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Abstract

This paper presents a motion data augmentation
scheme incorporating motion synthesis encouraging di-
versity and motion correction imposing physical plau-
sibility. This motion synthesis consists of our modified
Variational AutoEncoder (VAE) and Inverse Kinemat-
ics (IK). In this VAE, our proposed sampling-near-
samples method generates various valid motions even
with insufficient training motion data. Our IK-based
motion synthesis method allows us to generate a va-
riety of motions semi-automatically. Since these two
schemes generate unrealistic artifacts in the synthe-
sized motions, our motion correction rectifies them.
This motion correction scheme consists of imitation
learning with physics simulation and subsequent mo-
tion debiasing. For this imitation learning, we pro-
pose the PD-residual force that significantly acceler-
ates the training process. Furthermore, our motion
debiasing successfully offsets the motion bias induced
by imitation learning to maximize the effect of aug-
mentation. As a result, our method outperforms pre-
vious noise-based motion augmentation methods by a
large margin on both Recurrent Neural Network-based
and Graph Convolutional Network-based human mo-
tion prediction models. The code is available at https:
//github.com/meaten/MotionAug.

1. Introduction
Human motion prediction, which forecasts future

body poses based on past poses, is a crucial tech-
nique for human-robot interaction [22,23,28,29,41], au-
tonomous driving [30], VR/AR applications [18], per-
formance capture [8,32,33,43,44], etc. However, these
applications are limited because of the lack of train-
ing motion data, which results in low prediction accu-
racy. This data insufficiency is caused by the enormous
cost of motion data acquisition, such as motion capture
equipment, recordings, post-processing, and denoising.

Such data insufficiency can be alleviated by Data

Augmentation (DA), for example, image recogni-
tion [25,39]. Compared with image data augmentation,
however, DA for motion data is hard to address because
simple numerical transformations (e.g., additive noise)
may generate physically-implausible motions such as
too high velocities or floating motions.

This paper presents a novel motion data augmenta-
tion approach, including motion synthesis and motion
correction. Our motion synthesis uses Variational Au-
toEncoder (VAE) [24] to exploit a training data distri-
bution and Inverse Kinematics (IK) to exploit human
knowledge, shown in “Motion Synthesis” in Fig. 1. Al-
though most of our synthesized motions are physically-
plausible, we observed some of them have unrealistic
artifacts, which lead to the low accuracy of human mo-
tion prediction. These artifacts are corrected with our
proposed motion correction method. This correction
method uses (i) imitation learning with physics sim-
ulation to rectify these artifacts and (ii) subsequent
motion debiasing to offset biases imposed by the mis-
match between the bodies of a human and the char-
acter during imitation learning (“Motion Correction”
in Fig. 1). Our contributions for motion diversity and
physical plausibility are as follows:

1. VAE-based human-motion synthesis: Our
generative model with adversarial training in se-
quencewise and framewise, and sampling-near-
samples can generate plausible motions even with
insufficient motion data.

2. IK-based human-motion synthesis: Com-
pared with annotating IK target points in all
frames as the standard IK does, our method re-
quires less effort because only a target sampling
space for a keyframe is manually given.

3. PD-residual force: We propose the PD-residual
force that accelerates the training of imitation
learning in a physics simulator to rectify the phys-
ical implausibility of synthesized motions.
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Figure 1. Overview of our proposed motion data augmentation. Original motions are augmented independently
using our VAE- and IK-based syntheses. We also propose (i) motion correction where the synthesized motions are modified
to be physically-plausible using imitation learning, a physics simulator, and (ii) subsequent motion debiasing.

4. Motion debiasing: Our motion debiasing suc-
cessfully offsets the motion bias induced by the
imitation learning to maximize the effect of our
data augmentation.

