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Abstract

Cross language-image modality retrieval in E-commerce
is a fundamental problem for product search, recommenda-
tion, and marketing services. Extensive efforts have been
made to conquer the cross-modal retrieval problem in the
general domain. When it comes to E-commerce, a com-
mon practice is to adopt the pretrained model and finetune
on E-commerce data. Despite its simplicity, the perfor-
mance is sub-optimal due to overlooking the uniqueness of
E-commerce multimodal data. A few recent efforts [10, 72]
have shown significant improvements over generic methods
with customized designs for handling product images. Un-
fortunately, to the best of our knowledge, no existing method
has addressed the unique challenges in the e-commerce
language. This work studies the outstanding one, where
it has a large collection of special meaning entities, e.g.,
“Dissel (brand)”,“Top (category)”, “relaxed (fit)”
in the fashion clothing business. By formulating such out-
of-distribution finetuning process in the Causal Inference
paradigm, we view the erroneous semantics of these spe-
cial entities as confounders to cause the retrieval failure.
To rectify these semantics for aligning with e-commerce do-
main knowledge, we propose an intervention-based entity-
aware contrastive learning framework with two modules,
i.e., the Confounding Entity Selection Module and Entity-
Aware Learning Module. Our method achieves competitive
performance on the E-commerce benchmark Fashion-Gen.
Particularly, in top-1 accuracy (R@1), we observe 10.3%
and 10.5% relative improvements over the closest baseline
in image-to-text and text-to-image retrievals, respectively.

1. Introduction
Cross visual and linguistic retrieval, as a fundamental

component in the multimodal searching system, has been
extensively studied [13, 18, 24, 27, 32, 38, 41, 43, 69, 70]. It
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Figure 1. Illustration of domain shift between general domain
and e-commerce domain. In e-commerce domain, a collection of
tag entities with strong domain semantics are associated with a
title/description and image.

takes linguistic data as the query and retrieves the corre-
sponding visual data, or verse vice. One key challenge in
this area is how to align the visual and textual data semanti-
cally.

In the cross-modal retrieval of e-commerce products,
there are many unique characteristics in both e-commerce
image and language. As shown in Fig. 1, an e-commerce
product image usually only contains a simple scene with
one or two foreground objects and a plain background.
Meanwhile, an e-commerce language is usually composed
of a set of metadata (tag entities) [15, 39], including prod-
uct title/description, brand, category, composition, etc. Pre-
vious works such as FashionBERT [10] and KaleidoBERT
[72] suggest that cross-modal retrieval in fashion domains
requires more fine-grained features (e.g. short sleeve and
crewneck). However, the popular Region of Interest (RoI)
[11] based methods detect unsatisfactory region propos-
als with either repeated object regions or irrelevant sub-
regions to the product. To this end, these works focus on
fine-grained representation learning of images through the
patch-based method. Despite the great successes, they only
focus on the challenges of images, while the language part
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still follows the vanilla BERT [5].
In this work, we improve cross-modality product re-

trieval from the language part. Specifically, we design our
model with the following two motivations about the unique
language in e-commerce. Motivation-1: the word tokens
often come up with special meanings in e-commerce, while
the pretrained language model part in [10, 38, 72] is biased
despite of the large-scale pretraining corpus. For instance,
entity “diesel” in pretrained CLIP model is strongly as-
sociated with the concept “fuel”, while in e-commerce fash-
ion domain, “diesel” is tagged as a brand entity. Other
examples include “canada goose (brand)”, “golden
goose (brand)”, “top (category)”, to name a few. Such
out-of-distribution problem in multimodal finetuning is re-
cently studied from the causal inference viewpoint [67].
Zhang et al. formulate this undesirable spurious correla-
tions between image and language as “confounders” learned
from the pretrained dataset. By modeling with structural
causal model (SCM) graph [36], the authors perform hard
intervention to remove the dataset bias via backdoor inter-
vention [36]. However, when modeling the confounding
variables, Zhang et al. follow the traditional BERT token
vocabulary, treating each entity as a group of (sub)word to-
kens as others [10, 72]. This overlooks a large collection of
special meaning entities in e-commerce, such as “Dissel
(brand)”,“top (category)”, “relexed (fit)”. Moreover,
this will inevitably intertwine different entities with the
shared confounding (sub)word tokens, such as “Canada
Goose” and “Golden Goose”. To this end, the language
part should be entity-aware [31, 47, 71] and disentangled
from the conventional meanings of special entities encoded
in the pretrained language model.
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Figure 2. Empirical analysis of image-to-text and text-to-image
tasks on Fashion-Gen. We finetune the pretrained CLIP model by
concatenating different textual meta data. Results on top-1 accu-
racy are reported.

