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(a) Visual Quality (b) Computational Efficiency (c) Numerical Scores

Figure 1. Comparison among recent state-of-the-art methods and our method. KinD [37] is a representative paired supervised method.
EnGAN [11] considers the unpaired supervised learning. ZeroDCE [7] and RUAS [16] introduce unsupervised learning. Our method
(just contains three convolutions with the size of 3 × 3) also belongs to unsupervised learning. As shown in the zoomed-in regions, these
compared methods appear incorrect exposure, color distortion, and insufficient structure to degrade visual quality. In contrast, our result
presents a vivid color and sharp outline. Further, we report the computational efficiency (SIZE, FLOPs, and TIME) in (b) and numerical
scores for five types of measurement metrics among three tasks including enhancement (PSNR, SSIM, and EME), detection (mAP), and
segmentation (mIoU) in (c), it can be easily observed that our method is remarkably superior to others.

Abstract

Existing low-light image enhancement techniques are
mostly not only difficult to deal with both visual quality
and computational efficiency but also commonly invalid in
unknown complex scenarios. In this paper, we develop
a new Self-Calibrated Illumination (SCI) learning frame-
work for fast, flexible, and robust brightening images in
real-world low-light scenarios. To be specific, we estab-
lish a cascaded illumination learning process with weight
sharing to handle this task. Considering the computation-
al burden of the cascaded pattern, we construct the self-
calibrated module which realizes the convergence between
results of each stage, producing the gains that only use
the single basic block for inference (yet has not been ex-
ploited in previous works), which drastically diminishes
computation cost. We then define the unsupervised train-
ing loss to elevate the model capability that can adap-
t general scenes. Further, we make comprehensive explo-
rations to excavate SCI’s inherent properties (lacking in

∗Corresponding author.

existing works) including operation-insensitive adaptabil-
ity (acquiring stable performance under the settings of d-
ifferent simple operations) and model-irrelevant generali-
ty (can be applied to illumination-based existing works to
improve performance). Finally, plenty of experiments and
ablation studies fully indicate our superiority in both qual-
ity and efficiency. Applications on low-light face detection
and nighttime semantic segmentation fully reveal the laten-
t practical values for SCI. The source code is available at
https://github.com/vis-opt-group/SCI.

1. Introduction

Low-light image enhancement aims at making informa-
tion hidden in the dark visible to improve image quality,
it has drawn much attention in multiple emerging computer
vision areas [12,15,18,21,27,28] recently. In the following,
we sort out the development process of two related topics.
Further, we describe our main contributions.

Model-based Methods. Generally, Retinex theory [19]
depicts the basic physical law for low-light image enhance-
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ment, that is, low-light observation can be decomposed into
illumination and reflectance (i.e., clear image). Benefiting
from the convenient solution of `2-norm, Fu et al. [5,6] first-
ly utilized the `2-norm to constrain the illumination. Fur-
ther, Guo et al. [8] adopted the relative total variation [31]
as the constraint of the illumination. However, its fatal de-
fect exists in the overexposure appearance. Li et al. [14]
modeled the noise removal and low-light enhancement in
a unified optimization goal. The work in [10] proposed
a semi-decoupled decomposition model for simultaneous-
ly improving the brightness and suppressing noises. Some
works (e.g., LEACRM [20]) also utilized the response char-
acteristics of cameras for enhancement. Limited to the de-
fined regularizations, they mostly generate unsatisfying re-
sults and need to manually adjust lots of parameters towards
real-world scenarios.

Network-based Methods. By adjusting the exposure
time, the work in [3] built a new dataset, called LOL dataset.
This work also designed the RetinexNet which tended to
produce unnatural enhanced results. KinD [37] ameliorat-
ed issues that appeared in RetinexNet by introducing some
training losses and tuned up the network architecture. Deep-
UPE [25] defined an illumination estimation network for
enhancing the low-light inputs. The work in [33] pro-
posed a recursive band network and trained it by a semi-
supervised strategy. EnGAN [11] designed a generator with
attention for enhancement under the unpaired supervision.
SSIENet [36] built a decomposition-type architecture to si-
multaneously estimate the illumination and reflectance. Ze-
roDCE [7] heuristically built a quadratic curve with learned
parameters. Very recently, Liu et al. [16] built a Retinex-
inspired unrolling framework with architecture search. Un-
deniably, these deep networks are well-designed. However,
they are not stable, and hard to realize consistently superior
performance, especially in unknown real-world scenarios,
unclear details and inappropriate exposure are ubiquitous.