2. Related Work
2.1. Human Motion Prediction and Augmentation

From the releases of large-scale motion capture se-
quence datasets [10,20], many deep learning-based hu-
man motion prediction methods were proposed. Most
approaches [6,12,13,15,21,32,35,45,51] are built upon
Recurrent Neural Networks (RNN) to model sequence-
to-sequence relationships between past and future mo-
tions. Recently, Graph Convolutional Network (GCN)-
based approaches [31] achieved a better performance
than RNN-based models by encoding motions with Dis-
crete Cosine Transform. Along with improving model
architectures, the stochasticity of human motion is ad-
dressed by using generative models such as Generative
Adversarial Networks (GAN) [3, 26], VAE [1, 46], and
Flow-based models [47].

These approaches assume a large-scale motion
dataset that is too expensive to obtain in real-world
tasks. Despite this difficulty, motion data augmen-
tation approaches are almost ignored. Fragkiadaki et
al. [12] proposed corrupting input motions with zero-
mean Gaussian noise for motion data augmentation.
While this simple additive noise improves the variety
of input motions, the augmented motions might lose
motion contexts and defy the laws of physics.

2.2. Data augmentation with generative models

In image classification tasks, generative models such
as GAN are used for data augmentation by generat-
ing within-class images [7, 19, 42]. This approach is
applicable to other tasks, including image segmenta-
tion [38] and person re-identification [50]. However,
generative models for human motion might synthesize

several kinds of physically-implausible motions because
it is difficult to learn such physical plausibility from a
limited number of training motion data, especially in
data insufficient settings.

2.3. Inverse Kinematics (IK)

IK modifies the pose of a whole body so that key
points in the body reach their target positions. IK can
also modify a motion by providing the target positions
in all frames of the motion [14]. Although IK can sig-
nificantly modify each pose and potentially be helpful
for motion augmentation, it is impractical to manually
annotate the target positions in all frames included in
a training dataset for augmenting all motions [5, 17].

2.4. Motion Synthesis with Physics Simulation

Motion prediction models should be trained on
physically-plausible motions for better accuracy and re-
liability. Therefore, physics simulation might improve
the quality of augmented motions. Recent deep rein-
forcement learning enables a physically-simulated char-
acter to imitate various motions [4,27,36,48,49]. How-
ever, these methods often require more than one day to
converge for imitating only one motion. To incorporate
this, we need to reduce the vast computational cost to
augment a large number of motions.

3. Proposed Motion Augmentation

We propose two independent motion synthesis ap-
proaches with VAE and IK, described in Secs. 3.1 and
3.2, respectively. Furthermore, a method for motion
correction is also proposed for rectifying the artifacts
of synthesized motions in Sec. 3.3. Finally, we propose
motion debiasing to offset the bias imposed by dynamic
mismatch, as presented in Sec. 3.4.
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Figure 2. Synthesized motions from GAN, vanilla VAE, and our VAE. Despite the dynamic training motions, GAN
produces static motions due to data insufficiency. The vanilla VAE produces non-diverse motions regardless of the dimension
of the latent space. Our VAE with adversarial training and sampling-near-samples successfully synthesizes dynamic motions
different from training motions.
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Figure 3. Proposed VAE-based network with adver-
sarial training. The synthesized motions and training
motions are discriminated framewise and sequencewise.

3.1. DA with VAE

Although GAN is widely used as a generative model,
we found that, for motion synthesis, GAN often pro-
duces only static motions where all poses are almost
identical due to data insufficiency and training insta-
bility of GAN (i.e., mode collapse). Instead, we pro-
pose a VAE-based model that is free from these prob-
lems. Our VAE-based model described below success-
fully generates various motions despite insufficient data
using adversarial training and sampling-near-samples,
as shown in Fig. 2.
Adversarial training: Our proposed network is
shown in Fig. 3. The encoder produces a mean µ
and a variance σ2 in the latent space from an in-
put motion X = {x1, x2, . . . , xT } where each xt de-
notes a pose vector in t-th frame. The latent repre-
sentation z is sampled from the normal distribution
N (µ, σ2). The decoder reconstructs a motion X̂ from
z. Frame-wise and sequence-wise discriminators (de-
noted by Disf and Diss, respectively, in Fig. 3) dis-
criminate X from X̂ for improving X̂ in terms of the
fidelity of poses and motion dynamics. We validated
that this VAE with adversarial training can suppress
mode collapse and generate more realistic motions than
the vanilla VAE.
Sampling-near-samples in the latent space: In

the inference of the vanilla VAE, a latent representation
z is sampled from a normal distribution with zero mean
and unit variance N (0, I). This normal distribution
should be represented well by all training samples in
the latent space for the better quality of synthesized
motions, as shown in Fig. 4a.

