While correlations among predicates varies with con-
texts, it is neither hierarchical nor global. Thus, we focus on
discriminating hard-to-distinguish predicates with pair-wise
predicate correlations, constructed as a predicate graph.
Long-Tailed Distribution Classification: To solve long-
tailed problem, various distribution-based re-balancing
learning strategies [4,24,25] have been proposed. However,
besides class distribution, correlations are crucial for differ-
entiating hard-to-distinguish predicates in SGG. Therefore,
in this work, we take advantage of both predicate distribu-
tion and predicate correlations to handle this issue.
Fine-Grained Image Classification: Fine-Grained Image
Classification aims to recognize hard-to-distinguish objects
in a coarse-to-fine manner. Existing methods tackle the
problem from two perspectives, representation-encoding [5,
34] and local recognition [3, 29]. However, due to com-
plex relationships among predicates, such a coarse-to-fine
discriminatory manner may fail to differentiate predicates
for SGG. Particularly, different predicates may share similar
meanings in a specific scenario, while a predicate may have
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different meanings in different contexts. Instead of hierar-
chical structures, predicate correlations should be formed as
a graph. Concretely, we construct Predicate Lattice to com-
prehend predicate correlations for predicate discriminating.

3. Fine-Grained Predicates Learning
3.1. Problem Formulation

Scene graph generation is typically a two-stage multi-
class classification task. In the first stage, Faster R-CNN
detects instance labels O = {oi}, bounding boxes B =
{bi}, and feature maps X = {xi} within an input image I .
In the second stage, scene graph models infer the predicate
category from subject i to subject j, i.e., R = {rij}, based
on the detection results, i.e., Pr(R|O,B,X).

Within our Fine-Grained Predicates Learning (FGPL)
framework, shown in Fig. 4, we first construct a Predicate
Lattice concerning context information to understand ubiq-
uitous correlations among predicates. Then, utilizing the
Predicate Lattice, we develop a Category Discriminating
Loss and an Entity Discriminating Loss which help SGG
models differentiate hard-to-distinguish predicates.

3.2. Predicate Lattice Construction

To fully understand relationships among predicates, we
build a Predicate Lattice, which includes correlations for
each pair of predicates concerning contextual information.
In general, predicate correlations are acquired under differ-
ent contexts, since contexts (i.e., visual or semantic infor-
mation of predicates’ subjects and objects) determine rela-
tionships among predicates. Specifically, we extract their
contextual-based correlations from biased predictions con-
taining all possible contexts between each pair of predi-
cates. The construction procedure is shown in Fig. 3.
Context-Predicate Association: We first establish
Context-Predicate associations between predicate nodes
and context nodes. As contexts determine correlations
among predicates, predicate correlations are constructed
as a Predicate Lattice containing predicates and related
contexts (i.e., visual or semantic information of predicates’
subjects and objects). In Fig. 3(a), we show structures
of our Predicate Lattice. There are two kinds of nodes
in Predicate Lattice, namely Predicate nodes and Context
nodes, which indicate predicate categories and labels
of subject-object pairs, respectively. Several predicate
nodes connect to the same context node, which denotes
that several predicates can describe relationships in the
same context. For instance in Fig. 3(a), both “holding”
and “carrying” can be utilized to describe relationships
for “person-racket”. Specifically, we adopt Frequency
model [32] to derive every subject-object pair as the context
for each predicate from the SGG dataset (VG). Moreover,
weights of edges between predicate nodes and context
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Figure 3. Construction of Predicate Lattice. The whole process
is divided into three steps: (1) Context-Predicate Association; (2)
Biased Predicate Prediction; (3) Predicate-Predicate Association.