Meanwhile, the varieties of meta data leads to our
Motivation-2: meta data contribute unevenly to the cross-
modality retrieval. Specifically, previous methods usually
concatenate all the metadata together to form a long sen-
tence [10, 24, 38, 41, 43, 72]. However, this straightforward
solution treats each meta information equally. In practice,
for different image/text pairs, metadata (tag entity) may
contribute differently. Some metadata can even be harmful

to retrieval. To support the claim, we conduct an empirical
study on Fashion-Gen dataset using a simple yet effective
CLIP model [38]. We finetune the pretrained CLIP model
given different meta entity concatenations on Fashion-Gen
dataset. From Fig. 2, it is observed that given the product
description (dark blue), “brand” (orange) is the only help-
ful metadata. Adding “category” (yellow), “season” (grey),
or “composition” (light blue) can contribute little or even
harm the performance. More importantly, if we concatenate
all the meta data (green), both performances are dropped
compared to only appending “brand” in text-to-image and
image-to-text tasks. To this end, it is thus important to iden-
tify the beneficial metadata while discarding the others.

As motivated, we propose an Entity-aware Intervention-
based contrastive learning framework, termed EI-CLIP, for
e-commerce product retrieval problem with two specific
module designs in the causal learning paradigm, i.e., Entity-
Aware Learning Module (EA-learner) for motivation-1
and Confounding Entity Selection Module (CE-selector)
for motivation-2. It is worth clarifying that we do not
propose a new causality method, but rather formulate the
entity-aware e-commerce cross-modal retrieval problem in
the casual view. Specifically, the EA-learner learns an in-
dividual representation for each informative confounding
entity for better mitigating the out-of-distribution problem.
Then the CE-selector aims to automatically select the most
informative group of meta data (e.g., “brand” in Fig. 2) from
the abundant textual meta data.

We summarize our main contributions as follows:

• To the best of our knowledge, this is the pioneer-
ing work to tackle the challenges introduced by e-
commerce special entities in language modality. Previ-
ous cross-modal retrieval works only focus on images.

• We are the first to formulate the entity-aware retrieval
task in causal view. We argue that the erroneous se-
mantics of e-commerce special entities learned in the
general domain are the confounders causing the re-
trieval failures.

• Equipped with backdoor adjustment [36] in causal
inference, we propose an Entity-aware Intervention-
based contrastive learning framework (EI-CLIP), with
two new components, i.e., CE-selector and EA-learner.

• EI-CLIP achieves competitive performance on e-
commerce benchmark dataset Fashion-Gen. In partic-
ular, in top-1 accuracy (R@1), we observe 10.3% and
10.5% relative improvements over the closest baseline
in image-to-text and text-to-image, respectively.

2. Related Work
Image-Text Matching Visual-linguistic representation
learning has many downstream applications including im-
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age caption, visual question answering, cross-modal re-
trieval (image-text matching), etc. Our work is closely re-
lated to image-text matching, where the key problem is how
to semantically align the image and text. The early works
start from exploiting the shallow models to project the entire
image and sentence into the latent subspace, then align two
modalities in image/sentence level [13, 19]. In the recent
decade, deep models (e.g., convolutions neural network for
image and long short-term memory network [16] for sen-
tence) have been widely applied to extract better representa-
tion, then make image/sentence level alignment via canon-
ical correlation analysis [41, 55], ranking loss [9, 20], hard
example mining [3, 8], etc. To achieve a fine-grained level
alignment, attention mechanism has been incorporated to
align word/region tokens with different levels of granularity,
such as word level [18,22,52], phrase/relation level [24,49],
etc. Recently, with the great success of Transformer-based
pretraining [5, 48], many visual linguistic pretraining meth-
ods have been proposed, such as VL-BERT [43], ViL-
BERT [32], VideoBERT [44], LXMERT [45], Unicoder-
VL [23], OSCAR [25], etc. Most recently, with the devel-
opment of vision transformers [7, 29, 33, 46, 56, 62], Rad-
ford et al. [38] introduce a simple yet powerful multimodal
pretraining framework (CLIP) based on contrastive learn-
ing [4,12,12,14,59–61] on a 400-million image-text paired
training corpus. Although no word/region level alignment
mechanism is specifically designed, it has shown a superior
capability on word/region token level alignment to other
methods. Our work follows the CLIP framework.