Our Contributions. To settle the above issues, we de-
velop a novel Self-Calibrated Illumination (SCI) learning
framework for fast, flexible and robust low-light image en-
hancement. By redeveloping the intermediate output of the
illumination learning process, we construct a self-calibrated
module to endow the stronger representation to the single
basic block and convergence between results of each stage
to realize acceleration. More concretely, our main contribu-
tions can be concluded as:

• We develop a self-calibrated module for the illumina-
tion learning with weight sharing to confer the con-
vergence between results of each stage, improving the
exposure stability and reduce the computational bur-
den by a wide margin. To the best of our knowledge,
it is the first work to accelerate the low-light image en-
hancement algorithm by exploiting learning process.

• We define the unsupervised training loss to constrain
the output of each stage under the effects of self-
calibrated module, endowing the adaptation ability to-
wards diverse scenes. The attribute analysis shows
that SCI possesses the operation-insensitive adaptabil-
ity and model-irrelevant generality, which have not
been found in existing works.

• Extensive experiments are conducted to illustrate our
superiority against other state-of-the-art methods. Ap-
plications on dark face detection and nighttime se-
mantic segmentation are further performed to reveal
our practical values. In nutshell, SCI redefines the
peak-point in visual quality, computational efficiency,
and performance on downstream tasks in the field of
network-based low-light image enhancement.

2. The Proposed Method
In this section, we firstly introduce the illumination

learning with weight sharing, then we build the self-
calibrated module. Next the unsupervised training loss is
presented. Finally, we make a comprehensive discussion
about our constructed SCI.

2.1. Illumination Learning with Weight Sharing

According to the Retinex theory, there is a connection
existing between the low-light observation y and the de-
sired clear image z: y = z ⊗ x, where x represents the
illumination component. Generally, illumination is viewed
as the core component that needs to be mainly optimized
for low-light image enhancement. The enhanced output can
be further acquired by removing the estimated illumination
according to the Retinex theory. Here, inspired by the stage-
wise optimization process for illumination presented in the
works [8, 16], by introducing a mapping Hθ with param-
eters θ to learn the illumination, we provide a progressive
perspective to model this task, the basic unit is written as

F(xt) :

{
ut = Hθ

(
xt
)
,x0 = y,

xt+1 = xt + ut,
(1)

where ut and xt represent the residual term and illumina-
tion at t-th stage (t = 0, ..., T − 1), respectively. It should
be noted that we do not mark the stage number in Hθ be-
cause we adopt the weight sharing mechanism, i.e., using
the same architectureH and weights θ in each stage.

In fact, the parameterized operator Hθ1 learns a sim-
ple residual representation ut between the illumination and
low-light observation. This process is inspired by a con-
sensus, i.e., the illumination and low-light observation are
similar or existing linear connections in most areas. Com-
pared with adopting a direct mapping between the low-light

1The architecture forHθ will be explored in Sec. 3.1.
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Self-Calibrated Illumination Learning
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Figure 2. The entire framework of SCI. In the training phase, our
SCI is composed of the illumination estimation and self-calibrated
module. The self-calibrated module map is added to the original
low-light input as the input of the illumination estimation at the
next stage. Note that these two modules are respectively shared
parameters in the whole training procedure. In the testing phase,
we just utilize a single illumination estimation module.

observation and illumination (a commonly-used pattern in
existing works, e.g., [16, 25]), learning a residual represen-
tation substantially reduces the computational difficulty to
both guarantee performance and improve the steadiness, e-
specially for the exposure control2.

Indeed, we can directly utilize the above-built process
with the given training loss and data to acquire the enhanced
model. But it is noticeable that the cascaded mechanis-
m with multiple weight sharing blocks inevitably gives a
rise to foreseeable inference cost. Revisiting this sharing
process, each shared block expects to output a result that
is close to the desired goal as far as possible. Going a
step further,, the ideal circumstance is that the first block
can output the desired result, which satisfies task demand-
s. Meanwhile, the latter blocks output the similar, even the
completely same results as the first block does. In this way,
in testing phase, we just need a single block to accelerate
the inference speed. Next, we will explore how to realize it.

