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Abstract

In portraits, eyeglasses may occlude facial regions and
generate cast shadows on faces, which degrades the per-
formance of many techniques like face verification and ex-
pression recognition. Portrait eyeglasses removal is criti-
cal in handling these problems. However, completely re-
moving the eyeglasses is challenging because the lighting
effects (e.g., cast shadows) caused by them are often com-
plex. In this paper, we propose a novel framework to re-
move eyeglasses as well as their cast shadows from face
images. The method works in a detect-then-remove manner,
in which eyeglasses and cast shadows are both detected and
then removed from images. Due to the lack of paired data
for supervised training, we present a new synthetic por-
trait dataset with both intermediate and final supervisions
for both the detection and removal tasks. Furthermore,
we apply a cross-domain technique to fill the gap between
the synthetic and real data. To the best of our knowledge,
the proposed technique is the first to remove eyeglasses
and their cast shadows simultaneously. The code and syn-
thetic dataset are available at ht tps://github.com/
StoryMY/take—-off-eyeglasses.

1. Introduction

A large portion of people wears eyeglasses in their daily
lives. In their face photos, eyeglasses usually bring un-
wanted occlusions and cast shadows on faces, which lead
to inaccuracy in many useful techniques like image-based
face verification [42, 46], expression recognition [47], fa-
tigue detection [13, 17,40], efc. Besides, in photography,
removing eyeglasses from portraits could be needed for aes-
thetic reasons, giving users a choice to edit their portraits.
Therefore, it is beneficial to develop an automatic technique
for portrait eyeglasses removal.

However, completely removing eyeglasses suffers some
key challenges. First, to recover the occluded facial re-
gion and keep it consistent with the remaining regions is
a difficult task as facial skin has rich details and complex
reflectance. Second, only recovering the occluded region
cannot ensure visually convincing results as eyeglasses also
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Figure 1. Our method allows to remove eyeglasses and their shad-
ows simultaneously. It produces photo-realistic results under vari-
ous illuminations, head poses and eyeglasses with different shapes
and textures.

bring various lighting effects (e.g., cast shadows, reflections
and distortions) on face regions. Explicitly modeling these
effects is extremely difficult as the physical rules to gener-
ate these effects are complicated. And it requires a delicate
perception of the eyeglasses geometry, face geometry and
lighting conditions, which are also difficult to obtain from a
single portrait.

Recently, deep learning [30,44] has shown its great po-
tential in handling tasks related to face editing [14, 33],
and has been successfully applied to portrait eyeglasses re-
moval [22] with the help of the face datasets [27, 35] con-
taining eyeglasses labels. However, these techniques only
focus on the eyeglasses but not the corresponding lighting
effects. ByeGlassesGAN [32] constructs paired data con-
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taining some lighting effects for training. However, as it
uses 2D methods to synthesize the data, the quality and re-
alism are quite limited. Also, it does not take cast shadows
into consideration.

In this paper, we propose a novel eyeglasses removal
technique using a synthetic dataset which considers 3D
shadows and uses a cross-domain training strategy to fill the
gap between synthetic and real data. This method jointly re-
moves eyeglasses and their cast shadows, generating more
visually plausible results compared to the previous state-
of-the-art methods. In order to facilitate learning the rela-
tion between eyeglasses and cast shadows, we introduce a
novel mask-guided multi-step network architecture for eye-
glasses removal. The proposed network first detects two
masks for both eyeglasses and their cast shadows. Then,
the estimated masks are used as guidance in the multi-step
eyeglasses removal. We observe that the shadows to be re-
moved are caused by the eyeglasses, and we use this fact
to carefully construct our network where the eyeglasses and
shadows are handled in well-designed orders in both the de-
tection and removal tasks. In this way, the network can well
take eyeglasses as an important prior when dealing with the
shadows.

For training this network, we build a photo-realistic syn-
thetic dataset using high-quality face scans collected by [52]
and 3D eyeglasses models made by artists, with principled
BSDF [37] to achieve high rendering quality. This dataset
contains a large amount of data for supervised training, cov-
ering various identities, expressions, eyeglasses, and illumi-
nations. Another benefit of using the synthetic dataset is
that we can synthesize images that cannot be captured in
real world, i.e., images with eyeglasses but no shadows and
images with shadows but no eyeglasses. These images can
be used as intermediate supervisions to train the proposed
network.