Fashion-Based Cross-Modality Retrieval Compared
with the general vision-language domain, the fashion-based
task requires paying more attention to the task-specific
knowledge, such as the fine-grained information [6, 10, 64,
72]. FashionBERT [10] was the first vision-language model
in the fashion domain. It proposed a patch-based method to
retain more raw pixel-level information. Then the split non-
repeated patches together with query word tokens are fed to
the cross-modal BERT model for joint learning. Later on,
Kaleido-BERT [72] further applies several self-supervised
tasks at different scales to focus more on image-text co-
herence. However, all of these methods only focus on the
visual part, while ignoring the uniqueness of e-commerce
language. Our work aims to solve challenges from the lan-
guage modality.

Causality in Multimodal Learning Causal inference has
been successfully explored in a number of vision and lan-
guage applications, such as image classification [2, 30,
58, 63], semantic segmentation [65], video action local-
ization [26, 28, 57] in vision, and text classification [53],
text question answering [42], named entity recognition [68]
in language. This work focuses on multimodal learning,
where a few existing works have touched upon. Wang et
al. [50, 51] propose a visual commonsense region-based

convolutional neural network (VC R-CNN) to deal with the
spurious correlation within objects in image. Despite that
the de-confounded VC R-CNN shows encouraging results
on many multimodal applications, the causal intervention is
only considered for the visual domain. Zhang et al. [67]
study the spurious correlations in multimodal pre-trained
models when applied to an out-of-distribution finetuning
task. The core idea of the proposed DeVLBert is to employ
hard intervention to back-door adjust [36] the conditional
probability of an object token (in visual) given a word token
(in language), or verse vice. In this work, we are also inter-
ested in a similar problem motivated by the practical chal-
lenge of adapting a pre-trained generic multimodal model
to an out-of-distribution downstream e-commerce dataset.
While apart from the task difference, i.e. generic mul-
timodal representation learning (DeVLBert) vs. specific
cross-modality retrieval (ours), our work aims to mitigate
the bias semantics of special entities, while previous works
focus on the correlations among objects.

3. Methodology
3.1. Revisiting CLIP

Radford et al. [38] suggest that the predetermined object
categories provide limited supervision to the computer vi-
sion networks. Instead, directly learning from the raw text
description about an image is an effective way that lever-
ages rich supervision information. [38] proposes the CLIP
(Contrastive Language-Image Pre-training) model, which
applies contrastive learning to learn visual representations
from scratch on a dataset of 400 million image-text pairs.
Specifically, given a batch of image-text pairs {(Ii, Ti)}Ni=1,
where N is the batch size, the image encoder hI(·) and the
text encoder hT (·) firstly encode the image and text into
vectors on the multi-modal embedding space Rd, where
d is the dimension of the embedding. Denote the im-
age embedding and text embedding as EI

i = hI(Ii) and
ET

i = hT (Ti), respectively. As shown in Fig. 3 (a), during
the training, the CLIP model calculates the cosine similar-
ity ET

i ⊙ EI
j (i, j ∈ {1, 2, ..., N}) of all N × N possible

pairs. To jointly train the image and text encoders, CLIP
maximizes the similarity for N matched pairs while mini-
mizing the similarity for all other N2−N unmatched pairs.
In practice, CLIP optimizes a symmetric cross-entropy loss
over the N ×N similarity scores matrix.

CLIP calculates the similarities only based on the global
embedding of images and texts. Therefore, it only learns the
correspondence between word tokens and detailed image
features implicitly. To this end, a sufficiently large dataset
is required to learn this fine-grained correspondence during
the pre-training process. The CLIP constructs a dataset with
400 million image-text pairs on the Internet. However, the
model is easily biased towards the ‘commonsense’ knowl-
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Figure 3. Comparison of CLIP (a) and our EI-CLIP (b) during the training. The CLIP (a) directly appends all entities to the text description,
while our EI-CLIP encodes them individually. We further apply the CE-Selector to automatically select the significant confounding entities,
and the EA-Learner to introduce the entity information into the description. Please refer to Section 3.3 for more details.

edge1 when learning from this large dataset in the general
domain. Typically, the bias towards the common domain
is beneficial. However, when adapting it to other domains
with contrastive learning, it is challenging for the model
to learn all the domain-specific knowledge well, such as
the knowledge of the e-commerce domain. For example,
the word “diesel” typically refers to the “diesel fuel” in
the commonsense. However, it is a brand of clothes in the
fashion domain. Another example is the brand “golden
goose”. In commonsense, we treat them as two separate
words “golden” and “goose”, and refer them to the color
and the animal. Considering the limited number of fine-
tuning examples, it is difficult for the model to learn that
these special words refer to brands. Thus, the model still
maintains its commonsense knowledge about these words.
Consequently, a method to mitigate the erroneous semantics
of these unique words in CLIP is required.

