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Figure 1. Our approach takes in input image along with the user-provided motion hints (red arrows in (a) and the user-provided mask
(white in (b)) indicating the regions of fluid elements to be animated and outputs the sequence of frames of the animated videos.

Abstract

We propose a method to interactively control the anima-
tion of fluid elements in still images to generate cinema-
graphs. Specifically, we focus on the animation of fluid el-
ements like water, smoke, fire, which have the properties of
repeating textures and continuous fluid motion. Taking in-
spiration from prior works, we represent the motion of such
fluid elements in the image in the form of a constant 2D op-
tical flow map. To this end, we allow the user to provide
any number of arrow directions and their associated speeds
along with a mask of the regions the user wants to animate.
The user-provided input arrow directions, their correspond-
ing speed values, and the mask are then converted into a
dense flow map representing a constant optical flow map
(FD). We observe that FD, obtained using simple exponen-
tial operations can closely approximate the plausible mo-
tion of elements in the image. We further refine computed
dense optical flow map FD using a generative-adversarial
network (GAN) to obtain a more realistic flow map. We
devise a novel UNet based architecture to autoregressively
generate future frames using the refined optical flow map by
forward-warping the input image features at different res-
olutions. We conduct extensive experiments on a publicly
available dataset and show that our method is superior to
the baselines in terms of qualitative and quantitative met-

rics. In addition, we show the qualitative animations of
the objects in directions that did not exist in the training
set and provide a way to synthesize videos that otherwise
would not exist in the real world. Project url: https:
//controllable-cinemagraphs.github.io/

1. Introduction

It is widely perceived that animations capture human
imagination more than still images. The effect of this can
be seen in the proliferation of video content that is being
uploaded on social media. Studies show that video-based
ads and explainers are far more likely to gain trust and en-
gagement than those based on other modalities, leading to a
significant boost in sales. However, the required animations
or videos are less easily available for the users to leverage
than still images that exist in abundance in one’s collection.
Hence, it is desirable to empower the practitioners with con-
trollable tools to convert the still images to videos of the
required kind. This motivates us to consider the problem
of animating images with user control to generate output
videos that are generally called ‘cinemapgraphs’ in litera-
ture. Similar to [11] we focus on the images that contain
fluid elements like water, smoke, fire that have repeating
textures and continuous fluid motion.
There has been a rich body of work [1,3,5,7,9–11,16,20,25]
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that has focused on generating animations from still images.
While [3, 7, 11, 16, 20, 25] focus on uncontrollable image-
to-video synthesis, attempts [1, 2, 5, 9, 10] have been made
for controllable image-to-video synthesis with the user-
provided direction of the motion of the objects in the im-
ages. While these methods provide some control to the user,
they suffer from certain drawbacks. Specifically, [1,2,5] ei-
ther allow the user to poke at just a single pixel location
or provide a single user direction. Halperin et. al [9] ob-
tain a displacement field by exploiting self-similarity that
exists in images of repeating structures like buildings, stair-
cases. However, such a method is unsuitable for animating
fluid objects that we are considering as such objects do not
have specific structures that can manifest in self-similarity,
leading to an erroneous displacement field. Hao et. al [10]
proposed a method in which the user can provide sparse tra-
jectories as input, defined by the direction of the motion at
different locations. A dense optical flow map is estimated
in an unsupervised manner and is warped with the input im-
age to obtain the future frames. As shown later, the dense
optical flow estimated thus is brittle and is prone to produce
unrealistic video synthesis results. Motivated by this, we
consider the problem of animating images given i) a single
still image ii) a user-provided mask specifying the region
to be animated and iii) a set of movement directions, called
flow hints at different locations in the masked region.
To circumvent the problems associated with directly obtain-
ing a flow map from user inputs, we propose a two-step ap-
proach to estimate the flow map from a sparse set of arrow
directions and their associated speeds. Firstly, we approxi-
mate the dense optical flow using simple exponential oper-
ations on the movement directions and speeds input by the
user. Next, the thus estimated approximate flow map is fur-
ther refined using a GAN-based network [8] to obtain the
final estimate of the flow map representing the constant 2D
flow map of the desired movement. The estimated flow map
along with the input image is fed into a GAN-based image
generator, similar to Holynski et al. [11] to obtain the future
frames. The contributions of our paper are as follows.