However, the dimension of the latent space should
not be set too low so that insufficient data could
cover the whole normal distribution because too low-
dimensional latent space has a too narrow bottleneck
and generates inaccurate motions that lack motion de-
tails. On the other hand, a high-dimensional represen-
tation leads to the sparsity of training data, making
it difficult to sample realistic data from the learned
regions, as shown in Fig. 4b. Therefore, we have a
tradeoff between motion details and sampling easiness.

To solve this tradeoff, we propose a novel sampling
method robust to sparsity, specifically sampling z from
only learned regions that are appropriately represented
by training data in the latent space, as shown in Fig. 4c.
In this method, each motion in the training data is en-
coded into mean µ and variance σ2. We apply k-means
clustering to all training motions based on µ to make
nc clusters. Given µ and σ2 that are respectively the
mean of µ and the mean of σ2 over randomly-sampled
ns training motions from each cluster, the latent rep-
resentation z is drawn from N (µ, σ2), and z is fed
into the decoder for generating Xaug, as expressed by
Xaug = Dec(z) and z ∼ N (µ, σ2). We sampled mo-
tion subsets from each cluster for efficiency.

3.2. DA with IK

The IK-based motion editing needs target positions
in all frames of a motion. To achieve this semi-
automatically, we present an effortless IK-based motion
synthesis that only requires a user to provide a target
sampling space P for the pose of the keyframe xkey on
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Figure 4. Our sampling-near-samples for insufficient data. The prior distribution matches the accumulated distri-
bution that aggregates the distributions of encoded training data with enough data (a). Synthesized motions are mostly
sampled from learned regions (blue arrows). With insufficient data (b), the accumulated distribution (learned regions) gets
sparse, and the prior distribution often samples from the unlearned regions (red arrows), which leads to over-smoothed and
non-diverse motions. We propose sampling-near-samples (c), which samples only from learned regions by sampling latent
representations using the clusters of training motions.

Target Sampling Space

Figure 5. Target sampling space for the action class
kick. The target space is a fan-shaped one that a foot end-
effector may reach. We uniformly sample targets psample

tkey
from this space for the keyframe tkey.

each action class. Examples of a kick class are shown
in Figs. 5 and 6. The user determines the target sam-
pling space as shown in Fig. 5. Then, the keyframe for
the kick class is defined as the frame where a kicking
foot reaches the farthest position from the body.

Given the sampling space for the keyframe, an IK
target position psample

tkey
∈ P for the keyframe is ran-

domly sampled. Target positions ptarget
t for all frames

are determined by propagating the difference between
psample

tkey
and the end-effector position at the keyframe

ptkey
to backward and forward, in a linearly-decreasing

manner, as shown in Fig. 6 and expressed as follows:

pdiff = psample
tkey

− ptkey

ptarget
t = pt + pdiff · f(tkey, t)

f(tkey, t) =


t

tkey
if t ≤ tkey

T − t

T − tkey
if t > tkey

Xaug = {IK(x1, ptarget
1 ), . . . , IK(xT , ptarget

T )}

where x̂ = IK(x, p) is an IK function, and x and p
denote a pose vector and and a 3D position, respec-
tively. We apply IK with automatically obtained tar-
gets ptarget

t to all frames for obtaining a synthesized
motion Xaug where the end-effector smoothly reaches
psample

tkey
.

3.3. Motion Correction with Imitation Learning us-
ing Physics Simulation

Although most synthesized motions generated by
our method are physically realistic, some of them are
not. For example, footskating by VAE, mutual pene-
trations between body parts by IK, and unstable poses
by VAE and IK are empirically observed, as shown in
the middle column of Fig. 7.