Although the accurate 3D information and the high-end
rendering technique improve the photo-realism of our syn-
thetic data, the network still cannot generalize well to real
images due to the gap between the synthetic and real do-
main. Inspired by [23] and [49], we develop a cross-domain
segmentation module that leverages a real image dataset
to build a uniform domain for both the real and synthetic
images. This helps to prevent the proposed network from
using domain-specific information to detect eyeglasses and
their cast shadows.

In summary, our main contributions are listed as follows:

* We design a novel mask-guided multi-step network ar-
chitecture which is the first attempt in the literature to
remove both eyeglasses and their cast shadows from
portraits and achieves high realism.

* We present a high-quality synthetic portrait dataset
which provides both intermediate and final supervi-

sions for training eyeglasses/shadows detection and re-
moval networks.

* We introduce a cross-domain segmentation module to
enhance the generalization capability on real face im-
ages.

2. Related Works

Eyeglasses Removal. Early works [11, 38, 53, 54, 59]
remove eyeglasses by statistical learning. The key assump-
tion of these works is that the facial regions occluded by
eyeglasses can be reconstructed from other faces without
eyeglasses. However, these methods usually assume frontal
faces and controlled environments, which limits their ap-
plications. Later works, e.g., ERGAN [22] and ByeGlass-
esGAN [32], use deep neural networks in eyeglasses re-
moval. ERGAN [22] proposes an unsupervised architec-
ture for eyeglasses removal in the wild, while ByeGlass-
esGAN [32] manually constructs paired data and propose
a multi-task framework for eyeglasses detection and re-
moval. These methods can successfully remove eyeglasses
in more general application scenarios. However, cast shad-
ows caused by eyeglasses are often ignored in both methods
as they do not explore the connections between eyeglasses
and cast shadows. Unlike these methods, we found that by
developing an architecture to learn this connection, the net-
work can remove the eyeglasses and their cast shadows at
the same time, generating more visually convincing results.

Face Attributes Manipulation. Facial image manipu-
lation techniques [4, 14, 43] have been developed rapidly
in recent years. Most of them jointly solve multi-label
[9, 10, 19, 34, 55] or multi-style [3, 15, 24, 31, 64] issues.
DFI [50] manipulates face attributes via interpolation of dif-
ferent feature vectors. AttGAN [19] manipulates facial im-
ages via attribute classification constraint and reconstruc-
tion learning. STGAN [34] incorporates difference attribute
vector and selective transfer units (STUs) for arbitrary at-
tribute editing. HiSD [33] proposes a hierarchical style
disentanglement framework for image-to-image translation,
which organizes the labels using a hierarchical tree structure
and overcomes the disadvantages of previous joint methods
[3,41,51,56,57,60,62]. Additionally, some works [12,48]
combine 3D Morphable Model (3DMM) with StyleGAN
[28] to control facial images semantically. We found that
manipulating external attributes (e.g., hats or eyeglasses) is
more difficult than manipulating internal attributes of faces
as facial accessories often lead to occlusions or extra light-
ing effects (e.g., cast shadows). Unlike the previous works,
we focus on eyeglasses removal and aim to remove not only
the eyeglasses but also their corresponding cast shadows.

Domain Adaptation for Segmentation. The majority
of works in this task are usually designed for urban scenes.
[21] combines both global and local alignment with a do-
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Figure 2. Illustration of portrait synthesis. We define two fix nodes (red), two floating nodes (blue) on the registered face model and their
corresponding vertices on each eyeglasses model. With node-based registration, we compute a plausible pose to align the eyeglasses model
with the face scan. Then, we combine them with a HDR lighting to render our synthetic data: Isyn, 12y, I5yn, I Sfyn M2, and M3,,,.

main adversarial training. [61] uses curriculum learning to
address the domain adaptation. [8] proposes an unsuper-
vised method to adapt segmenters across different cities.
Other works [7,49] apply discriminators on the output space
to align source and target segmentation, while [65] utilizes a
conservative loss to naturally seek the domain-invariant rep-
resentations. FDA [58] proposes a novel method that solves
the domain adaptation via a simple Fourier Transform and
its inverse. Based on the aforementioned methods, we addi-
tionally consider the relevance between the eyeglasses and
cast shadows, and successfully bridge the gap between syn-
thetic and real face images.