• We propose a two-stage approach to interactively con-
trol the animation of fluid elements from a still image.

• We propose a novel approach to approximate the con-
stant flow map governing the motion using simple ex-
ponential operations on the user-provided inputs in the
form of speed and directions.

• Through qualitative and quantitative experiments, we
show that our method beats all previous and other pro-
posed baselines on a publicly available dataset of im-
ages of fluid motion.

• We prove the generalizability of our method to any ar-
bitrary set of user directions by showing the qualitative

animations of fluid objects in directions that did not ex-
ist in the training set.

2. Related Work
Video synthesis works occur in a myriad of ways. A

good number of works have focused on video synthesis in
an unsupervised and stochastic manner [3, 7, 16, 20, 25, 26,
29]. There is a body of research that deals with video gener-
ation from intermediate representations like semantic label
map [18, 27, 28]. Of relevance to this work are the works
on single-image-to-video synthesis [1, 2, 4–6, 9–11, 14, 15,
29–31]. Chuang et al. [4] animate pictures by allowing the
users to decompose the images into several layers, each one
of which being needed to be animated in a different fashion.
Xiong et al. [30] propose a two-stage approach to synthe-
size a video from a single image, wherein in the first stage
a sequence of frames is generated using a 3D-GAN and in
the second stage, the sequence of frames are further refined
using another GAN. Li et al. [14] first predict a sequence
of optical flow maps for future frames from the input image
and then use them to obtain the future RGB frames. Lo-
gacheva et al. [15] propose a radically different approach
by modeling the sequence of landscape frames in a video
in the StyleGAN [12] latent space while enforcing the tem-
poral consistency. Similar to [14], Holynski et al. [11] first
estimates the optical flow for future frames, except that the
work assumes a constant 2D flow map across the video.
These methods [4, 11, 14, 14, 15, 30] generate a video from
a single still image automatically and thus do not allow the
user interaction to control the animation.
Different from the above set of works, [1,2,5,6,9,10] allow
the users to interact and control the movement in the anima-
tion to varying degrees, and hence are more closely related
to the current work. Dorkenwald et al. [5] propose a one-
to-one mapping between image and video using a residual
representation, that allows the user to provide a single di-
rection of motion for video generation. [1] and [2] propose
methods that govern the animation of different parts in the
image with a single poke at a particular location defined by
the start and end location of the motion. However, these
methods [1, 2, 5] are unsuitable for our problem that neces-
sitates the use of a sparse set of input directions and speeds
at arbitrary locations. The closest approach to our work
is [10]. This approach allows for user interaction through
sparse trajectories for every frame to be predicted. Given
the sparse trajectory for a particular frame, a single network
is used to obtain a dense optical flow map and a halluci-
nated image. The dense optical map is bilinearly warped
with the input image to obtain an estimate for the frame that
is further added to the hallucinated image to obtain the final
predicted frame. We differ from this method in two ways,
i) instead of obtaining the dense optical flow directly from
sparse trajectories, we first obtain its approximation by ap-
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plying simple exponential functions on the user inputs, and
then refining it using a network. and ii) instead of obtaining
the final image by simple bilinear interpolation on the input
image, we adapt the method from [11] and use a separate
network that takes in the input image and flow map corre-
sponding to a particular frame, with symmetric splatting of
intermediate features to obtain the RGB frame.

3. Methodology
Given a single input image I ∈ RH×W×3, mask of

the regions in the image the user wants to animate M ∈
RH×W×1, K arrow directions A1..,K and corresponding
speed values S1..,K , our goal is to generate a realistic an-
imated video comprising of N frames (I1..,N ). Our method
consists of first converting the arrow directions and speed
values to sparse input flow maps, FS ∈ RH×W×2 (Section
3.2), where flow at position i (at the location of arrows in
FS) defines the position where a pixel at that location will
move to in all future frames. We propose to convert FS into
a dense flow map FD (Section 3.3) using simple exponential
functions. Using FD and input image I as guidance, we use
a flow-refinement network to generate a dense refined flow
map FR

D (Section 3.4). Finally, to generate output video
frames, we use a UNet [21] based frame generator to gen-
erate video frames by warping the input image with FR

D at
different resolutions of feature maps (Section 3.5).