nodes, i.e., Pr(rij |oi, oj), denote occurrence frequency
for each “subject(oi)-predicate(rij)-object(oj)” triplet in
dataset. In this way, we establish connections between
predicate nodes and context nodes in Predicate Lattice.
Biased Predicate Prediction: To associate predicate pairs
with predicate correlations in the next step, we acquire Bi-
ased Predicate Prediction from SGG models. Firstly, we
incorporate Context-Predicate Association, constructed in
step one, into SGG models. Particularly, we extract the
Context-Predicate Association for each “subject-predicate-
object” triplet as semantic information. Then, to ac-
quire complete contextual information, we combine se-
mantic information with visual features, i.e., B = bi
and X , of subjects oi and objects oj to predict predicates
Pr(rij |oi, oj , bi, bj , xi, xj). With the contextual informa-
tion, we derive the Biased Predicate Prediction of pre-
trained SGG models by inferring on the training set of the
SGG dataset concerning all scenarios. In this way, the Bi-
ased Predicate Prediction contains predicate predictions un-
der all possible scenarios for each predicate pair. For in-
stance, as shown in Fig. 3(b), we infer the pre-trained SGG
model under all possible scenarios for predicate “playing”
or “holding”, such as “person-racket” and “person-bag”.
Predicate-Predicate Association: At last, we establish
Predicate-Predicate Association among predicates with
context-based correlations obtained from the Biased Pred-
icate Prediction. The Biased Predicate Prediction implies
the context-based correlations between each pair of predi-
cates. For instance, if most samples are predicted as j but
labeled as i in ground truth, predicate i is correlated to pred-
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Figure 4. The Overview of our Fine-Grained Predicates Learning (FGPL) framework. It includes three parts: Predicate Lattice,
Category Discriminating Loss, Entity Discriminating Loss. Fine-Grained Predicates Learning is incorporated into several state-of-the-art
SGG models. Predicate Lattice is constructed from the SGG dataset (Visual Genome) to help understand predicates correlations. With
Predicate Lattice, the architecture is optimized with two terms: Category Discriminating Loss and Entity Discriminating Loss.

icate j in most contexts. Based on the above observation,
we accumulate prediction results from each possible context
to obtain the holistic predicate correlations between each
pair of predicates, shown in Fig. 3(c). For instance, given
predicate pair “playing-holding”, we gather their correla-
tions under all contexts/scenarios, such as “person-racket”
and “person-bag”. Moreover, if predicate i is correlated to
predicate j in most contexts, they are prone to be strongly
correlated. Therefore, we normalize the gathered predicate
correlations as S = {sij} with sij ∈ [0, 1], which indicates
the proportion of samples labeled as i but predicted as j. In
particular, higher sij means a stronger correlation between
predicate pair i and j. Then, we associate predicate pairs
with predicate correlations sij . Finally, predicate correla-
tions are formed as a Predicate Lattice, shown in Fig. 3(d).

3.3. Category Discriminating Loss

In this section, we first analyze the limitations of re-
weighting methods. Then, we introduce our Category Dis-
criminating Loss (CDL) in detail.
Limitations of Re-weighting Methods: Overall, recent
re-weighting methods re-balance the learning process by
strengthening the penalty to head classes while scaling
down the overwhelming punishment to tail classes. To be
specific, the state-of-the-art re-weighting method [24] ad-
justs weights for each class in Cross-Entropy Loss on the
basis of the proportion of training samples as follows:

LCD(η) = −
∑C

i=1yilog(ϕ̂i) ,

ϕ̂i =
eηi∑C

j=1 wije
ηj

, wij =

{
(
nj

ni
)α, if nj > ni

1, if nj ≤ ni

,
(1)

where η = [η1, η2, ..., ηC ] and ϕ̂ = [ϕ̂1, ϕ̂2, ..., ϕ̂C ] denote

predicted logits and re-weighted probabilities for each class.
The label Y = [y1, y2, ..., yC ] is a one-hot vector. Addition-
ally, wij denotes the re-weighting factor concerning distri-
bution between positive class i and negative class j. Explic-
itly, wij is calculated based on the proportion of distribution
between class i and j, as shown in Eq. 1, where α > 0.

∂LCD(η)

∂ηj
=

wije
ηj∑C

k=1 wike
ηk

. (2)

Eq .2 shows negative gradients for category j. If positive
category i is less frequent than negative category j, i.e.,
nj > ni with wij > 1, it will strengthen the punishment to
negative class j. On the contrary, if nj ≤ ni with wij = 1,
it will degrade the penalty to negative class j. Finally, it
results in a balanced learning process.