2.2. Self-Calibrated Module

Here, we aim at defining a module to make results of
each stage convergent to the same one state. We know that
the input of each stage stems from the previous stage and the
input of the first stage is definitely defined as the low-light
observation. An intuitive idea is that whether we can bridge
the input of each stage (except the first stage) and the low-
light observation (i.e., the input of the first stage) to indirect-
ly explore the convergence behavior between each stage. To
this end, we introduce a self-calibrated module map s and
add it to the low-light observation to present the difference
between the input in each stage and the first stage. Specifi-
cally, the self-calibrated module can be presented as

G(xt) :


zt = y � xt,

st = Kϑ(zt),
vt = y + st,

(2)

2Please refer to the ablation study in Sec. 4.6 to confirm it.
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Figure 3. Comparing t-SNE [24] distributions in terms of the re-
sults of each stage on whether using self-calibrated module. It
exhibits why we can use a single stage for testing, that is, the re-
sults of each stage in SCI can rapidly converge to the same value,
but w/o self-calibrated module cannot realize it all the time.

where t ≥ 1, vt is the converted input for each stage,
and Kϑ3 is the introduced parameterized operator with the
learnable parameters ϑ. Then the conversion for the basic
unit in t-th stage (t ≥ 1) can be written as

F(xt)→ F(G(xt)). (3)

Actually, our constructed self-calibrated module gradually
corrects the input of each stage by integrating the physical
principle to indirectly influence the output of each stage.
To evaluate the effects of the self-calibrated module on the
convergence, we plot tSNE distributions among results of
each stage in Fig. 3, and we can easily observe that the re-
sults of each stage indeed converge to the same value. But
this phenomenon cannot be found in the case without the
self-calibrated module. Additionally, the above conclusion
also reflects that we indeed accomplish the intention as de-
scribed in the last paragraph of Sec. 2.1, i.e., training multi-
ple cascaded blocks with the weight sharing pattern but only
using the single block for testing.

We also provide the overall flowchart in Fig. 2 for under-
standing our established SCI framework.

2.3. Unsupervised Training Loss

Considering the inaccuracy of existing paired data, we
adopt the unsupervised learning to enlarge the network ca-
pability. We define the total loss as Ltotal = αLf + βLs,
where Lf and Ls represent the fidelity and smoothing loss,
respectively. α and β are two positive balancing parameter-
s4. The fidelity loss is to guarantee the pixel-level consis-
tency between the estimated illumination and the input of

3The architecture for Kϑ will be explored in Supplemental Materials.
4Parameters analysis can be found in the Supplemental Materials.
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Setting forHθ Quality Efficiency

Blocks Channels PSNR NIQE FLOPs (G) TIME (S)

1 3-3 20.6074 4.0091 0.0202 0.0015

2 3-3-3 20.5809 4.0075 0.0410 0.0016

3 3-3-3-3 20.4459 3.9630 0.0619 0.0017

3 3-8-8-3 20.5776 3.9711 0.2503 0.0018

3 3-16-16-3 20.5215 4.0031 0.7764 0.0022

Table 1. Quantitative comparison among different settings forHθ
on MIT testing dataset. In which, the basic block contains a con-
volutional layer with the size of 3×3 and a ReLU layer. “Blocks”
and “Channels” represent the numbers of the basic block and the
variation of channels in the basic block, respectively.

Input 1 block(3-3) 2 blocks (3-3-3)

3 blocks (3-3-3-3) 3 blocks (3-8-8-3) 3 blocks (3-16-16-3)

Figure 4. Visual comparison among different cases in Table 1.

each stage, formulated as

Lf =

T∑
t=1

‖xt − (y + st−1)‖2, (4)

where T is the total stage number. Actually, this function
utilizes the redefined input y+ st−1 to constrain the output
illumination xt, rather than the hand-crafted ground truth or
the plain low-light input.

The smoothness property of the illumination is a broad
consensus in this task [7, 37]. Here we adopt a smoothness
term with spatially-variant `1 norm [4], presented as

Ls =
N∑
i=1

∑
j∈N (i)

wi,j |xti − xtj |, (5)

where N is the total number of pixels. i is the i-th pix-
el. N (i) denotes the adjacent pixels of i in its 5 × 5 win-
dow. wi,j represents the weight, whose formulated form is

wi,j = exp
(
−

∑
c((yi,c+st−1

i,c )−(yj,c+st−1
j,c ))2

2σ2

)
, where c de-

notes image channel in the YUV color space. σ = 0.1 is
the standard deviations for the Gaussian kernels.