3.2. CLIP in the Causal View
In the causal view, we regard the given text Ti as X

and image Ii as Y . For CLIP, the goal of contrastive
learning is to learn both function P (Y |X) and function
P (X|Y ). We use the calculation of P (Y |X) as an exam-
ple to illustrate the causal view. We consider the semantics
of these special entities as confounders Z, which may af-
fect either X or Y . Specifically, we define z = g(a, b),
which means entity a takes the semantics b. The en-
tity a usually maintains several semantics and is part of
the text X . For example, g(golden goose,“animal”)

1Commonsense can be biased. For example, “banana is yellow” is com-
monsense, which is not necessary. Instead, bananas can be red or green.
Other biased cases in CLIP are discussed in [1].

means the word ‘golden goose” refers to an animal,
while g(golden goose,“brand”) refers to the brand.
The confounders may introduce spurious correlations in the
model when only learning from P (Y |X). Formally, by the
Bayes Rule, the likelihood can be written as [36]:

P (Y |X) =
∑
z

P (Y, z|X) =
∑
z

P (Y |X, z)P (z|X),

(1)
where the confounder z introduces the bias of the train-
ing set via P (z|X). As the CLIP is trained in the gen-
eral domain, it is easily biased towards the common-
sense. Given the text X = “A T-shirt of golden goose”,
most of the likelihood sum in Eq. 1 will be assigned
to P (Y |X, z = g(golden goose,“animal”)), since
P (z = g(golden goose,“animal”)|X) is large in the
general domain. Thus, when adapting to the fashion do-
main, the function P (Y |X) tends to retrieve an image with
goose or golden color, rather than retrieve the clothes of the
corresponding brand.

To adjust the influence of confounder Z in other domain,
we intervene X with the do-calculus [50, 67]. Specifically,
we cut off the dependency between X and Z. By the defi-
nition of do-calculus, we have

P (Y |do(X)) =
∑
z

P (Y |X, z)P (z). (2)

Compared with Eq. 1, z is no longer affected by X . The
prediction of Y is subject to the prior P (z) of the training
set, which can be easily pre-calculated [50, 67]. In fashion
domain, the prior P (z = g(golden goose,“brand”)
dominates the likelihood. Thus, the bias towards common-
sense in general domain can be mitigated.
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3.3. EI-CLIP: Implementation
In the e-commerce domain, the text Ti consists of two

components: one is the text description TD
i , which de-

scribes the details of product. The other is the entity set
TA
i = {aki }Kk=1, where K is the total number of entities,

and aki is the k-th entity. There are usually some meta
data (tag entities) about the product, such as brand and
category, which represents domain-specific knowledge. To
tackle these challenging entities, we propose the EI-CLIP,
as shown in Fig. 3(b). Specifically, we design two modules
to implement P (Y |do(X)). One is Entity-Aware Learning
Module (EA-Learner), and the other is Confounding Entity
Selection Module (CE-Selector).

EA-Learner This module aims to explicitly capture each
individual entity information without worrying about am-
biguous entity semantics between general and e-commerce
domain or intertwined entity representation because of
shared (sub)word tokens (motivation-1 in Section 1). The
contrastive learning is formed as a classification task within
a mini-batch. We denote j ∈ {1, 2, ..., N} as the index
in the mini-batch. Therefore, the prediction P (Y |X, z)
in Eq. 2 can be regarded as a classifier: P (Y |X, z) =
Softmaxfj(X, z), where fj(X, z) denotes the classification
head of intervention. Similar to [50, 67], with the approxi-
mation of NGSM (Normalized Weighted Geometric Mean)
[54], Eq. 2 can be implemented as:

P (Y |do(X)) ≈ Softmax[Ez(fj(X, z))]. (3)

By definition, we have z = g(a, b). Thus, Ez(fj(X, z)) in
Eq. 3 can be written as:

Ez(fj(X, z)) =
∑
z

fj(X, z)P (z)

=
∑
a

∑
b

fj(X, z = g(a, b))P (z = g(a, b)).