3.1. Preliminary: Eulerian Flow Fields

Generating video frames by warping a single image us-
ing optical flow requires very accurate optical flow to obtain
realistic video. In the case of real-world videos, the optical
flow between each pair of frames in a video, in most cases,
is time-varying. Following this principle, Endo et al. [6]
predicts optical flow autoregressively using the previously
generated frame. Although theoretically, this seems feasi-
ble, in the long-term it leads to large distortion due to error
propagation. In contrast, Holynski et al. [11] hypothesize
that a constant and time-invariant optical flow field MF ,
termed as Eulerian flow, that describes the motion of pixel
locations between consecutive frames in a video, can accu-
rately approximate the complex motion of fluid elements
(like water, smoke, fire, etc.) in realistic videos. More
specifically, for a given pixel location i, the optical flow
Ft→t+1 between consecutive frames in a video at any time
t is given by,

Ft→t+1(i) = MF (i) (1)

Correspondingly, the optical flow between the first frame
and frame at any time t, can be obtained by Euler-
integration of MF , t times as given by,

F0→t(i) = F0→t−1(i) +MF (i+ F0→t−1(i)) (2)

where F0→1 = MF .
Since we also operate in the domain of fluid elements,

we adopt the principle proposed in [11] to use a constant
optical flow field to model the motion of elements in the
generated frames.

3.2. Baseline: Sparse Input Flow FS → Sparse Re-
fined Flow FR

S

We convert the arrow directions A1..,K and correspond-
ing speed S1..,K into sparse optical flow map FS . Each
arrow An (where n ∈ [0,K]) at location i in the image,
is given by the start (i) and end (j) location of the arrow
(xi, yi) → (xj , yj). The sparse optical flow FS is formu-
lated as,

FS(x
i, yi) =

{
(xj , yj) ∗ Sn if An starts at (xi, yi)

0 otherwise
(3)

Following Hao et al. [10], who generate time varying dense
flow maps from input sparse trajectories, we transform the
sparse flow map FS to a dense optical flow map FR

S . How-
ever, unlike their method that rely on generation of time-
varying flow maps, we generate a constant (Eulerian) dense
optical flow FR

S . For this we use a SPADE [19] based flow-
refinement network GF by using FS , input image and mask
as cues, in the SPADE normalization layers. We call this
baseline to compute dense flow map as ‘Hao et al. modi-
fied’.

3.3. Sparse Input Flow FS → Dense Flow FD

From fig. 3, it can be observed that the refined dense op-
tical flows FR

S generated using FS are very different from
ground-truth Eulerian flows. We hypothesize that FS does
not provide adequate information to GF to produce realistic
flows. Instead of directly using FS to generate dense flow
using GF , we propose to create an intermediate dense op-
tical FD from FS using simple functions of the distances
between every pixel location and the arrow positions. We
calculate the exponential L2 Euclidean distance (Dexp) be-
tween each pixel location in input image and the starting
coordinate of all the K arrows. The exponential of the Eu-
clidean distance between location (xi, yi) of input image
and starting position of arrow Aj , (xj , yj) is given by,

Di,j
L2 = ∥(xi, yi) − (xj , yj)∥2 (4)

Di,j
exp = e−(D

i,j
L2/σ)

2

(5)

where Di,j
L2 is the Euclidean distance between location

(xi, yi) of input image and starting position of arrow Aj ,
(xj , yj) and σ is a constant. The dense optical flow FD

for a particular pixel location i in in the image is defined
as weighted average of flow magnitude at each non-zero lo-
cation in input mask M , where the weights are taken from
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Figure 2. The figure shows our full pipeline. The inputs to our system are the input image, the user-provided mask indicating the region
to be animated, and motion hints, FS . The motion hint is converted into a dense flow map FD using simple exponential operations on FS ,
which is further refined using a SPADE network, GF to obtain FR

D . During test time, instead of using both I0 and IN , we obtain the tth

frame, It as the output of the UNet into which we feed the input image in place of both I0 and IN and the Euler integrated flow maps
corresponding to that frame, in both forward and backward directions that are used to perform symmetric splatting in deep feature space.