2.4. Discussion

In essence, the self-calibrated module plays an auxiliary
role in learning a better basic block (the illumination esti-
mation block in this work) that is cascaded to generate the

Model PSNR EME NIQE FLOPs (G) TIME (S)

RUAS (3) 14.4372 23.5139 4.1684 0.2813 0.0063

RUAS (1) + SCI 14.7352 24.4884 3.8588 0.0936 0.0022

Table 2. SCI can be applied to improve the performance for exist-
ing works, e.g., RUAS [16]. In which RUAS (d) represents adopt-
ing d iterative blocks for the unrolling process appeared in RUAS.
Here we adopt the LSRW [9] dataset for testing.

Input RUAS (3) RUAS (1) + SCI

Figure 5. Visual comparison among different cases in Table 2.

overall illumination learning process with the weight shar-
ing mechanism. More importantly, the self-calibrated mod-
ule confers the convergence between results of each stage,
it yet has not been explored in existing works. Moreover,
the core idea of SCI is actually introducing the additional
network module to assist in training, but not in the testing.
It improves model characterization to realize that only using
the single block for testing. That is to say, the mechanism
“weight sharing + task-related self-calibrated module” may
be transferred to handle other tasks for acceleration.

3. Exploring Algorithmic Properties
In this section, we perform explorations about our pro-

posed SCI to deeply analyze its properties.

3.1. Operation-Insensitive Adaptability

In general, the operations used in network-based meth-
ods should be fixed and cannot be changed arbitrarily since
these operations are acquired under the support of massive
experiments. Fortunately, our proposed algorithm emerges
the surprising adaptability on different exceedingly simple,
even naive settings for Hθ. As shown in Table 1, we can
easily observe that our method acquired a stable perfor-
mance among different settings (numbers of the block 3×3
convolution+ReLU). Further, we provide the visual com-
parison in Fig. 4, it can be easily observed that our SCIs
with different settings all brighten the low-light observation,
showing very similar enhanced results. Revisiting our de-
signed framework, this property can be acquired lies in SCI
not only converts the consensus for illumination (i.e., resid-
ual learning) but also integrates the physical principle (i.e.,
element-wise division operation). This experiment also ver-
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Dataset Metrics
Recent Traditional Methods Supervised Learning Methods Unsupervised Learning Methods