3. Portrait Synthesis with Eyeglasses

In order to build paired data for supervised training, we
use 3D rendering to generate synthetic images. As shown in
Fig. 2, we first make the face scan “wear” the 3D eyeglasses
via node-based registration. Then, we render the scan with
eyeglasses under a randomly chosen illumination. By set-
ting the eyeglasses or their cast shadows to be visible or in-
visible, we can get four different types of rendered images.
The masks of the eyeglasses and the cast shadows are also
generated. Details are described as follows.

3.1. Data Preparation

For 3D face data, we directly use the dataset collected
by [52]. This dataset contains the face scans of 438 sub-
jects with 20 expressions, varying from male to female and
young to old. In addition to raw scans, we also acquire the
registered face models with the same topology. For 3D eye-
glasses models, we ask professional artists to create 21 eye-
glasses models, which contain various shapes and textures.

3.2. Eyeglasses Alignment

In order to put eyeglasses on the plausible positions of
the face, we manually label four anchor nodes (A;,i €
{1,2,3,4}) on each eyeglasses model and their correspond-
ing vertices (V;,i € {1,2,3,4}) on the template face

model used for registration. Specifically, these four nodes
consist of two fixed nodes on the face temples and two float-
ing nodes on both sides of the nose as shown in Fig. 2. Then,
we compute the rotation R € SO(3), the translation ¢ € R?
and the scaling s € R by minimizing the distance between
the nodes and their corresponding vertices using Singular
Value Decomposition [39], expressed as

4
E(R,t,5A;,Vi)=) |ls-RA; +t— V3. (1)

i=1

According to our observation, people put their eye-
glasses on different nose positions. To enrich the wearing
styles of our synthetic data, we define various candidate
pairs of floating nodes in the nose region of the face tem-
plate and randomly choose one pair for eyeglasses align-
ment. Also, we randomly change the color of eyeglasses to
enrich their textures.

3.3. Rendering Setting

The data variety and photo-realism are well considered
in the portrait rendering. In detail, we first collect 367 HDR
lightings from Poly Heaven' to increase the diversity of il-
luminations. During the rendering, the lighting variation is
further augmented by setting a random rotation of the global
scene. Besides, we render each face scan which randomly
“wears” a pair of eyeglasses by a random head pose. For
photo-realistic synthesis, we use the principled BSDF im-
plementation in Blender to render our synthetic data with
the rendering setting empirically adjusted by a professional
artist.

For each rendering sample, we render four kinds of im-
ages with different visibility combinations of the eyeglasses

and their cast shadows: Isyn, I, I3, I, Sfyn The eye-
glasses mask MY, and the shadow mask A, are also

synthesized in the rendering.

Thttps://polyhaven.com/
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Figure 3. Illustration of the proposed network architecture. (A) Our network includes two stages: mask prediction stage and item removal
stage. The mask prediction stage aims to estimate the eyeglasses mask and shadow mask via a cross-domain segmentation module. In the
item removal stage, we successively employ a De-Shadow Network and a De-Glass Network to remove cast shadows and eyeglasses with
the guidance of the two predicted masks. (B) In the cross-domain segmentation module, the Domain Adaptation (DA) Network normalizes
the input images to uniform feature maps with the help of a discriminator. Then, the Glass Mask Network and Shadow Mask Network take
the uniform feature maps to predict eyeglasses and shadows masks, respectively.

4. Portrait Eyeglasses Removal Network

The architecture of the proposed network is illustrated
in Fig. 3. Our network is designed based on the follow-
ing considerations: /) ByeGlassesGAN [32] improves eye-
glasses removal with a parallel segmentation task, which
has demonstrated the importance of mask prediction in eye-
glasses removal. Inspired by their method, we remove the
eyeglasses in a more natural way by first explicitly detecting
the eyeglasses in a mask prediction stage and then remov-
ing eyeglasses with the guidance of predicted masks in an
item removal stage. 2) We further enhance the eyeglasses
removal performance by using a multi-step strategy in both
above stages to treat the eyeglasses and their cast shadows
in sequential order. Considering that the shadows to be re-
moved are caused by eyeglasses, the eyeglasses should be
a guidance in both shadow mask prediction and shadow re-
moval. 3) The proposed network is trained to remove eye-
glasses using the synthetic dataset. To make it generalized
to real images, we use a Domain Adaptation (DA) Network
to convert the input images into uniform feature maps. The
uniform feature maps eliminate the domain-specific infor-
mation to confuse a discriminator but retain the structural
information for eyeglasses and shadow mask prediction.