Di,j
exp and is given by,

FD(i) =


∑K

j=1

Di,j
exp∗FS(i)∑N
j=1 Di,j

exp
if i ∈ M

0 if i /∈ M
(6)

3.4. Dense Flow FD → Dense Refined Flow FR
D

Although FD can suitably describe the motion of fluid
regions moving approximately in the same direction, and
also having smooth transition at the boundary of two differ-
ent flow regions, there are limitations of directly using FD

to generate video frames by warping. In the figures 3 and
5, we consider examples and show the approximated dense
flow and the refined dense flow. While the dense flow is a
good approximation, the refined dense flow is closer to the
ground-truth flow than the approximated flow. From figure
5 we see that the dense flow map generated is assigned the
same horizontal flow to the majority of the waterfall and
below the lake, whereas, realistically the waterfall would
have been moving vertically downward. This is due to the
fact the FD is generated purely based on the closeness of a
particular pixel location to hint points with simple exponen-
tial operations. Hence, unlike FR

D , it cannot distinguish the
object boundaries (in this case the dotted demarcation like
between waterfall and lake in figure 5) and naively mixes

the flow values in both regions. Due to this same drawback,
it assigns very different flow values to different regions of
the same waterfall, which again is realistically inappropri-
ate. Hence, using our flow-refinement network GF , with the
input image, mask, and FD as cues, we generate a dense re-
fined optical flow FR

D . Using FR
D as Eulerian flow fields, we

generate video frames by the method discussed in Section
3.5.

3.5. Video Frame Generation

From the refined dense optical flow field FR
D , we esti-

mate the flow fields F0→t from input image to all the fu-
ture frames for t ∈ [0, N ] using equation 2. Instead of the
backward optical flow field (as used in [6]), we use forward
flow to warp input frame to generate future frames as [11]
observed that forward flow produces more reliable flow es-
timates and sharper values at object boundaries. However,
forward warping (also known as splatting) has its challenges
(i) it can map multiple source pixels to the same destination
resulting in loss of information and aliasing, (ii) it may not
map any source pixel to a particular target location leading
to blank region. To mitigate these artifacts, we use softmax-
splatting (proposed in [17]). It resolves the first challenge
associated with splatting by using softmax to scale the con-

3670



Input Image

Sparse Input Flow Refined Sparse Flow

Ground-Truth Flow

Refined Dense FlowDense Flow

Figure 3. The figure shows the input image, the sparse input flow
in the form of flow hints and the various flows that can be obtained.
It is clear that that dense flow computed using simple functions
closely approximates the ground-truth flow, and the refined dense
flow best resembles the ground-truth flow among all. The refined
sparse flow obtained is quite poor.

tribution of source pixels mapping to the same destination
location, based on importance metric Z ∈ RH×W×1. In our
method, we predict Z as an additional channel in the output
of GF during fine-tuning (Section 3.5.3).

3.5.1 Multi-scale Deep Feature Warping

Instead of directly splatting the input image with F0→t in
RGB space to generate frames, that might otherwise pro-
duce holes in generated frames, we perform splatting on the
deep features of the image, similar to [11]. However, unlike
their method, we perform splatting at different resolutions
of input image features. Using a UNet based image gener-
ator GI , we extract the image features at different resolu-
tions from the UNet encoder. We use softmax-splatting to
warp the features at different scales and generate an image
using the decoder of the UNet. Note that all the splatted fea-
tures from the encoder part, except at the bottleneck layer
of UNet, are connected to the decoder via skip connections.
For a feature map corresponding to input image I at resolu-
tion Dr

0, the softmax-splatting output Dr
t at pixel location i

using F0→t is given by,

Dr
t (i) =

∑
j∈X Dr

0(i)e
Z(j)∑

j∈X eZ(j)
(7)

where X consists of all the pixels that map to the same tar-
get location i after splatting.

3.5.2 Symmetric Splatting

Even with softmax-splatting on multi-scale image feature
space, we observe the presence increasingly large void re-
gions, in the generated frames (similar to what was ob-
served in [11]) in places of significant motion where pixels
are warped away from the region and there are no pixels
to replenish them. We hypothesize that GI might not be
able to generate appropriate pixel values for these regions
to fill in the gaps. To resolve this artifact we use the method
of symmetric-splatting proposed in [11]. In this method,
similar to producing flow fields in the forward direction
F0→t, we also generate flow fields in the backward direc-
tion F0→−t by Euler-integration of −MF . Thus, instead of
just using softmax-splatting on deep features Dr