Without considering predicate correlations, re-weighting
methods cannot adaptively adjust discriminating process in
accordance with difficulty of discrimination, resulting in
an inefficient learning process. As an inherent character-
istic of predicates, predicate correlation reveals difficulty of
discrimination for different pairs of predicates. However,
ignoring predicate correlations in learning process, the re-
weighting method roughly reduces negative gradients for
all negative predicates with fewer samples than the positive
predicate. As a process to push away the decision boundary
from head classes to tail classes, such discriminating pro-
cess is prone to over-suppress weakly correlated predicate
pairs and degrades the learned discriminatory ability of rec-
ognizable predicates as maintained in [4,25]. Take an exam-
ple among “on/has/standing on”, where “on-standing on”
are strongly correlated and “has-standing on” are weakly
correlated. To prevent the tail class “standing on” from be-
ing over-suppressed, the re-weighting method roughly de-
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grades negative gradients from both “on” and “has”. Al-
though it strengthens discriminatory power between “on”
and “standing on”, it is prone to reduce that between “has”
and “standing on” simultaneously.
Formulation of CDL: Based on the above observations,
we should both consider the class distribution and predi-
cate correlations to differentiate hard-to-distinguish predi-
cates. Thus, based on the re-weighting method in Eq. 1, we
devise Category Discriminating Loss (CDL), which adjusts
the re-weighting process according to predicate correlations
obtained from Predicate Lattice. Overall, we utilize predi-
cate correlations sij , defined in Sec. 3.2, as a signal to ad-
just the degree of re-weighting between predicates i and j.
Especially, we mitigate the magnitude of re-weighting for
weakly correlated predicates while strengthening that for
strongly correlated ones by setting wij , in Eq. 1, with differ-
ent values. In this way, we maintain gained discriminatory
power among recognizable predicates and further enhance
that among hard-to-distinguish ones, shown as below:

wij =


µβ
ij (≥ 1), if µij ≥ 1 and φij > ξ

1, if µij ≥ 1 and φij ≤ ξ

1, if µij < 1 and φij > ξ

µα
ij (< 1), if µij < 1 and φij ≤ ξ

,

µij =
nj

ni
, φij =

sij
sii

,

(3)

where φij is calculated by the proportion between sij and
sii, revealing correlations between predicate i and j. In ad-
dition, α and β are hyper-parameters larger than 0. For in-
stance, when nj ≥ ni (µij ≥ 1), if φij > ξ of strongly
correlated predicate pair i and j, wij is larger than 1 to
strengthen the punishment on negative predicate j. In con-
trast, if φij ≤ ξ of weakly correlated predicate pair i and
j, wij is set as 1 to mitigate the magnitude of penalty on
negative predicate j. That is because the excessive pun-
ishment is unnecessary for the weakly correlated predicate
j, which is easy to distinguish from predicate i for mod-
els. When nj < ni (µij < 1), we set wij ≤ 1 (including
φij > ξ and φij ≤ ξ) to relieve the over-suppression from
head predicate i to tail one j. Moreover, if φij ≤ ξ, we set
wij = µα

ij (< 1) to mitigate the magnitude of the penalty
on negative predicate j.

3.4. Entity Discriminating Loss

Although CDL can effectively differentiate hard-to-
distinguish predicates, it still has a limitation: weights
assigned to predicates are stable during training, which
can neither adapt to the gradually obtained discriminatory
power during training nor contexts varied with training sam-
ples. Hence, we individually treat prediction results of each
sample as signals to adjust the decision boundary. Based
on the observations, we propose Entity Discriminating Loss

(EDL), which adapts the discriminating process to the learn-
ing status and contexts, shown as below:

LED(η) =
1

|Vi|
∑
j∈Vi

max(0, ϕj − ϕi + δ)
nj

ni
, (4)

where Vi is defined as a set of strongly correlated predi-
cates selected in reference to predicate correlations sij in
Predicate Lattice. For each predicate category i, M predi-
cates with the highest sij in the Predicate Lattice are cho-
sen to construct Vi. Given the input sample η, ϕi and ϕj

are the predicted probabilities for predicates i and j, and
ϕj − ϕi implies the learned discriminatory ability between
them during training. The δ is a hyper-parameter, which
denotes prediction margins for predicates. Furthermore,
EDL is reduced to zero if predicate pairs are distinguishable
enough i.e., ϕi − ϕj ≥ δ. Moreover, we also adopt the bal-
ancing factor nj

ni
to alleviate imbalanced gradients between

classes with fewer or more observations.
Finally, we combine CDL and EDL as Eq. 5, which dis-

tinguishes hard-to-distinguish predicates while maintaining
the performance between distinguishable ones.

L(η) = LCD(η) + λLED(η) , (5)

where LCD and LED denote Category Discriminating Loss
and Entity Discriminating Loss. Futhermore, λ is a hyper-
parameter balancing CDL and EDL.

4. Experiments
4.1. Experiment Setting

Dataset: Following previous works [1, 21, 32], we adopt
widely used Visual Genome split for scene graph genera-
tion. Under the setting, the Visual Genome dataset has 150
object categories and 50 relationship categories. Then, we
divide the dataset into 70% training set, 30% testing set, and
5k images from the training set for validation.
Model Configuration: For our Fine-Grained Predicates
Learning (FGPL) is model-agnostic, following recent
works [7], we incorporate it into VCTree [22], Motif [32],
and Transformer [23] in the SGG benchmark [20].
Evaluation Metrics: We evaluate our methods on three
sub-tasks in scene graph generation, including PredCls,
SGCls, and SGDet. Following recent works [1, 11, 22],
we evaluate the performance of prior methods on mR@K
and Group Mean Recall, i.e., head, body, and tail. Be-
sides, we introduce DP@K (%) to indicate models’ Dis-
criminatory Power among top-k hard-to-distinguish predi-
cates. Generally, DP@K is calculated by averaging the dif-
ference between the proportion of samples correctly pre-
dicted as i and the proportion of samples misclassified as
hard-to-distinguish predicates j (j ∈ V ′

i). Furthermore,
V ′
i is defined as a set of top-k hard-to-distinguish pred-

icates for predicate i. Especially, to figure out hard-to-
distinguish predicates, we collect a normalized confusion
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Method Predicate Classification (PredCls) Scene Graph Classification (SGCls) Scene Graph Detection (SGDet)
mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

BGNN [11] - 30.4 32.9 - 14.3 16.5 - 10.7 12.6
PCPL [28] - 35.2 37.8 - 18.6 19.6 - 9.5 11.7
TDE-VCTree [21, 22] 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1
CogTree-Motif [31, 32] 20.9 26.4 29.0 12.1 14.9 16.1 7.9 10.4 11.8
CogTree-VCTree [22, 31] 22.0 27.6 29.7 15.4 18.8 19.9 7.8 10.4 12.1
CogTree-Transformer [23, 31] 22.9 28.4 31.0 13.0 15.7 16.7 7.9 11.1 12.7
Reweight*-Motif [24, 32] 18.8 28.1 33.7 10.7 15.6 18.3 7.2 10.5 13.2
Reweight*-VCTree [22, 24] 19.4 29.6 35.3 13.7 19.9 23.5 7.0 10.5 13.1
Reweight*-Transformer [23, 24] 19.5 28.6 34.4 11.9 17.2 20.7 8.1 11.5 14.9
FGPL-Motif 24.3 33.0 37.5 17.1 21.3 22.5 11.1 15.4 18.2
FGPL-VCTree 30.8 37.5 40.2 21.9 26.2 27.6 11.9 16.2 19.1
FGPL-Transformer 27.5 36.4 40.3 19.2 22.6 24.0 13.2 17.4 20.3

Table 1. Comparison between existing methods and FGPL. * denotes state-of-the-art re-weighting method proposed in [24].

matrix S′ ∈ RC×C from the model’s prediction results,
with s′ij ∈ [0, 1], which denotes the degree of confusion be-
tween the predicate pair i and j. For each predicate category
i, k predicates with the highest s′ij are chosen to construct
V ′
i . In a word, a higher score of DP@K means stronger dis-

criminatory power against hard-to-distinguish predicates.