LECARM SDD STAR RetinexNet FIDE DRBN KinD EnGAN SSIENet ZeroDCE RUAS Ours

MIT

PSNR↑ 17.5993 19.5241 17.6464 13.7444 17.1902 17.5910 17.0935 16.7682 10.1396 16.6114 18.5372 20.4459

SSIM↑ 0.8556 0.8690 0.7793 0.7394 0.7853 0.7840 0.8307 0.8346 0.6456 0.8144 0.8642 0.8934

DE↑ 6.8069 6.8253 6.3677 6.2850 6.6543 6.5914 6.7233 7.0382 6.3879 6.2116 6.9068 7.0429

EME↑ 8.8779 8.6987 5.9128 9.1800 8.4146 7.4620 8.5482 7.9499 5.3423 7.8658 10.6396 10.9627

LOE↓ 613.2689 505.2951 70.5651 1812.853 264.4661 705.2620 500.6578 812.9041 646.9047 508.2960 579.0181 273.3409

NIQE↓ 4.3627 4.6477 4.2611 4.5289 5.2720 4.8166 4.2658 3.9997 5.2792 4.0933 4.1754 3.9630

LSRW

PSNR↑ 15.4747 14.6694 14.6080 15.9062 17.6694 16.1497 16.4717 16.3106 16.7380 15.8337 14.4372 15.0168

SSIM↑ 0.4635 0.5061 0.5039 0.3725 0.5485 0.5422 0.4929 0.4697 0.4873 0.4664 0.4276 0.4846

DE↑ 5.9980 6.7307 6.4943 6.9392 6.8745 7.2051 7.0368 6.6692 7.0988 6.8729 5.6056 6.5524

EME↑ 24.4089 8.5431 9.4636 14.6119 5.6885 9.9968 12.0881 22.2345 9.3801 20.8010 23.5139 24.9625

LOE↓ 34.1438 296.0794 103.2322 591.2793 194.7405 755.1283 379.8994 248.1947 261.2802 219.1284 357.4125 280.8935

NIQE↓ 3.8189 5.6401 3.7537 4.1479 4.3277 4.5500 3.6636 3.7754 4.0631 3.7183 4.1687 3.6590

Table 3. Quantitative results in terms of two full-reference metrics including PSNR and SSIM, and four no-reference metrics including
DE, EME, LOE, and NIQE on the MIT and LSRW datasets.

Input RetinexNet FIDE DRBN KinD

EnGAN SSIENet ZeroDCE RUAS Ours

Figure 6. Visual comparison on the MIT dataset among state-of-the-art low-light image enhancement approaches.

Input RetinexNet FIDE DRBN KinD

EnGAN SSIENet ZeroDCE RUAS Ours

Figure 7. Visual comparison on the LSRW dataset among state-of-the-art low-light image enhancement approaches.

ifies the effectiveness and correctness of our designed SCI.

3.2. Model-Irrelevant Generality

Our SCI is actually a generalized learning paradigm if
not limiting the task-related self-calibrated module, so ide-
ally, it can be directly applied to existing works. Here, we
take the recently-proposed representative work RUAS [16]
as an example to make an exploration. Table 2 and Fig. 5
demonstrate the quantitative and qualitative comparison be-

fore/after using our SCI to train RUAS. Obviously, although
we just utilized a single block (i.e., RUAS (1)) used in the
unrolling process of RUAS to evaluate our training pro-
cess, the performance still attains significant improvemen-
t. More importantly, our method can remarkably suppress
the overexposure that appeared in the original RUAS. This
experiment reflects our learning framework is indeed flex-
ible enough and has a strong model-irrelevant generality.
Moreover, it indicates that perhaps our method can be trans-
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Input RetinexNet FIDE DRBN KinD EnGAN ZeroDCE Ours

Figure 8. Visual comparison on some in-the-wild challenging examples. More results can be found in the Supplemental Materials.

Method SIZE (M) FLOPs (G) TIME (S)

Su
pe

rv
is

ed

RetinexNet 0.8383 136.0151 0.1192

FIDE 8.6213 57.2401 0.5936

DRBN 0.5770 37.7902 0.0533

KinD 8.5402 29.1303 0.1814

U
ns

up
er

vi
se

d

EnGAN 8.6360 61.0102 0.0097

SSIENet 0.6824 34.6070 0.0272

ZeroDCE 0.0789 5.2112 0.0042

RUAS 0.0014 0.2813 0.0063

Ours 0.0003 0.0619 0.0017

Table 4. The model size, FLOPs and running time (GPU-seconds
for inference) of CNN-based methods and our SCI.

ferred to arbitrary illumination-based low-light image en-
hancement works and we will try doing it in the future.

4. Experimental Results

In this section, we first provided all implementation de-
tails. Then we made experimental evaluations. Next, we
applied enhancement methods to dark face detection and
nighttime semantic segmentation. Finally, we conducted al-
gorithmic analyses for SCI. All the experiments were per-
formed on a PC with a single TITAN X GPU.

Figure 9. Precision-Recall curve on the DARK FACE dataset. All
compared methods and SCI fine-tune the detector on the enhanced
results. SCI+ is to jointly train the detector and SCI over the com-
bination of losses for detection and enhancement.

4.1. Implementation Details

Parameter Settings. In the training process, we used the
ADAM optimizer [13] with parameters β1 = 0.9, β2 =
0.999, and ε = 10−8. The minibatch size was set to 8.
The learning rate was initialized to 10−4. The training e-
poch number was set to 1000. We adopt 3 convolution +
ReLU with 3 channels as our default setting for Hθ in our
all experiments according to conclusion in Sec. 3.1. Self-
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Input KinD EnGAN ZeroDCE RUAS HLA SCI SCI+

Figure 10. Visual comparison of face detection on the DarkFace dataset. More results can be found in the Supplemental Materials.