0 obtained
from first frame I0 with F0→t to generate Dr

t , we use a
combination of the deep features Dr

0 from I0 and Dr
N ob-

tained from last frame IN , splatted with F0→t and F0→t−N

respectively. Specifically, any given pixel location i in the
combined deep feature D̂r

t is given by,

D̂r
t (i) =

∑
j∈X αDr

t (i)e
Z(j) +

∑
j∈X α̂Dr

t−N (i)eZ(j)∑
j∈X̂ αeZ(j) +

∑
j∈X̂ α̂eZ(j)

(8)
where α and α̂ equals t

N and (1− t
N ), Dr

t (i) and Dr
t−N (i)

are feature map obtained by softmax-splatting Dr
0, Dr

N with
F0→t and F0→t−N respectively, X and X̂ consists of all the
pixels that map to the same target location i after splatting
for Dr

t and Dr
t−N respectively. The intuition behind this is

the void regions appearing in the frames generated at time
t by splatting the first image with F0→t is complementary
to the void regions appearing in the frames generated by
splatting the last image with F0→t−N .

3.5.3 Training and Inference

As proposed by [17], for stable training, we first train the
2 components of dense optical flow refinement and frame
generator separately. While training GF , we use the stan-
dard GAN loss and Discriminator Feature-matching loss
[19]. In this stage, we compute losses based on generated
dense refined optical flow (and not the generated Z). Dur-
ing the training of GI , we use the standard GAN loss, VGG
loss [22], L1 loss, and Discriminator Feature-matching loss.
Prior to end-to-end fine-tuning, we freeze the refined dense
optical flow maps and only train GF to generate Z. In addi-
tion, we only use the discriminator for the frame generator
part. Contrary to training where we use both the first and
the last frames for symmetric-splatting used in GI , at test
time, since we only have a single input static image, use the
same image as both the first and the last frames in GI .
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Input Image Ground-Truth Flow
1 Hint

Refined Sparse Flow Refined Dense Flow

5 Hints

(a)

(c)

(b)

(d)

Refined Sparse Flow Refined Dense Flow

Figure 4. The figure shows the comparison of the refined sparse flow and the refined dense flow for one hint and five hints. It is quite
evident that across diverse set of hints, the refined dense flow resembles the ground-truth flow far more closely that refined sparse flow.

4. Experiments

4.1. Dataset preparation

Due to the unavailability of any existing human-
annotated controllable video generation datasets with
masks, input flow hints/arrows in the domain of natural
scenes, we curate our dataset from the uncontrollable video
generation dataset provided by [11]. This dataset already
contains the ground-truth videos, starting frame, and the
average optical flow for all videos. The number of frames
across all videos is 60, each frame having a resolution of
720x1280. For our purpose of training and testing, in addi-
tion to the input image, and average flow, we also require
a mask of regions the user wants to annotate along with ar-
rows and corresponding speed values. We generate a sub-
stitute of the user annotated mask and arrows with the mask
and flow hint points generated heuristically from ground-
truth average optical flow.

Mask Generation: For every average optical flow map
Favg in the dataset, we calculate the mean-squared flow
value for Favg . Then we mask out all the regions having
per-pixel squared-flow less than m times the mean-squared
flow value. Following observation on the visual quality of
generated mask at different m values, we set the value of m
to 10.

Flow Hint Generation: Using the mask M generated in
the previous step, we calculate masked average flow FM

avg

for each video as M ∗Favg , where Favg is the ground-truth
average flow map for that video. We perform k-means clus-
tering for 100 iterations on the individual FM

avg , to find the
cluster centers based on the number of desired hint points

for our input sparse optical flow map FS . FS consists of
values equal to the ground-truth average flow maps at the
pixel location of cluster centers and zero elsewhere. In our
experiments, the number of hints points are chosen to be ei-
ther 1, 3, or 5. In Section 3.2, we discuss the procedure to
convert user-provided arrows and speed values to FS , which
is required in real-world interactive testing.