(4)
In practice, P (z = g(a, b)) can be approximated by count-
ing the frequency of all semantics b for a given entity a in
the training set. For simplicity, we assume that there is only
one special entity ai in text description Ti (i.e. variable X)
in the fashion domain. The entity ai maintains multiple se-
mantics bi,m ∈ B1

i ∪B2
i , where B1

i contains all semantics of
ai in the general domain, B2

i contains the special semantics
of ai in the fashion domain, and m is the index of semantics
in the set B1 ∪ B2. When bi,m ∈ B1, ai refers to the gen-
eral semantics. However, note that in our fashion retrieval
problem, ai is already marked as special entity and assigned
to one unique semantic (e.g. golden goose as “brand”)
in meta data. Thus, the probability P (z = g(ai, bi,m)) is
0 when bi,m ∈ B1. To this end, we only need to consider
the case of bi,m ∈ B2. As the semantic is unique, we train
an entity encoder hA(·) from scratch to learn entity embed-
ding: EA

i = hA(ai) ∈ Rd. ai is processed as a whole,

instead of multiple (sub)word tokens. Meanwhile, we ap-
ply the text encoder hT (·) to obtain the embedding of TD

i :
ED

i = hT (TD
i ). As concluded in [17, 38], there are linear

relationships [34] within the multi-modal embeddings. In
this respect, we obtain the global embedding of Ti through
ET

i = ED
i + EA

i . In this case, fj(X, z) is parameterized
by Ej ⊙ (ED

i + EA
i ). Thus, Eq. 3 can be rewritten as:

P (Y |do(X)) ≈ Softmax
[
EI

j ⊙
(
ED

i + EA
i

)]
. (5)

With this design, the language part of CLIP is aware of the
unique semantics of these entities and disentangled from
their general semantics encoded in the pretraining process.

CE-Selector As there are K entities with special semantics,
a common practice is concatenating all entities with the text
description TD

i at the raw string level. However, as shown
in Fig. 2, this naive approach does not generalize well, since
not all groups of confounding entities are informative, and
some confounders are even harmful. With motivation-2 in
Section 1, the CE-selector aims to select the important enti-
ties, whose semantics are unique and informative in retriev-
ing images in fashion domain.

As K entities belong to different groups, such as brand
and category, we learn K separate entity encoders hA

k (·).
Once obtained the embedding of all entities {hA

k (a
k
i )}Kk=1,

we follow the gating mechanism [66] and design a gate net-
work Gk(·) to determine the importance of each groups of
entities and select useful confounders. Specifically, the se-
lection factor wk can be defined as wk = Gk(h

A
k (a

k
i )). We

implement Gk(·) with an MLP layer and a sigmoid func-
tion to ensure the value of wk is in the range of (0, 1). We
further fuse them together into one global entity embedding
ÊA

i by ÊA
i =

∑
k wk ·hA

k (a
k
i ). Thus, with multiple entities

in TA
i = {aki }Kk=1 , Eq. 3 is implemented by:

P (Y |do(X)) ≈ Softmax[EI
j ⊙ (ED

i +
∑
k

wk · hA
k (a

k
i ))].

(6)
Training To avoid the commonsense bias affecting the
learning of hA

k (·), we disentangle hA
k (·) and the pre-trained

hT (·) during the training. In detail, besides the contrastive
loss between EI

j and ED
i + ÊA

i , we also calculate the con-
trastive loss between EI

j and ED
i , and the contrastive loss

between EI
j and ÊA

i simutaneously.

4. Experiments
4.1. Settings
Datasets Following FashionBERT [10] and Kaleido-BERT
[72], we evaluate our method on the Fashion-Gen dataset
[39]. There are 67, 666 fashion products. Each product
holds one text description and one to six images from differ-
ent angles. In detail, 260, 480 and 35, 528 image-text pairs
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are used for training and testing, respectively. There are
4 groups of entities for each product. Specifically, they are
Brand, Sub-Category, Season, and Composition.
We use B, C, S, and P to denote them. In total, there are 570
brands, 122 sub-categories, 10 seasons, and 16, 844 types of
compositions among all products. Besides, we create a new
dataset upon the subset of Amazon reviews [35]. It con-
tains 20, 507 image-text pairs in the fashion domain. We
use 14, 354 pairs for training and 6, 153 for testing. We
only use the 184 brands as the special entities. The text
description of this dataset is conciser and more ambiguous
than Fashion-Gen, which makes it more challenging.