DeepMimic [36] is an imitation learning scheme that
allows a physically-simulated character to mimic vari-
ous motions. Given a goal motion (e.g., motion mea-
sured by a motion capture system), imitation learning
trains a policy that modifies a character pose at t + 1
from its body status at t so that the sequence of the
modified poses gets close to the goal motion. Then, to
physically control the character toward the modified
pose at each moment, a Proportional-Differential (PD)
controller suggests torques given to the character at t.
We can obtain the modified motion where the physical
character performs by repeating this scheme.

While, in DeepMimic [36], the motion is modified for
compensating dynamic mismatch (i.e., the difference
between the bodies of the goal motion and the char-
acter), the goal motion is already physically-plausible
because a motion capture system measures it. On the
other hand, we apply this imitation learning to rec-
tify a physically-implausible motion produced by our
method. This physically-implausible motion makes our
problem more challenging because the policy must rec-
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Figure 6. Overview of our sequential IK scheme. Given an IK target and the body pose in the keyframe, body poses
in all other frames are automatically calculated by IK. IK target positions are automatically determined by propagating the
positional difference on the keyframe in a linearly decreasing manner.

(a) original motion (b) synthe’d motion (c) rectified motion

Figure 7. Examples of our motion correction. Up-
per: Legs penetrate each other. Lower: Unstable pose is
observed. Synthesized motions (b) are generated from orig-
inal motions (a) and then rectified (c).

tify physical implausibility and the dynamic mismatch.
To cope with this more challenging problem, our imi-
tation learning scheme employs Residual Force Control
(RFC) [48] maintaining physical stability such as fall
prevention. With RFC, learnable additional external
forces given to the root joint of the character achieve
physical stability. The rectified motion of the charac-
ter is still physically-plausible because additional ex-
ternal forces are minimized in training while the pose
similarity between a goal motion and the character is
maximized.

While DeepMimic using RFC allows us to generate
stable motions, the convergence of the training process
usually takes more than one day for rectifying one mo-
tion with several CPU threads. This cost is a critical
problem when we augment a large number of motions.
The dominant cost in convergence time is on reinforce-
ment learning of the policy network that requires explo-
ration in the policy action space, specifically a target
character pose and an additional external force. Al-

(a) original motion (b) rectified motion (c) debiased motion

Figure 8. Examples of our motion debiasing. The
motion bias is introduced by the dynamic mismatch on the
kick class motion.

though the policy network learns additional external
forces from scratch, the learned forces just reduce the
positional difference between the character and goal
motion. Based on this observation, we propose the
PD-residual force that calculates additional external
forces with the PD controller based on the positional
difference between the character and goal motion. This
simple modification allows us to omit the learning of
external forces and significantly shorten the training
process by reducing the dimensionality of the policy
action space to explore.

3.4. Motion Debiasing

Our imitation learning scheme explained in Sec. 3.3
can rectify synthesized motions to be physically-
plausible. However, a prediction model trained with
these rectified motions cannot entirely reduce the pre-
diction error due to the motion bias introduced by
the dynamic mismatch [48] during imitation learning.
The dynamic mismatch is the body difference between
“real humans with hundreds of bones and muscles and
deformable skins” and “the simulated character with
torque-actuated joints and rigid body surfaces.” Due to
this difference, the simulated character fails to fully im-
itate the motions even if they are physically-plausible,
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especially motions with fine footwork.
To alleviate the motion bias, we propose motion de-

biasing to offset the biases imposed by this dynamic
mismatch. We construct training pairs that are original
motions and their modified motions by imitation learn-
ing as Sec. 3.3. These pairs only contain the bias im-
posed by the dynamic mismatch. We propose a simple
motion debiasing model of several fully connected lay-
ers that map the biased to unbiased motions in frame-
wise. We apply this motion debiasing to the rectified
motions of synthesized motions by our VAE- and IK-
based syntheses. As a result, we obtained the debi-
ased various physically-plausible motions and further
improved prediction accuracy, as shown in Fig. 8.