4.2. Experimental Setup

For flow refinement network GF , we use SPADE [19].
We also use multi-scale discriminator DF from [19] during
training. We train the flow refinement part of our method
separately for 200 epochs with both generator and discrim-
inator learning rates of 2× 10−3 with TTUR method of up-
dating learning rate proposed in [19]. We train on a triplet
of (first frame, FS , ground-truth average flow), where FS is
randomly selected to have 1, 3, or 5 flow hints. For frame
generation network GI , we use a modification of UNet
(shown in fig. 2) which incorporates symmetric-splatting.
We use the same multi-scale discriminator DI from [19]
during training. We train the frame generation part sep-
arately for 200 epochs on training tuples of (start frame,
ground-truth average flow, middle frame, last frame), where
the middle frame is selected randomly from time [1, 59].
Both generator and discriminator learning rates are set to
2 × 10−3 with the TTUR method of updating the learning
rate. During fine-tuning we only use GF , GI and DI . Ad-
ditionally, we fix the value to GF that is responsible for
flow generation and only keep Z trainable. Both generator
and discriminator learning rates are reduced to 1 × 10−3.
We train for 40 epochs. Prior to training, we resize all the
average flows and frames to 288x512 (maintaining the 16

9
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Input Image

Dense Flow

Refined Dense Flow

Ground-Truth Flow

Generated Frames w/ Dense Flow

Generated Frames w/ Refined Dense Flow

Figure 5. The figure shows the dense flow and the refined dense
flow for a particular example and the corresponding generated
frames of the video. While the dense flow is a good approxi-
mation, the direction of motion is more appropriate in the video
corresponding to the refined dense flow that closely resembles the
ground-truth flow. In the dense flow video, the waterfalls tend to
shift sideways to the right, while the refined dense flow video is
very similar to the ground-truth video. The videos are shown in
the supplemental. The dotted line (- - -) denotes the region where
the waterfall ends and the lake starts.

aspect ratio of original frames). At inference, we generate
60 frames.

4.3. Baselines

We compare our final method with five different base-
lines, one of our own, Endo et al. [6], Hao et al. [10], and the
vanilla Eulerian method [11]. Our own baseline is comput-
ing the dense flow map using simple exponential functions
followed by an image generator. Endo et al. provide an op-
timization procedure to compute the directions and speed
during test time. For Hao et al., we repurpose the method
they have provided in their paper by making the following
modifications. Instead of obtaining sparse trajectories, we
use the sparse hints that were obtained using the procedure
outlined earlier in the section. Instead of having a single
network to convert the sparse user inputs, we first compute
dense flow map directly from the sparse hints by training
the same procedure, i.e the GAN-based network. Once the
dense flow map is obtained, instead of bilinearly warping
the input image (as done in Hao et al.), we use the same
image generator that is used for our method to generate the

Method FVD ↓ PSNR ↑

1 Hint

Endo et al. 561.33 23.59
Hao et al. modified + frame generator 419.015 25.12

Our (FD + frame generator) 419.49 25.2
Our (FR

D + frame generator) 380.475 25.07

3 Hints

Endo et al. 526.55 23.35
Hao et al. modified + frame generator 375.98 25.11

Our (FD + frame generator) 331.8 25.22
Our (FR

D + frame generator) 318.39 25.09

5 Hints

Endo et al. 519.18 23.21
Hao et al. modified + frame generator 344.55 25.11

Our (FD + frame generator) 335.4 25.24
Our (FR

D + frame generator) 315.31 25.1
Vanilla Eulerian 419.74 25.2

Table 1. The table shows the FVD and PSNR values for var-
ious methods that use different number of hints as well as the
Vanilla Eulerian method for the original speed. It clearly shows
our method that uses refined flow and frame generator performs
the best in terms of FVD, thus showing the high-fidelity anima-
tions generated by our method.

frames from the computed dense optical flow and the in-
put image. We dub this baseline as ‘Hao et al. modified +
frame generator’. In addition, we also compare our results
with the vanilla Eulerian method which is fully automatic
and does not require any user inputs.

4.4. Metrics

In order to evaluate our method against the various base-
lines, we use the following metrics.
Frechet Video Distance (FVD) [24]: It is a standard met-
ric used to quantify the fidelity of the generated videos and
provides a measure of the distance between the generated
videos and the real videos. Prior to obtaining the features,
we resize all videos to 224 × 224 and use 60 frames. To
obtain the features from the videos, we use the pre-trained
I3D [23] model that was trained on Kinematics dataset [13].
PSNR: While FVD assesses the perceptual quality of the
generated videos, we assess the mean pixel accuracy using
PSNR. Given that it is based on mean square error, PSNR
tends to favor those methods that produce somewhat blurry
results.