Input DRBN KinD EnGAN ZeroDCE RUAS SCI GT

Figure 11. Visual results of semantic segmentation on the ACDC dataset. More results can be found in the Supplemental Materials.

calibrated module contains four convolution layers, which
ensures the lightweight of the training process. In fact, the
form of the network may not be fixed, and we have done
experiments to verify it in the Supplementary Materials.
Compared Methods. As for low-light image enhancement,
we compared our SCI with four recently-proposed model-
based methods (including LECARM [20], SDD [10], S-
TAR [29]), four advanced supervised learning methods
(including RetinexNet [3], KinD [37], FIDE [30], DRB-
N [33]), and four unsupervised learning methods (in-
cluding EnGAN [11], SSIENet [36], ZeroDCE [7], and
RUAS [16]). As for dark face detection, except for per-
forming the above-mentioned network-based enhancement
works before the detector, we also compared the recently-
proposed dark face detection method HLA [27].
Benchmarks Description and Metrics. As for low-light
image enhancement, we randomly sampled 100 images
from MIT dataset [2] and 50 testing image from LSRW
dataset [9] for testing. We used two full-reference met-
rics including PSNR and SSIM, five no-reference metric-
s including DE [23], EME [1], LOE [26] and NIQE [26].
As for dark face detection, we utilized the DARK FACE
dataset [34] that consisted of 1000 challenging testing im-
ages that randomly sampled from the sub-challenge of
UG2+ PRIZE CHALLENGE held at CVPR 2021. We con-
sidered the detection accuracy precision and recall rate as
the evaluated metric. As for nighttime semantic segmen-
tation, we utilized 400 images in ACDC [22] for training
and the remaining 106 images as the evaluated dataset. The
evaluated metrics were defined as IoU and mIoU.

4.2. Experimental Evaluation on Benchmarks

Performance Evaluation. As shown in Table 3, our S-
CI achieved competitive performance, especially in no-
reference metrics. As shown in Fig. 6-7, advanced deep
networks generated the unknown veils, leading to the in-
conspicuous details and unnatural colors. By comparison,
our SCI achieved the best visual quality with vivid colors
and prominent textures. More visual comparisons can be

found in the Supplemental Materials.
Computational Efficiency. Further, we reported the mod-
el size, FLOPs, and running time (GPU-seconds) of some
recently-proposed CNN-based methods in Table 4. Obvi-
ously, our proposed SCI is the most lightweight compared
with other networks, and significantly superior to others.

4.3. In-the-Wild Experimental Evaluation

Low-light image enhancement in the wild scenarios is
extremely challenging. The control of the partial over-
exposure information of the image, the correction of the
overall color, and the preservation of image details are all
problems that need to be solved urgently. Here, we tested
lots of challenging in-the-wild examples from the DARK
FACE [34] and ExDark [17] datasets. As demonstrated in
Fig. 8, through a large number of experiments, it can be seen
that our method achieved more satisfactory visualization re-
sults than others, especially in the exposure level, structure
depict, color presentation. Limited to the space, we provid-
ed more comparisons in the Supplemental Materials.

4.4. Dark Face Detection

We utilized the S3FD [35], a well-known face detection
algorithm to evaluate the dark face detection performance.
Note that the S3FD was trained with the WIDER FACE
dataset [32] as presented in the original S3FD, and we fine-
tune the pre-trained S3FD on all the methods.

At the same time, we performed a new method named
SCI+ which embed our SCI as a basic module into the front
of S3FD for joint training over the combination of losses for
task and enhancement. As reported in Fig. 9, our methods
(SCI and SCI+) realized the best scores among all com-
pared method, and the reinforced version acquired the bet-
ter performance than the fine-tune version. Fig. 10 further
demonstrated the visual comparison. It can be easily ob-
served that with applying our SCI, the smaller objects can
also be detected, while other methods failed to do so, as
shown in the zoomed-in regions.
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Method RO SI BU WA FE PO TL TS VE TE SK PE RI CA TR MO BI mIoU

RetinexNet 90.6 67.2 74.3 35.5 37.4 41.0 36.4 31.9 67.3 13.0 79.4 30.7 4.1 0.3 65.3 5.9 37.1 42.1