4. Experiments
Our experiments consist of four parts: Ablation

study on our VAE-based method. The effects of sev-
eral components of our proposed method are validated
by the physical and contextual closeness between syn-
thesized and test motions (Sec. 4.1). Convergence time
comparison on imitation learning with our PD-residual
force (Sec. 4.2). Performance evaluation on motion pre-
diction with different augmentations (Sec. 4.3). Aug-
mentation comparison to the previous method Deep-
Mimic [36] (Sec. 4.4).
Dataset: Our experiments were conducted on HDM05
Motion Database [34]. HDM05 is a relatively small and
challenging dataset with dynamic motions compared to
other standard benchmarks such as Human3.6M [20].
We tested our method with five-fold cross-validation
where our models were trained on the motion sets of
four actors and tested on one of the last actor. Mo-
tion sets of punch, kick, and walk action classes were
resampled to 30Hz and used for the experiments. The
number of synthesized motions from our VAE and IK
is ten times larger than the train set.

4.1. Motion Synthesis by VAE

The effectiveness of our VAE-based motion synthesis
is validated by ablation. For comparison, a GAN-based
method is also evaluated.
Implementation Details: All encoders, decoders,
and discriminators consist of 256-D LSTM cells and
one fully connected layer to output poses. The dimen-
sion of a latent space is 128 for VAE. The noise dimen-
sion for GAN is also 128. We used the SGD optimizer
to train models for 20,000 epochs. The number of sam-
ples to take mean ns = 2 and clusters nc = 3 is used
for sampling-near-samples.
Metrics: The quality of synthesized motions is eval-
uated with two metrics: the minimum Dynamic Time
Warping (DTW) [37] distance and the Maximum Mean

Table 1. Quantitative evaluation of augmented motions.

Min DTW MMD
Original Motions 2.92 0.00
GAN 2.90 4.28
VAE 2.73 1.94
VAE + adv training 2.71 1.37
VAE + sampl. near samples 2.72 0.85
VAE + both (proposed) 2.70 0.20

Discrepancy (MMD) [16]. The minimum DTW dis-
tance is a DTW distance between a test motion and
the synthesized motion (training set for original mo-
tions) closest to it. For DTW, frame-wise distances
are calculated based on the Euclidean distance in the
Euler angle in the radian scale. The sum over all joints
except a root joint is evaluated. MMD measures the
distribution distance between the test and synthesized
motions. Minimum DTW distance and MMD measure
how the synthesized motions are close to the test mo-
tions physically and contextually. The lower score is
better in both metrics.
Results: Table 1 shows that the proposed VAE-based
method with adversarial training and sampling-near-
samples performs best in both metrics. Meanwhile,
a GAN-based method fails to decrease the minimum
DTW distance and gets the highest MMD because the
training dataset is too small for GAN to learn various
patterns and falls mode collapse problem.

4.2. Convergence Time Comparison on Imitation
Learning

The convergence times of RFC [48] and our imita-
tion learning with PD-residual force are evaluated.
Implementation details: We use Bullet Physics [9]
as the physics engine. We build the humanoid model
from the skeleton of the MDM05 Motion Database,
which has 52 DoF and 16 rigid bodies. We use the
same reward function rt as RFC [48]. We train both
methods on one kick motion for 100 hours with five
threads of Intel® Xeon® Gold 6248 CPU.
Metrics: We evaluate the training time vs. normal-
ized reward. The normalized reward is calculated with
the obtained reward over the maximum reward on one
episode. The normalized reward is calculated based on
the motion similarity rim

t and its max value rim,max
t .

Rnorm =
1
T

T∑
t=0

rim
t

rim,max
t

Results: The results are shown in Fig. 9. While RFC
requires 30 hours for convergence, our method con-
verges around 9 hours thanks to the dimensionality
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reduction by our PD-residual force. Furthermore, our
method is stabler than RFC in terms of the reward
curve because the physical stability is kept throughout
the training process.