4.2. Implementation Details

Detector: For object detectors, we utilize the pre-trained
Faster R-CNN by [21] to detect objects in images. More-
over, weights of the object detectors are frozen during train-
ing of scene graph generation for all three sub-tasks.
Scene Graph Generation Model: Following [20], base-
lines are trained with Cross-Entropy Loss and SGD opti-
mizer with an initial learning rate of 0.01, batch size as 16.
Fine-Grained Predicates Learning: We incorporate our
FGPL into baselines in Model Zoo [20] with the same
hyper-parameters for CDL and EDL. In particular, we set
α, β, and ξ as 1.5, 2.0, and 0.9 for CDL. Additionally, we
set the number of hard-to-distinguish predicates (i.e., |Vi|)
as 5 for EDL. Furthermore, the boundary margin δ, and the
hyper-parameter λ are set as 0.5 and 0.1, respectively.

4.3. Comparison with State of the Arts

We evaluate our FGPL by incorporating them into three
SGG baselines, namely Transformer [23], Motif [32],
and VCTree [22]. Quantitative results compared with
state-of-the-art methods on Visual Genome are shown in
Tab. 1. Specifically, FGPL-Motif, FGPL-VCTree, and
FGPL-Transformer outperform CogTree-Motif, CogTree-
VCTree, and CogTree-Transformer with consistent im-
provements as 8.5%, 10.5%, and 9.3% on mR@100 for
PredCls, respectively, demonstrating the effectiveness of
the Lattice-Structured Predicate Correlation against the
Tree-Structured one, i.e., CogTree. It is worth noting
that, although Reweight*-Motif, Reweight*-VCTree, and
Reweight*-Transformer exceed most of the prior works
on all metrics, FGPL-Motif, FGPL-VCTree, and FGPL-
Transformer still achieve a large margin of improvements
by 3.8%, 4.9%, and 5.9% on mR@100 for PredCls, verify-
ing the significant efficacy of FGPL for improving discrim-

inatory power over predicates. Intuitively, fully understand-
ing relationships over predicates, our method can adjust the
re-weighting process based on predicate correlations, en-
hancing the discriminatory ability over predicates.

4.4. Generalization on SGG Models

To verify that both CDL and EDL of FGPL are plug-and-
play, we incorporate them into different benchmark models,
including Transformer, VCTree, and Motif. Quantitative re-
sults on Visual Genome are shown in Tab. 2. From Tab. 2,
compared with baselines, we observe considerate improve-
ments on Transformer-FGPL (CDL) (17.5% vs. 35.4%),
VCTree-FGPL (CDL) (16.1% vs. 35.3%), Motif-FGPL
(CDL) (15.8% vs. 34.4%) on mR@100 of PredCls task,
showing notable generalizability for FGPL (CDL). The rea-
son lies in the fact that CDL helps to figure out and differen-
tiate hard-to-distinguish predicates. Furthermore, after be-
ing integrated with FGPL (EDL), our Transformer-FGPL
(CDL+EDL), VCTree-FGPL (CDL+EDL), and Motif-
FGPL (CDL+EDL) achieve further progress as 4.9%, 4.9%,
and 3.1% on mR@100 of PredCls task, which manifests the
great compatibility of our FGPL (EDL). The possible rea-
son is that EDL adjusts the learning process according to
the discriminatory ability and contexts varied with learning
process and training samples, respectively.