4.1. Mask Prediction Stage

Given an input portrait I with eyeglasses, our method es-
timates the eyeglasses mask M9 and shadows mask M in
the mask prediction stage using a cross-domain segmenta-
tion module. This module is composed of a DA Network, a
Glass Mask Network and a Shadow Mask Network.

In order to tackle the gap between synthetic and real do-
main, the DA Network is trained to transfer the input image
I to a uniform domain, outputting the uniform feature map

E. Inspired by [23] and [49], we apply adversarial learn-
ing to find the uniform domain assisted with a discriminator
D. This discriminator D is trained to distinguish whether
the feature map F'is from a real image or a synthetic image
while the DA Network aims to fool the discriminator. We
utilize LSGAN [36, 63] for more stable training:

‘Cadv = ( (Fsyn))2 + (D( real) - 1)27 ()
L34, = (D(Fgyn) = 1)%, 3)

where Fmal and Fsyn are the corresponding feature maps
of real and synthetic data. Specifically, the DA Network
consists of the first layer of a pre-trained VGG encoder [45]
with fixed parameters, combined with six trainable ResNet
blocks [ 18] with instance normalization.

We use a multi-step strategy to predict the eyeglasses
mask M9 and the corresponding shadow mask M* from
the uniform domain feature . Instead of extracting these
two masks together using a single network, we first esti-
mate the eyeglasses mask M9 using a Glass Mask Network.
Then, the previous outputs F and MY are together fed into
a Shadow Mask Network to predict the shadow mask M,
with the consideration that the eyeglasses masks could be
a guidance in the shadow mask prediction. We learn the
eyeglasses mask MY and the cast shadow mask M? in a
supervised manner as follows,

ﬁmask LS(Msyna Msyn) (4)
‘Cmask Lg(MsSynﬂMssyn) (5)
Le(M, M) = —Mlog M — (1 — M)log(1 — M), (6)

where L¢ is the widely used binary cross entropy (BCE)
loss. Experiments in Sec. 5.2 demonstrate that with the
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guidance of the estimated eyeglasses mask M9, the pre-
dicted shadow mask M ® will be more complete.
Overall, the training loss for the mask prediction stage is
formulated as
Epredict = )\adv['?dv + )\advﬁg

adv
; . 7
+ /\maskﬁfmask + )\maskﬁmaska

where A\, 4, and A, 451 are the weights for adversarial learn-
ing and mask prediction, respectively.

4.2. Item Removal Stage

This stage aims to remove eyeglasses and cast shadows,
and we call it item removal stage for short. It takes the
two predicted masks as clues to achieve clean eyeglasses
and shadow removal. When removing these items, we also
apply the multi-step strategy. However, different from the
multi-step setup used in the mask prediction stage, in which
our method first handles eyeglasses and then shadows, we
deal with eyeglasses and shadows in an inverse order in this
stage. This is because if we first remove the eyeglasses, the
network will lose the abundant indications of shadow inten-
sity and locations.

With an input image I, we first use a De-Shadow Net-
work to remove the cast shadows of the eyeglasses. To help
the network better locate the cast shadows to be removed,
the estimated eyeglasses mask M9 and shadow mask M*
are also fed to the De-shadow Network. In order to learn
the shadow-removed image 19, we employ a L regression
loss, written as

Lie—s = ||Iéqyn - Igyn”h 3)
where T 2, indicates the output of our De-Shadow Network.