Implementation Details We start from the released pre-
trained CLIP model [38], which applies ViT-B [7] as the
visual encoder fI(·) and the Transformer [48] as the text
encoder fT (·). The input image is resized to 224×224, and
the input text description is represented by the lower-cased
byte pair encoding (BPE) [40] with a 49, 152 vocab size.
The entity encoder hA

k (·) is implemented by one embedding
layer and one MLP layer. The embedding dimension d is
set to 512. Following [10, 72], the Adam optimizer with
weight decay 1e − 4 is applied to finetune the pre-trained
CLIP model. The total number of finetuning epochs is set
to 20. The initial learning rate is set to 5e−5, and the cosine
annealing learning rate decay scheduler is applied. We also
adopt a warming-up strategy for the first 1K steps.

Evaluation We evaluate our method on image-to-text (I2T)
retrieval and text-to-image (T2I) retrieval in e-commerce.
Given a query in one modality, this task requires retriev-
ing the matched item in the other modality from the can-
didate rank set. Given a text description (or image),
the positive candidate is the associated ground-truth im-
age (or text description) from the same product. For
the negative candidates, we consider two kinds of set-
tings. 1) Following [10, 72], we randomly sample 100
images (or text description) from other products within
the same sub-category. We denote this sampling strat-
egy as “Sample 100”. 2) We also consider the entire
product set as our candidate set (denote as “Full candi-
date”), which is a more challenging setting. It is more in
line with actual product retrieval scenarios and has been
widely adopted in the product recommendation field [21].
We use Rank@1 (Top-1 accuracy), Rank@5, Rank@10
to evaluate the performance of both retrieve tasks. Fol-
lowing [72], SumR=(Rank@1+Rank@5+Rank@10)*100
is regarded as an overall metric of the model.

4.2. Effectiveness of EI-CLIP
We consider several baselines to verify the effectiveness

of EI-CLIP. In detail, these models are: ① The pre-trained
CLIP released by [38]; ② We finetune the CLIP with image
Ii and only description TD

i of each product; ③ We finetune
the CLIP with image Ii and the combination of description

and all entities at the raw string level; ④ EI-CLIP, which
sets the weight wk of all entities equally; ⑤ EI-CLIP.

Table 1. Retrieval performances (Full candidate) on Fashion-Gen.
↑ means the relative improvement.

Image-to-text Text-to-image
SumRR@1 R@5 R@10 R@1 R@5 R@10

① 9.4 24.5 33.5 10.7 26.8 35.8 141
② 22.5 49.5 62.0 24.5 51.1 63.6 273
③ 23.3 51.5 64.6 25.7 53.9 66.5 285

④ 25.2 52.6 64.8 28.2 56.6 68.4 296

⑤ 25.7 54.5 66.8 28.4 57.1 69.4 302
↑ 10.3% 5.8% 3.1% 10.5% 5.9% 4.4% 6.0%

Quantitative Results Results are presented in Table 1.
Firstly, the pre-trained CLIP model ① does not generalize
well on the fashion domain. Thus, fine-tuning is necessary
to mitigate this gap. Secondly, the improvement from ②
to ③ suggests that the information of entities is beneficial
for retrieval. Thirdly, ③ performs much better than ④. It
implies that our EA-learner can learn the semantics of spe-
cial entities better (w.r.t. motivation-1). Furthermore, we
can obtain a further improvement at all levels of recalls of
the retrieval with the selector. As the results of ⑤, the rela-
tive improvement is 10.3% on R@1 of I2T (from 23.3% to
25.7%), and 10.5% on R@1 of T2I (from 25.7% to 28.4%).
As retrieving the correct product from the full candidate
is much more challenging, our improvement is enormous.
This supports the success of CE-selector (w.r.t. motivation-
2). For the gating mechanism, we find that the learned wk of
Season is around as small as 0.05. This also supports that
our method can automatically select important confounders
and remove harmful confounders.