4.5. Predicate Discrimination of FGPL

We observe that FGPL helps SGG models differentiate
hard-to-distinguish predicates, and hence give quantitative
and qualitative studies to obtain deep insights into FGPL.
Quantitative Analysis: As hypothesized, our FGPL im-
proves discriminatory power among hard-to-distinguish
predicates while preserving distinguishable ones compared
with re-weighting methods. Accordingly, we conduct ex-
periments among three settings to testify our hypothesis: 1)
Baselines with traditional Cross-Entropy Loss. 2) Baselines
with the state-of-the-art re-weighting method in [24]. 3)
Baselines with our FGPL. To focus on predictions of predi-
cates, we only conduct experiments on PredCls task. Tab. 3
presents comparisons among three settings on Transformer,
VCTree, and Motif. Besides mR@50, we also evaluate
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Method Predicate Classification (PredCls) Scene Graph Classification (SGCls) Scene Graph Detection (SGDet)
mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

Transformer 12.4 16.0 17.5 7.7 9.6 10.2 5.3 7.3 8.8
Transformer-FGPL(CDL) 23.0 ↑ 10.6 31.4 ↑ 15.4 35.4 ↑ 17.9 14.3 ↑ 6.6 18.9 ↑ 9.3 21.2 ↑ 11.0 9.4 ↑ 4.1 13.3 ↑ 6.0 16.5 ↑ 7.7
Transformer-FGPL(CDL+EDL) 27.5 ↑ 15.1 36.4 ↑ 20.4 40.3 ↑ 22.8 19.2 ↑ 11.5 22.6 ↑ 13.0 24.0 ↑ 13.8 13.2 ↑ 7.9 17.4 ↑ 10.1 20.3 ↑ 11.5
VCTree 11.7 14.9 16.1 6.2 7.5 7.9 4.2 5.7 6.9
VCTree-FGPL(CDL) 23.0 ↑ 11.3 31.6 ↑ 16.7 35.3 ↑ 19.2 15.7 ↑ 9.5 21.1 ↑ 13.6 23.3 ↑ 15.4 11.0 ↑ 6.8 14.7 ↑ 9.0 17.5 ↑ 10.6
VCTree-FGPL(CDL+EDL) 30.8 ↑ 19.1 37.5 ↑ 22.6 40.2 ↑ 24.1 21.9 ↑ 15.7 26.2 ↑ 18.7 27.6 ↑ 19.7 11.9 ↑ 7.7 16.2 ↑ 10.5 19.1 ↑ 12.2
Motif 11.5 14.6 15.8 6.5 8.0 8.5 4.1 5.5 6.8
Motif-FGPL(CDL) 22.2 ↑ 10.7 30.3 ↑ 15.7 34.4 ↑ 18.6 12.6 ↑ 6.1 16.7 ↑ 8.7 18.5 ↑ 10.0 8.2 ↑ 4.1 11.6 ↑ 6.1 14.3 ↑ 7.5
Motif-FGPL(CDL+EDL) 24.3 ↑ 12.8 33.0 ↑ 18.4 37.5 ↑ 21.7 17.1 ↑ 10.6 21.3 ↑ 13.3 22.5 ↑ 14.0 11.1 ↑ 7.0 15.4 ↑ 9.9 18.2 ↑ 11.4

Table 2. Quantitative results on generalizability of CDL and EDL in FGPL. We validate generalization capability of our proposed
components, i.e., Entity Discriminating Loss (EDL) and Category Discriminating Loss (CDL), in comparison with baselines.

them with DP@K to show discriminatory ability among
hard-to-distinguish predicates. After being integrated with
FGPL, Transformer (FGPL), VCTree (FGPL), and Motif
(FGPL) greatly surpass baselines on DP@10 with a large
margin as 22.9% , 22.1%, and 22.1%. It provides direct
evidence that our FGPL considerably improves discrimi-
natory power against hard-to-distinguish predicates. It is
also important to note that Transformer (FGPL), VCTree
(FGPL), and Motif (FGPL) achieve consistent progress
on DP@10 compared with Transformer (Re-weight), VC-
Tree (Re-weight), and Motif (Re-weight). It reflects that
our FGPL improves discriminatory ability over the re-
weighting method [24] to generate fine-grained predicates.
One possible reason is that FGPL makes the learning pro-
cess both adapt to correlations of predicates and inherent
contextual information of each sample, strengthening dis-
criminatory power against hard-to-distinguish predicates.