4.5. Results

Evaluating the flow map generation: In order to show
the efficacy of our flow map generation method, we com-
pute the mean PSNR between the generated flow maps and
the ground-truth flow maps. The results for three different
numbers of hints are shown in table 2. It is clear that our
method that involves flow refinement network on dense flow
is able to generate better flow maps than just sparse hints
with refinement network, in terms of PSNR. This trend is
consistent across a different number of hints. It is interest-
ing that for the vanilla Eulerian method, the PSNR is lower
than both methods. This is expected given that the Eulerian
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Figure 6. The figure shows dense flows and corresponding refined
dense flow maps for four different arrow directions for the same
input image. This shows the robustness of our flow generation
method to arbitrary input directions for flow hints.

method is automatic, unlike the other two methods. Simi-
larly, we show in figure 4, for various examples and the dif-
ferent number of hints, that the flow maps computed by our
method perform significantly better than ‘Hao et al. modi-
fied’ and more closely resemble the ground-truth flows.

Evaluating the video generation: Table 1 shows the
comparison of the various methods for two different metrics
for three different numbers of hints. It is clear that our meth-
ods beat all the baselines in terms of FVD, while the PSNR
is comparable across the different methods except Endo et
al is the least of all. We also observe that our method (Our
(FD + frame generator)) is better than ‘Hao et al. modified’,
thus showing the need to approximate the dense flow map.
In addition, our final method (Our (FR

D + frame generator))
is better than just (Our (FD + frame generator), thus but-
tressing the need for refining the approximated dense flow.
It is also observed that the FVD scores for all methods get
progressively better with an increasing number of hints.

Qualitative Results: From figures 3 and 4, it is clearly
visible that dense refined flow FR

D resembles the average
ground-truth optical flow much more accurately than the
sparse refined flow FR

S . The generated videos using our
methods and baseline are provided in supplementary. In the
figure 5, we consider a particular example that shows the ap-
proximated dense flow, the refined dense flow, and a frame
of the generated video (video provided in supplementary).
While the dense flow is a good approximation in many sit-
uations, the refined dense flow corrects some of the regions
representing inappropriate flows in dense flow map (see fig-
ure 5). This is directly reflected in the quality of the anima-

Method PSNR ↑

1 Hint Hao et al. modified 20.48
Our (FR

D ) 24.15

3 Hint Hao et al. modified 21.06
Our (FR

D ) 25.53

5 Hint Hao et al. modified 21.4
Our (FR

D ) 25.82
Vanilla Eulerian 18.28

Table 2. The table shows the average PSNR between the ground-
truth flows and the two refined flows. The refined dense flow is
significantly better than the refined sparse flow, thus corroborating
the need for the exponential operations before refinement.

tion that is generated. The video generated using the dense
flow has artifacts wherein the waterfalls tend to shift pro-
gressively towards the right (due to dense flow having the
same flow values for waterfall and lake), whereas the video
generated using the refined flow is very realistic and resem-
bles the actual downward motion of waterfall observed in
real-world videos.

Animation in arbitrary directions: Our method is capa-
ble of generating flow maps from flow hints that correspond
to any arbitrary directions that may not have existed in the
training set. Figure 6 shows the refined dense flows gen-
erated using the same input image with different arrow di-
rections, and thus different dense flows. We see that GF

produces results that respect the input arrow directions and
are not just based on the input image, showing the robust-
ness and the generalizability of our method. Please see the
supplement material for corresponding generated videos.

5. Conclusions and Limitations
We propose a method to animate images that contain

fluid elements like water, fire, smoke, given a user-provided
mask and flow hints in the forms of speed and direction.
We proposed a simple yet powerful method to approximate
the constant flow field governing the motion with simple
exponential operations on the user-provided flow hints, and
further show that in order to obtain a better flow field we
need to refine using a network the approximation for dense
flow field rather than just the sparse hints. Through quanti-
tative experiments, we show that our method performs bet-
ter than all baselines for a various number of motion hints.
One of the limitations of our method is that it is restricted
to the movements of fluid elements in an image. The mo-
tion of rigid objects or even definite structures like designs
in buildings cannot be modeled using a constant flow field,
thus making our method not applicable in such scenarios.
Another potential limitation of our method is its inability to
model multiple flow streams that are adjacent to each other
but may belong to different objects.
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