Qualitative Results We present examples of cross-modal
retrieval for model ③ (baseline) ⑤ (ours) in Fig. 4. In ex-
ample (a) and (b), brands consist of multiple words. Since
the baseline split them into several tokens, it is hard to un-
derstand their semantics. Our method can recognize these
words and retrieve the image correctly. In example (c),
the results from baseline are similar to the unit of a diesel
worker, but the query requires a “black” jacket instead.
In example (d), the color of the top-1 result of baseline
is golden write, but the query requires the heel collar to
be “golden-tone”. These cases suggest that the fine-tuned
model still maintains the general semantics of these words
and cannot learn the domain knowledge. However, ours can
solve them correctly and learn these words as the brand.
Besides, as in examples (e) and (f), our model still performs
better on brands like “Gucci” and “Burberry”, which
are not biased towards commonsense. We hypothesize that
the limited amount of these words in the general domain
make it difficult to learn them well. Our method can miti-

18056



Brand: Opening Ceremony. Knit wool, angora, and cashmere-blend beanie in 
black. Logo knit in white at rolled brim. Tonal stitching.

Brand: Diesel. Long sleeve denim jacket in black. Fading , distressing, stitched 
detailing, and multicolor appliqués throughout. Spread collar. Button closure at 
front. Flap pockets at chest. Seam pockets at waist. White logo embroidered at front 
hem. Adjustable buttoned tabs at back hem. Silver-tone hardware. Tonal stitching.

Brand: Off-White. Short sleeve cotton jersey t-shirt in black. Rib knit crewneck 
collar. Logo graphic printed at front. Blue text flocked at front and back hems. 
Text printed in white at back. Tonal stitching. 

Brand: Golden Goose.  Low-top buffed leather sneakers in 'optical' white. Distressing 
throughout. Round toe. Lace-up closure in black. Textile logo patch at tongue. 
Perforated detailing at sides. Signature leather star appliqué and logo stamp in black 
at outer side. Padded collar. Patterned heel collar featuring logo stamp in gold-tone. 
Rubber midsole in off-white. Treaded rubber sole in black. Tonal stitching.

(a)

(c) (d)

(b)

(e)

Brand: Gucci. Knit alpaca and wool-blend hat in 'midnight' navy. Multicolor 
braided accents at crown and back. Tonal stitching. 

(f)

Brand: Burberry. Grained calfskin tote in black. Twin rolled carry handles featuring 
press-stud fastener. Detachable and adjustable shoulder strap with lanyard clasp 
fastening. Logo stamp in gold-tone at face. Canvas panel featuring signature 'house' 
check pattern at sides. Press-stud fastening at main compartment. Patch pocket, 
zippered pocket, and leather logo patch at interior. Tonal textile lining. Bumper stud 

Figure 4. Examples of text-to-image results. For each example, the first row is the query text, the second row is the top-5 retrieved results
of fine-tuning CLIP (model ③), and the third row is the top-5 results from EI-CLIP. The correct answers are boxed in red.

gate the distribution gap yet. More examples of I2T and T2I
are shown in Supplementary.

4.3. Compare with state-of-the-art methods
We then compare our method with previous state-of-the-

art works on Fashion-Gen. As in [72], FashionBERT [10]
and Kaleido-BERT [72] already beat all previous multi-
modal learning networks including ImageBERT [37], OS-
CAR [25], VLBEERT [43], and ViLBERT [32] by a large
margin. Thus, we only focus on the comparison of our
work with FashionBERT and Kaleido-BERT. We follow the
”Sample 100” strategy [10, 72] to obtain the candidate set
for a fair comparison. As all candidates belong to the same
sub-category, we discard the category entity in evaluation.
Besides, we also reproduce previous works with entities.
We still evaluate model ②, ③, and ⑤ in Section 4.2, but

use different candidate sets. The results are shown in Table
2. Firstly, the fine-tuned vanilla CLIP achieves a clear im-
provement compared with previous methods, whether with
or without the entities. We believe that contrastive learn-
ing helps the model smoothly learn the ability to identify
an input one modality with a bunch of inputs in the other
modality. Secondly, EI-CLIP still brings some further im-
provement, although it is relatively marginal. Note that, in
this evaluation, all 100 negative samples belong to the same
category, making the category entity useless to distinguish
between ground-truth and negative candidates. Besides, this
is an easier evaluation as the candidate size is small.

4.4. Results on Amazon-Review
We further evaluate our method on Amazon-Review.

As only the brand entity serves as the confounder, we no
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Table 2. Cross-modal retrieval performances (Sample 100) on
Fashion-Gen. The reported SumR of Fashion-BERT [10] and
Kaleido-BERT [72] are 251.36 and 319.52, respectively. Meth-
ods marked with ’*’ are results from our reproduction. FBERT
stands for Fashion-BERT.