4.3. Motion Prediction with DA

Implementation details: We use the same parame-
ters for VAE as Sec. 4.1. FABRIK [2] is used as the
IK algorithm. The keyframes for our IK synthesis are
set as the frame when a foot joint reaches the furthest
position from the root joint for all action classes. We
chose the foot joint to modify the motion for punch
class because more motion variation is observed on the
foot joint than a hand joint. The IK target sampling
spaces are set as fan-shapes shown in Fig. 5 for all
action classes. The parameters for fan-shapes are de-
termined based on the position pkey = (r, h, θ) of the
foot joint on the keyframe in cylindrical coordinates.
For punch, kick, walk classes, the IK target positions
are sampled from ([0.5, 2.0]r, [1.0, 1.0]h, [−1.7, 1.7] +
θ), ([0.8, 1.2]r, [0.8, 1.2]h, [−0.785, 0.785] + θ), and
([0.5, 2.0]r, [1.0, 1.0]h, [−0.3, 0.3] + θ) respectively. Our
motion debiasing network is four 512-dim fully-
connected layers with the ReLU activation to offset the
bias framewise. We also temporally expand and shrink
motion sequences in the range of 10% shorter and 10%
longer as temporal data augmentation.
Prediction Model and Metrics: We use the heavily
benchmarked RNN baseline [32] and the SOTA GCN-
based model [31] to evaluate the effectiveness of our
motion DA method on the human motion prediction
task. We follow the standard evaluation protocol used
in [12, 32], and report the Euclidean distance between
the predicted and ground-truth joint angles in Euler
representation. The reported errors in the radian scale
are summed over all joints except a root joint and tem-
porally averaged.
Results: In Tables 2 and 3, we show quantitative re-
sults for human motion prediction with data augmen-

(a) original (b) DM #1 (c) DM #2 (d) proposed

Figure 10. Augmentation comparison to the base
method, DeepMimic [36]. (a) shows an original mo-
tion. (b) and (c) show 100 augmented motions by Deep-
Mimic with two rewards weighting {α = 0.7, β = 0.3} and
{α = 0.3, β = 0.7} respectively. (d) shows 100 augmented
motions by our method.

tation combinations. The prediction errors are shown
on three timesteps (100, 200, 400ms) for three ac-
tion classes (punch, kick, walk). The motion synthe-
ses themselves (rows with no checkmark) often fail to
decrease the prediction errors compared to “No Aug”
because the motion prediction model learns unrealistic
motions that are far from test motion data recorded
in the real world. The motion syntheses with physi-
cal correction (rows with one checkmark) also fail be-
cause the prediction model learns biased motion data
different from test motions. Our proposed motion data
augmentation (rows with two checkmarks) achieved the
lowest prediction error in all cases by a large margin
compared to the previous method “Noise”.

4.4. Augmentation Comparison to Previous Method

We compared the augmentation capability of our
method and the additional tasks of DeepMimic [36].
Experimental set up: We choose one kick class mo-
tion and independently augment it with DeepMimic,
and our IK-based motion synthesis with motion correc-
tion. DeepMimic can also augment motions by training
characters to solve additional tasks besides the original
imitation. The used additional task is defined as Deep-
Mimic’s Strike reward rstrike

t that rewards the char-
acter when the foot strikes randomly placed targets.
The targets are randomly placed within the same tar-
get sampling space used in our IK-based motion syn-
thesis. DeepMimic is tested in two rewards weighting
{α = 0.7, β = 0.3} and {α = 0.3, β = 0.7} in the fol-
lowing equation:

r = αrt + βrstrike
t (1)

Results: We show the results in Fig. 10. Augmented
motions from DeepMimic have limited diversity in both
reward weightings because the policy suffers from the
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Table 2. Quantitative results of motion data augmentation on the RNN-based human motion prediction [32].