After removing the cast shadows, we use a De-Glass
Network to further remove the eyeglasses in the next step.
The large variety of eyeglasses textures in real world will
lower the performance of eyeglasses removal. To enhance
the robustness of our method, we adopt a mask operation
to set the pixel values of the eyeglasses regions to 0. This
operation eliminates the texture of eyeglasses from 19, forc-
ing the De-Glass Network to remove the eyeglasses only
according to the structure instead of textures. Finally, the
De-Glass Network takes the masked shadow-removed re-
sult I™9 and the estimated eyeglasses mask M9 as input
and learns the eyeglasses-removed image I/ via the follow-
ing constraint:

’Cdefg = Hjsfyn - Iéfyn”l' )

where [ Jyn represents the output of our De-Glass Network.
To sum up, the training loss for the item removal stage is

formulated as

AC?“emove = )\defs‘cdefs + )\defgﬁdef‘zp (10)

where Ag._, and 4.4 are the weights for shadow and eye-
glasses removal, respectively.

5. Experiments

In this section, we first describe the datasets and our
implementation details. Then, we compare our method
with the state-of-the-art eyeglasses removal and image-to-
image translation methods qualitatively and quantitatively.
Finally, we evaluate the key contributions of the proposed
method via ablation study. Note that besides the results in
Fig. 1, we will show more various results in our supplemen-
tary material.

Dataset. We use our synthetic dataset described in Sec. 3
and CelebA [35] to train the proposed network. For syn-
thetic dataset, we randomly sample 73 identities of the 438
identities. Each identity contains 20 face scans with differ-
ent expressions. We combine the face scans randomly with
5 eyeglasses and 4 HDR lightings, finally generating 29,200
training samples. CelebA is a real-world portrait dataset
that contains 202,599 face images of 10,177 identities and
is annotated with 5 landmarks and 40 binary attributes for
each image. Using the attributes labels, we split 13,193
images with eyeglasses and 189,406 images without eye-
glasses from it. Additionally, we adopt FFHQ [28] and Me-
Glass [16] for testing. FFHQ contains 70,000 high-quality
portraits and it also covers accessories like eyeglasses. Us-
ing face parsing [1], we roughly split 11,778 images with
eyeglasses from it. MeGlass is a dataset containing 1,710
identities and each identity has images with and without
eyeglasses. This dataset is essential for identity preserva-
tion validation in Sec. 5.1.2. We refer to [28] to align all the
images to a size of 256 x 256 using facial landmarks.

Implementation Details. Our method is implemented
with PyTorch. We use Adam optimizer [29] with $; = 0.5
and B2 = 0.999. The learning rate is 0.0001 and the batch
size is 8. For the weights in the objective functions in Eq. (7)
and Eq. (10), we set Aggy = 0.1, Appask = 1, Age—s = 1,
and Ag._y = 1. Apart from the DA Network and the dis-
criminator, all the other networks utilize the architecture
in [26]. In practice, we first train the cross-domain seg-
mentation module for 30 epochs and fix it when training
networks in the item removal stage, which needs 80 epochs.
The total training process costs about two days on a single
GTX 1080 GPU.

5.1. Comparison with State-of-the-art Methods

We compare our method with state-of-the-art eyeglasses
removal methods: ERGAN [22] and ByeGlassesGAN [32],
as well as image-to-image translation methods including
CycleGAN [63], StarGAN [9], ELEGANT [57], pix2pix
[25] and HiSD [33]. To ensure fair comparisons, all these
methods and our method are not trained on the testing
dataset. Specifically, to compare with ERGAN and HiSD,
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Figure 4. Qualitative cross-dataset results of different methods on FFHQ dataset (top) and MeGlass (bottom).

we directly use their released models which are trained on
CelebA and CelebA-HQ [27], respectively. For CycleGAN,
StarGAN and ELEGANT, we train them on the task of eye-
glasses removal using their codes and the CelebA dataset.
As pix2pix needs paired data, we train it on our synthetic
data using the released code. As we cannot reach the au-
thors of ByeGlassesGAN [32] to conduct a comparison ex-
periment, we just show qualitative comparison using the im-
ages posted in their paper. Note that the purpose of the com-
parisons is not to purely compare different methods in the
same setting but to demonstrate which solution better solves
the problem.

5.1.1 Qualitative Comparison

We first compare the visual quality of our method with prior
works on various images from FFHQ and MeGlass, cover-
ing different ages, genders, head poses, illuminations, eye-
glasses shapes and textures. As shown in Fig. 4, our method
achieves the best quality compared to the previous works.