FIDE 90.4 68.8 77.0 40.1 35.4 42.0 42.1 42.4 68.0 16.4 81.4 39.6 8.7 2.4 55.0 11.0 40.8 44.8

DRBN 91.8 69.0 76.9 39.5 38.3 43.3 41.8 43.9 68.1 16.5 80.1 36.6 7.6 1.7 64.2 12.1 44.2 45.6

KinD 89.5 66.7 75.3 35.6 37.5 43.1 46.3 38.9 68.4 16.1 81.3 40.4 10.5 0.8 48.9 3.9 43.9 44.5

EnGAN 89.7 67.8 76.8 39.0 38.8 43.1 40.8 42.2 68.8 18.4 81.2 39.4 8.0 0.3 46.0 9.7 46.1 44.5

SSIENet 89.0 65.4 76.4 36.7 38.6 40.9 41.8 40.5 69.2 20.2 81.6 34.6 8.0 1.3 46.5 10.4 39.9 43.6

ZeroDCE 90.1 67.2 77.3 40.2 37.8 41.9 42.2 41.9 69.1 22.3 81.9 36.3 7.0 0.3 54.3 11.8 47.3 45.2

RUAS 90.4 66.7 76.2 37.6 38.8 42.9 39.6 40.9 69.0 18.6 81.5 39.6 9.5 0.6 49.6 13.5 46.6 44.8

Ours 92.1 70.0 78.3 39.3 39.8 43.0 46.6 44.2 69.9 19.7 81.8 38.7 6.5 0.7 64.9 9.0 42.4 46.3

Table 5. Quantitative results of nighttime semantic segmentation on the ACDC dataset. The symbol set {RO, SI, BU, WA, FE, PO, TL,
TS, VE, TE, SK, PE, RI, CA, TR, MO, BI} represents {road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation,
terrain, sky, person, rider, car, train, motorcycle, bicycle}. Notice that we retrained the segmentation model on the enhanced results that
were generated by all the compared methods. The best result is in red whereas the second best one is in blue.

RetinexNet KinD SSIENet Ours

Figure 12. Comparing the decomposed components among differ-
ent illumination-based networks. Zoom in for best view.

4.5. Nighttime Semantic Segmentation

Here we adopted the PSPNet [38] as the baseline to e-
valuate the segmentation performance on the pattern “pre-
train + fine-tune” (similar to the version of SCI in dark face
detection) for all methods. Table 5 and Fig. 11 demonstrat-
ed the results of quantitative and qualitative comparison a-
mong different methods. Our performance is significantly
superior to other state-of-the-art methods. As shown in the
zoomed-in regions in Fig. 11, all compared methods pro-
duced some unknown artifacts to damage the quality of the
generated segmentation map.

4.6. Algorithmic Analyses

Comparing Decomposed Components. Actually, our S-
CI belongs to illumination-based learning methods, the en-
hanced visual quality heavily depends on the estimated il-
lumination. Here we compared our SCI with three rep-
resentative illumination-based learning approaches, includ-
ing RetinexNet, KinD, and SSIENet. As demonstrated in
Fig. 12, we can easily see that our estimated illumination
kept an excellent smoothness property. It ensured our gen-
erated reflectance more visually friendly.
Ablation Study. We compared the performance of differ-
ent modes in Fig. 13. Learning the illumination directly will
cause the image to be overexposed. The process of learn-

Input w/o residual w/ residual Ours

Figure 13. Analyze different modes in the illumination learning.

ing residuals between the illumination and the input indeed
suppressed the overexposure, but the overall image qual-
ity is still not high, especially for the grasp of details. By
comparison, the enhanced results using our method not only
suppress the overexposure but also enrich image structures.

5. Concluding Remarks
In this paper, we successfully established a lightweight

yet effective framework, Self-Calibrated Illumination (S-
CI) for low-light image enhancement toward different real-
world scenarios. We not only made a thorough exploration
to take on the excellent properties of SCI, but also we per-
formed extensive experiments to indicate our effectiveness
and superiority in low-light image enhancement, dark face
detection, and nighttime semantic segmentation.

Broader Impacts. From the task’s perspective, SCI
provides an efficient and effective learning framework and
has received extremely superior performance in both image
quality and inference speed. Maybe it will be a brace to
enter a new high-speed and high-quality era for low-light
image enhancement. As for the method design, SCI opens
a new perspective (i.e., introducing the auxiliary process for
boosting the model capability of the basic unit in the train-
ing phase) to improve the practicability toward real-world
scenarios for other low-level vision problems.
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