Methods Prediction errors↓[rad] on each action class & timesteps [ms]
punch kick walkphysical

correction
motion

debiasing 100 200 400 100 200 400 100 200 400
No aug - - 1.58 2.2 2.59 1.28 1.89 2.45 0.74 1.15 1.49
Noise - - 1.57 2.19 2.57 1.26 1.84 2.35 0.72 1.12 1.45
VAE 1.48 2.17 2.71 1.28 1.90 2.46 0.68 1.11 1.55
IK 1.58 2.41 3.14 1.44 2.20 2.95 0.71 1.11 1.47
VAE & IK 1.56 2.38 3.03 1.21 1.78 2.25 0.67 1.07 1.43
VAE ✓ 1.57 2.19 2.75 1.27 1.92 2.57 0.71 1.14 1.56
IK ✓ 1.52 2.26 3.02 1.26 1.94 2.59 0.74 1.22 1.78
VAE & IK ✓ 1.53 2.20 2.97 1.24 1.91 2.60 0.71 1.19 1.71
VAE ✓ ✓ 1.50 2.10 2.63 1.11 1.64 2.06 0.66 1.08 1.48
IK ✓ ✓ 1.39 1.93 2.45 1.05 1.52 1.85 0.57 0.91 1.22
VAE & IK ✓ ✓ 1.37 1.91 2.49 1.01 1.48 1.80 0.58 0.92 1.24

Table 3. Quantitative results of motion data augmentation on the SOTA GCN-based human motion prediction [31].

Methods Prediction errors↓[rad] on each action class & timesteps [ms]
punch kick walkphysical

correction
motion

debiasing 100 200 400 100 200 400 100 200 400
No aug - - 1.31 1.87 2.33 1.08 1.68 2.26 0.52 0.88 1.24
Noise - - 1.31 1.90 2.35 1.06 1.65 2.25 0.52 0.87 1.21
VAE 1.28 1.88 2.34 1.06 1.63 2.17 0.52 0.91 1.28
IK 1.21 1.73 2.25 0.96 1.39 1.73 0.50 0.85 1.18
VAE & IK 1.22 1.81 2.29 0.95 1.38 1.71 0.49 0.85 1.20
VAE ✓ 1.31 1,89 2.36 1.03 1.60 2.14 0.52 0.89 1.25
IK ✓ 1.31 1.89 2.49 1.06 1.66 2.20 0.53 0.94 1.35
VAE & IK ✓ 1.28 1.84 2.35 1.03 1.65 2.17 0.54 0.94 1.37
VAE ✓ ✓ 1.22 1.74 2.07 1.00 1.52 1.89 0.52 0.89 1.25
IK ✓ ✓ 1.27 1.79 2.24 0.92 1.35 1.65 0.48 0.81 1.11
VAE & IK ✓ ✓ 1.22 1.70 2.06 0.90 1.32 1.60 0.47 0.80 1.11

tradeoff between the imitation and the additional strike
tasks. Although more weight on the strike reward
slightly improves the diversity, the resulting motions
lose the original motion details. On the other hand,
our method produces diverse motions by dividing the
augmentation to the synthesis and physical correction
where the policy focuses only on the imitation task.

5. Limitations

Our motion augmentation has two limitations.
First, motion correction still takes several hours to

rectify one motion, even with our proposal to acceler-
ate the training. This cost makes it hard to apply our
motion augmentation to more extensive motion pre-
diction benchmarks such as Human3.6M [20] due to
computational cost. However, the training time could
be shortened by using meta-learning [11] for better pol-
icy initialization or the fast physics simulation environ-
ment accelerated with GPU rather than CPU.

Second, our motion augmentation is not immedi-
ately applicable to the partially-observed motion se-
quences, such as only observed upper body or 2D mo-
tion sequences, because our motion correction only ac-
cepts 3D motion sequences for a whole-body 3D charac-
ter. We need to estimate missing joints or 2D-3D pose
lifting [40] to apply our method to these situations.

6. Conclusion
This work presented a new human motion augmen-

tation approach using VAE- and IK-based motion syn-
theses and motion correction with physics simulation.
Experiments demonstrated that our augmentation out-
performed previous methods because our VAE- and IK-
based motion syntheses improve the diversity of train-
ing motion data, and our motion correction rectifies
the unrealistic artifacts without motion biases. Our
future work includes a new motion synthesis approach
and faster motion correction based on meta-learning
and GPU acceleration for larger-scale datasets.
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