Qualitative Analysis: For an intuitive illustration of
FGPL’s discriminatory power among hard-to-distinguish
predicates, we visualize discrimination among hard-to-
distinguish predicates of Transformer, Transformer (Re-
weight), and Transformer (FGPL), shown in Fig. 5. The
proportion of rings indicates the distribution of predic-
tion results, including hard-to-distinguish predicates j and
ground truth predicates i, for all samples with ground truth
i. For predicate “standing on” in Fig. 5, Transformer strug-
gles to distinguish it from its correlated predicates, e.g., “in”
or “on”. Besides, Transformer (Re-weight) fails to distinct
among hard-to-distinguish predicates, e.g., “standing on”,
“walking on”, and “sitting on”. For Transformer (FGPL),
the proportion of correctly classified samples rises from 6%
to 39% compared with Transformer. Meanwhile, hard-to-
distinguish predicates are more recognizable than Trans-
former (Re-weight), i.e., “walking on” dropping from 16%
to 14% and “sitting on” from 5% to 4%. Consequently,
the results validate our FGPL’s efficiency of discriminatory
ability against hard-to-distinguish predicates.

4.6. Ablation Study

To deeply investigate our FGPL, we further study differ-
ent ablation variants of CDL and EDL on PredCls task.

Method Predicate Classification (PredCls)
mR@50 DP@1 DP@5 DP@10

Transformer 16.0 9.9 15.6 17.4
Transformer (Re-weight) 28.6 25.3 33.3 36.1
Transformer (FGPL) 36.4 30.1 37.9 40.3
VCTree 14.9 10.5 14.1 15.7
VCTree (Re-weight) 29.6 26.2 33.9 36.5
VCTree (FGPL) 37.5 27.1 35.4 37.8
Motif 14.6 10.0 15.1 16.6
Motif (Re-weight) 29.6 25.6 33.0 35.6
Motif (FGPL) 33.0 28.6 36.1 38.7

Table 3. Quantitative results on discriminatory power of top-k
hard-to-distinguish Predicates (DP@K(%)) on PredCls.
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Figure 5. The effectiveness of FGPL among hard-to-
distinguish predicates. The inner-ring, middle-ring, and outer-
ring represent prediction distribution of hard-to-distinguish pred-
icates acquired from Transformer (FGPL), Transformer (Re-
weight), and Transformer respectively, for samples with ground
truth as “standing on” on the left, “hanging from” on the right.

Entity Discriminating Loss: To validate the superiority for
each component of Entity Discriminating Loss, i.e., Predi-
cate Correlation (PC) and Balancing Factor (BF), we ex-
periment with the following four settings: 1) Transformer
with EDL (without PC and BF). 2) Transformer with EDL
(without PC), i.e., setting Vi in Eq. 4 as a set containing
all predicate categories. 3) Transformer with EDL (with-
out BF), i.e., removing the balancing factor nj

ni
in Eq. 4. 4)

Transformer with EDL (with PC and BF). The experimen-
tal results are shown in Tab. 4. Without Predicate Correla-
tion (PC), we observe a steep decrease on mR@50 (22.0%
vs. 17.0%) and Group Mean Recall (head:39.2% vs. 37.2%,
body:19.7% vs. 11.4%, tail:7.4% vs. 3.7%). It verifies the
usefulness of PC for improving discriminatory capability
for SGG models. The possible reason is that EDL (PC) ex-
plores the underlying context information within each entity
and adjusts the discriminating process based on the gradu-
ally obtained discriminatory capability to alleviate the is-
sue of imbalanced learning. Additionally, it can be ob-
served that trained without BF, there is a substantial reduc-
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EDL Predicate Classification (PredCls)
PC BF mR@50 head (16) body (17) tail (17)
× × 16.2 36.5 10.5 2.5
× ✓ 17.0 37.2 11.4 3.7
✓ × 18.9 38.4 16.3 5.7
✓ ✓ 22.0 39.2 19.7 7.4

Table 4. Ablation study on each component of EDL. PC and BF
denote Predicate Correlation and Balancing Factor, respectively.
The results are obtained with Transformer as the baseline.