ELEGANT fails to remove the frames of the eyeglasses on
all the test images. ERGAN can remove eyeglasses, but
the eyeglasses regions are always blurred. CycleGAN, Star-
GAN and pix2pix preserve the high-frequency details in the
whole eyeglasses regions, but they cannot completely re-
move eyeglasses for some samples. HiSD seems compet-
itive to ours on some easy samples, but it fails to remove
sharp cast shadows (1st row) as well as eyeglasses with un-
usual shape (5th row) and texture (2nd row). Benefiting
from the mask-guided learning and our synthetic data, our
method can remove various eyeglasses and the correspond-
ing cast shadows. In addition, it generates photo-realistic
contents in the regions occluded by eyeglasses or shadows,
and retains the consistency with the global illumination and
the skin texture of the surrounding regions. For ByeGlass-
esGAN [32], we only perform the comparison using the im-
ages posted in their paper. Results are shown in Fig. 5 and
we can see that our method outperforms theirs in the shadow
removal.
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Figure 5. Qualitative comparison with ByeGlassesGAN [32] using
images from their paper.

5.1.2 Quantitative Results

For quantitative comparisons, we first use Fréchet Inception
Distance (FID) [20] to evaluate the realism of the generated
images. Then, we apply face recognition technique to eval-
uate the ability of identity preservation. Finally, we adopt
a user study to further evaluate the visual quality of eye-
glasses removal.

Realism. First, we process the images with eyegalsses in
FFHQ by different methods. Then, we compute the FID be-
tween the eyeglasses-removed results and the images with-
out eyeglasses in FFHQ. The results (Tab. 1, 1st col) show
that our method is competitive with HiSD and outperforms
the other methods. This indicates that images generated by
ours and HiSD are probably close to the real images without
eyeglasses. Note that realism is a subjective measurement
that can not be fully represented by FID. For further evalu-
ation, we adopt a user study later.

Identity Preservation. To evaluate the identity preser-
vation ability, we use some metrics commonly used in face
recognition [5, 6], including the True Accept Rate at False
Accept Rate (TAR@FAR) and Rank-1. To compute these
metrics, we first collect 1,227 image triplets from MeGlass
dataset. Each triplet contains three images of the same iden-
tity: two without eyeglasses and one with eyeglasses. Then,
we input the image with eyeglasses into different methods to
acquire corresponding eyeglasses-removed results. Finally,
we select the first eyeglasses-free image in the triplet as the
gallery and all the other images as probes to compute the
metrics based on a pre-trained face recognition network [2].
As shown in Tab. 1, the second eyeglasses-free image in
the triplet (noglass) achieves high face recognition accu-
racy as it is a real image containing full identity information.
However, the accuracy will degrade when taking the images
with eyeglasses as the probe (glass), indicating the negative
effects of eyeglasses in face recognition. ERGAN, Cycle-
GAN, ELEGANT and pix2pix lead to the further degrada-
tion of face recognition after eyeglasses removal while Star-
GAN and HiSD enhance the metrics. Our method exhibits

Table 1. Quantitative results of different methods.

the most significant increase, which stands for the best abil-
ity of eyeglasses removal and identity preservation.

User Study. A user study is conducted to further eval-
uate the visual quality of eyeglasses removal. In detail,
we combine the results of different methods together with
the input image to construct a “question”. Participants are
asked to give their opinions based on the visual quality,
scoring different results from 1 to 5 (1 for the worst, 5
for the best). In total, we invite 40 participants and each
participant is asked to answer 20 randomly sampled “ques-
tions”. As shown in Tab. I, our method has the highest
Mean Opinion Score (MOS), indicating the superiority of
our technique.

5.2. Ablation Study

In this subsection, we evaluate the performance of our
key contributions in the mask prediction stage and the item
removal stage.