Methods FBERT* FBERT* CLIP CLIP EI-CLIP

With Entities? No Yes No Yes Yes

R@1 31.37 35.30 36.11 39.17 38.70
I2T R@5 62.97 68.44 67.81 71.26 72.20

R@10 75.20 82.34 80.00 83.69 84.25

R@1 24.09 31.06 35.32 38.61 40.06
T2I R@5 54.73 63.95 65.98 69.69 71.99

R@10 69.44 78.68 77.84 82.23 82.90

SumR 317.8 359.8 363.1 384.7 390.1

longer need the CE-selector. We conduct the full candi-
date retrieval and the results are shown in Table 3. Our
method still outperforms CLIP on the challenging Amazon
dataset, showing that EI-CLIP generalizes well on another
e-commerce scenario.

Table 3. Performances on Amazon-Review (Full-candidate).

Image-to-text Text-to-image
SumRR@1 R@5 R@10 R@1 R@5 R@10

CLIP 22.2 49.9 61.6 23.5 48.9 61.5 267
EI-CLIP 25.9 54.2 65.3 23.7 49.4 61.6 280

4.5. Ablation Studies

Entity set As different entities play different roles, we then
explore the contribution of each attribute on Fashion-Gen.
As shown in Fig. 2 and Table 4, at raw string level, different
attributes bring various improvement. The brand can bring
a remarkable improvement, while season, sub-category, and
compositions can only bring slight improvement or even
hurt the performance. Besides, the performance of the com-
bination of all attributes (Experiment (c)) is even worse than
only using the brand attribute individually. This suggests
that the naive strategy cannot fully utilize entities. We hy-
pothesize that other appending all attributes together may
introduce much noise in the raw text, and thus disturb the
learning of self-attention modules.

Batch Size We also explore the influence of batch size, as
it heavily affects the performance of contrastive learning [4,
38]. Typically, a larger batch size brings better performance,
but it requires a larger GPU memory. We vary the batch size
from 16 to 128, and plot the results of R@1 in Fig. 5. At
all levels of batch size, our EI-CLIP consistently beats the
baseline fine-tuning CLIP. Moreover, the improvement is
more obvious on small batch size settings, thus it is more
beneficial for users with limited GPU memory.

Table 4. Ablation studies of each type of entity.

EXPER. Image-to-text Text-to-image
SumRR@1 R@5 R@10 R@1 R@5 R@10

② 22.5 49.5 62.0 24.5 51.1 63.6 273

③ 23.3 51.5 64.6 25.7 53.9 66.5 285
Str-B 25.1 53.0 65.8 26.8 54.8 67.4 293
Str-C 22.8 50.0 62.5 24.4 51.9 64.1 276
Str-S 22.5 49.4 61.8 24.0 50.9 63.3 272
Str-P 22.5 48.6 61.3 23.8 50.0 63.1 269

⑤ 25.7 54.5 66.8 28.4 57.1 69.4 302
Emb-B 25.6 53.0 65.5 27.8 55.0 67.2 294
Emb-C 23.3 50.3 63.0 24.9 51.4 64.3 277
Emb-S 20.4 46.5 59.0 24.7 50.7 63.5 264
Emb-P 22.2 49.4 61.8 24.5 51.1 63.6 273
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Figure 5. Comparison of ours (EI-CLIP) and baseline (Experiment
(c) in Section 4.2) with different batch sizes.

5. Limitations
One potential limitation is that we only consider the se-

mantics of entities from the meta data of products as the
confounders. This assumption simplifies the design of the
network and clearly demonstrates the benefits of our net-
work. However, in practice, any hidden variables can be the
confounders to affect the learning of P (Y |X). Besides, not
all e-commerce products contain clean meta information as
Fashion-Gen. Handling a set of noisy meta data is out of
this paper’s scope, but could be a potential challenge.

6. Conclusion
In this paper, we first point out that the bias of com-

mon knowledge limits the generalization ability of the CLIP
model when fine-tuning on the e-commerce domain. To al-
leviate this issue, we follow the theory of causal interven-
tion and propose EI-CLIP. Specifically, we consider the en-
tities of products from the meta data as the confounder and
encode them separately with independent networks. Exten-
sive experiments demonstrate that our method achieves bet-
ter performance and focuses more on the semantics of spe-
cial entities in the e-commerce domain.
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