CDL Predicate Classification (PredCls)
PC RF mR@50 head (16) body (17) tail (17)
× × 16.0 36.6 10.1 2.3
× ✓ 28.6 32.5 30.4 22.9
✓ ✓ 31.4 37.7 33.5 23.3

Table 5. Ablation study on PC and RF of CDL. PC denotes
Predicate Correlation. RF denotes the Re-weighting Factor. The
results are obtained with Transformer as the baseline.

tion on mR@50 (22.0% vs. 18.9%) and Group Mean Recall
(head:39.2% vs. 38.4%, body:19.7% vs. 16.3%, tail:7.4%
vs. 5.7%), demonstrating the efficacy of BF for a more ef-
ficient learning process. We think this may be caused by
alleviating over-suppression to tail classes, which leads to a
balanced discriminating process among classes with differ-
ent frequency. At last, when both discarding PC and BF, we
observe a larger margin of reduction on mR@50 and Group
Mean Recall, demonstrating effectiveness of PC and BF.

Category Discriminating Loss: We explore the effective-
ness of the Predicate Correlation (PC) and the Re-weighting
Factor (RF) of Category Discriminating Loss. To be spe-
cific, we discard PC by ignoring φij > ξ and φij ≤ ξ in
Eq. 3. Besides, we discard RF by setting Re-weighting Fac-
tor wij as 1 for all predicate pairs i and j in Eq. 1. The
results are shown in Tab. 5. It is worth noting that CDL
(RF) leads to notable progress on mR@50 and Group Mean
Recall, which proves the efficacy of RF for keeping a bal-
anced learning process. Furthermore, CDL outperforms the
baseline with a considerable margin after being integrated
with PC. We believe that adjusting the re-weighting process
according to PC, CDL improves the discriminatory power
among hard-to-distinguish predicates while maintaining the
original discriminating ability among recognizable ones.

4.7. Visualization Results

To intuitively illustrate the effectiveness of our pro-
posed FGPL, we make comparisons among scene graphs
generated by Transformer, Transformer (Re-weight), and
Transformer (FGPL) with the same input images in Fig. 6.
We observe that Transformer (FPL) is capable of generat-
ing more fine-grained relationships between objects than
Transformer and Transformer (Re-weight), such as “man-
walking in-snow” rather than “man-on-snow”, “tree-across-
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Figure 6. Visualization results of Transformer, Transformer (Re-
weight), and Transformer (FGPL) on PredCls.

street” instead of “tree-near-street”, and “sidewalk-along-
street” as opposed “sidewalk-near-street”.

5. Conclusion

In this work, we propose a plug-and-play Fine-Grained
Predicates Learning (FGPL) framework for scene graph
generation. We devise a Predicate Lattice to help under-
stand predicates correlation concerning all scenarios in the
SGG dataset. Based on the Predicate Lattice, we develop
a Category Discriminating Loss (CDL) and an Entity Dis-
criminating Loss (EDL), which help differentiate hard-to-
distinguish predicates while maintaining learned discrimi-
natory power over recognizable ones. Experiments show
that our FGPL can differentiate hard-to-distinguish pred-
icates. When being integrated with our FGPL, several
benchmark models achieve superior performance than ex-
isting methods, showing the great generability of our FGPL.

Broader Impact. Our research helps reduce the cost of col-
lecting annotations for real-world scenes in applications of
scenario understanding. The positive effect of our method
on society is in making scenario understanding more effi-
cient for organizations and people. The negative effect of
our method on society is that in a deep learning manner,
our method is susceptible to adversarial attacks. There-
fore, there is a challenge to make people get misunderstood
with tampered scenario information. Since training samples
come from real-world scenes, it may cause the invasion of
personal privacy. Thus, the dataset should be carefully used
concerning copyrights and privacy problems. Moreover, the
model should be distributed with limitations and regulariza-
tion in specific scenes. For researchers, we should obey the
ethical rules to avoid ethical risks.
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