Mask Prediction. We first conduct ablation studies for
the mask prediction stage. The first ablation removes the
DA Network with two new segmentation networks trained
on synthetic data only and tested on real data directly (w/o
DA). Results in Fig. 6 show that without domain adapta-
tion, the estimated eyeglasses masks are sometimes incom-
plete and thus lead the shadow mask prediction to produce
even worse results. The second ablation removes the multi-
step strategy (in mask prediction) by using a single network
to estimate the masks of eyeglasses and shadows together
(W/o multi-step). With the help of the DA network, the eye-
glasses masks are properly estimated. However, as the eye-
glasses masks can not help the shadow masks estimation
in the single-step setting, the estimated shadow masks still
have noticeable artifacts. To further evaluate our assump-
tion that the eyeglasses mask can guide the task of shadow
mask prediction as shadows are caused by eyeglasses, we
further conduct another ablation setting where the shadow
mask is first predicted and then used as guidance in the eye-
glasses mask prediction (SM-guided GM). Its results show
that this multi-step setup will lead to worse shadow mask
estimation. This further indicates the correctness of our as-
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Figure 6. Visualization of eyeglasses masks (green) and shadow
masks (blue) of different ablations in the mask prediction stage.

FID, lgff@pﬁif s  Rank-11

w/o DA 2745 0.6463  0.3977 0.4392

w/o multi-step 27.18 0.6683 0.4262  0.4458
SM-guided GM 2730 0.6641  0.4201 0.4523
GM-guided SM (ours) | 26.89 0.6702 0.4315  0.4621
w/o SM 3389  0.6586 0.3989  0.4327

w/o GM 4280 0.6567 03846  0.4221

w/o multi-step 28.66  0.6675 0.4197 0.4498
De-Glass First 29.58  0.6590 0.4115 0.4417
De-Shadow First (ours) | 26.89  0.6702  0.4315 0.4621

Table 2. Quantitative comparison of different ablations in the mask
prediction stage (top) and item removal stage (bottom).

sumption, and the order of the two tasks is important due to
the causality between eyeglasses and shadows.

Item Removal. Here, we evaluate the effect of mask
guidance and the multi-step strategy (in item removal) by
comparing different ablation settings. We first train two ab-
lation settings without using the shadow mask or the eye-
glasses mask (w/o SM and w/o GM), respectively. We also
remove eyeglasses and shadows using one network to con-
struct the third ablation setting (w/o multi-step). Similar
to the mask prediction stage, we also invert the order of
De-Shadow and De-Glass Network to get the fourth setting
(De-Glass First). Qualitative results in Fig. 7 obviously
show that w/o SM is weak at shadow removal while w/o
GM fails to remove the complete eyeglasses. Besides, w/o
multi-step and De-Glass First also have noticeable degra-
dation compared to the proposed method. Quantitative re-
sults in Tab. 2 also manifest the advantages of the proposed
method.

6. Limitations

Extensive experiments have shown that the proposed
method achieves promising performance on real-world im-

w/o GM w/o De-Glass Ours
multi-step First

Figure 7. Qualitative results of different ablations in the item re-
moval stage.

Input w/o SM

Input  HiSD Ours  Input  HiSD Ours
Figure 8. Limitations. Extreme head pose with effects of lenses
(left) and colored lenses (right). These cases are difficult for most
of the existing methods. Here, we only show comparisons to the
most competitive method (HiSD).

ages across age, gender, head pose, illumination and eye-
glasses. However, it currently does not perform well on
images with extreme head pose or eyeglasses with colored
lenses as shown in Fig. 8. A large head pose often results
in extreme lens distortion, which is expensive to simulate in
the portrait synthesis. Eyeglasses with colored lenses, e.g.
sunglasses, are still difficult to remove due to the complete
occlusions of eyes. A possible solution is to add more sam-
ples of these cases into the training dataset, which will be
included in our future work.

7. Conclusion

In this paper, we introduce a novel eyeglasses removal
technique that first detects and then removes the eyeglasses
using the mask-guided multi-step network architecture. To
our best knowledge, the proposed method is the first attempt
to remove the eyeglasses and their cast shadows simulta-
neously from a single portrait. Besides, we build a high-
quality synthetic portrait dataset, which provides interme-
diate and final supervisions. In order to fill the gap between
the synthetic and real domain, we apply the cross-domain
segmentation module to predict the masks of eyeglasses and
their cast shadows from a uniform domain for removal guid-
ance. Both qualitative and quantitative experiments demon-
strate that our method better preserves the original identity
and achieves high realism on real portraits.
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