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Abstract

Hyperspectral imaging has attracted significant attention
to identify spectral signatures for image classification and
automated pattern recognition in computer vision. State-of-
the-art implementations of snapshot hyperspectral imaging
rely on bulky, non-integrated, and expensive optical elements,
including lenses, spectrometers, and filters. These macro-
scopic components do not allow fast data processing for, e.g.
real-time and high-resolution videos. This work introduces
Hyplex™, a new integrated architecture addressing the limi-
tations discussed above. Hyplex™ is a CMOS-compatible,
fast hyperspectral camera that replaces bulk optics with
nanoscale metasurfaces inversely designed through artificial
intelligence. Hyplex™ does not require spectrometers but
makes use of conventional monochrome cameras, opening up
the possibility for real-time and high-resolution hyperspec-
tral imaging at inexpensive costs. Hyplex™ exploits a model-
driven optimization, which connects the physical metasur-
faces layer with modern visual computing approaches based
on end-to-end training. We design and implement a pro-
totype version of Hyplex™ and compare its performance
against the state-of-the-art for typical imaging tasks such as
spectral reconstruction and semantic segmentation. In all
benchmarks, Hyplex™ reports the smallest reconstruction
error. We additionally present what is, to the best of our
knowledge, the largest publicly available labeled hyperspec-
tral dataset for semantic segmentation. 1

1. Introduction
Hyperspectral imaging is gaining considerable interest in

many areas including civil, environmental, aerial, military,
and biological sciences for estimating spectral features that
allow the identification and remote sensing of complex mate-
rials [10, 29]. Ground-based hyperspectral imaging enables
automated classification for food inspection, surgery, biol-

1Dataset available on https://github.com/makamoa/hyplex.

Figure 1. Hardware implemented Hyplex™ imaging system. (a)
Example of metasurface pixel arrays (blue squares). (b) Schematic
of meta-pixel array on top of a camera sensor. (c) Closeup showing
the metasurface projectors as subpixels of the array. (d) Scanning
electron microscope image of a fabricated metasurface pixel. (e)
Optical micrograph of the metasurface pixel array. (f) Illustration
of the barcode generated by (e).

ogy, dental and medical diagnosis [1, 21, 34, 42]. Likewise,
aerial and submarine hyperspectral imaging are currently
opening new frontiers in agriculture and marine biology for
the taxonomic classification of fauna, and through aerial
drone footage for precision agriculture [2, 10, 13, 14]. The
present state-of-the-art in hyperspectral imaging, however,
is still affected by problems of expensive setup costs, time-
consuming post-data processing, low speed of data acquisi-
tion, and the needs of macroscopic optical and mechanical
components [41, 58]. A single hyperspectral image obtained
from a high-resolution camera typically requires gigabytes
of storage space, making it impossible to perform real-time
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video analysis with today’s computer vision techniques [28].
Computational hyperspectral reconstruction from a single

RGB image is a promising technique to overcome some of
the challenges mentioned above [4, 7, 18, 22, 25, 26, 38, 44,
54, 63]. Heidrich et al. [24] proposed hyperspectral cameras
based on integrated diffractive optical elements, while other
groups [12,60] leveraged deep neural networks for designing
spectral reconstruction filters. While these approaches could
help address the problem of speed, they are not yet able to
tackle the issues of high cost and slow data processing. Other
bottlenecks are the use of elementary filter responses, which
are not optimized beyond primitive thin-film interference
patterns, and the lack of integrated structures that could
exploit the modern footprint of CCD/CMOS sensors.

We here introduce the Hyplex™ system (Fig. 1), a
data-driven hyperspectral imaging camera (Fig. 1, a-b),
which uses state-of-the-art metasurfaces to replace macro-
scopic components with highly integrated dielectric nanores-
onators that manipulate light as a feed-forward neural net-
work [9, 17, 19]. Metasurfaces have successfully demon-
strated the ability to integrate various basic optical compo-
nents for different applications [48–50]. Hyplex™ leverages
this technology to compress high-dimensional spectral data
into a low-dimensional space via suitably defined projectors
(Fig. 1, c-d), designed with end-to-end learning of large hy-
perspectral datasets. ALFRED [16, 19, 37], an open-source,
inverse-design software exploiting artificial intelligence (AI),
provides the means to design the metasurface projectors.
These nanostructures encode broadband information carried
by incoming spectra into a barcode composed of a discrete
pattern of intensity signals (Fig. 1, e-f). A physical model-
aware framework finds the optimal projectors’ response with
various learning schemes, designed based on user end tasks.

We summarize our contribution as follows: (i) We pro-
pose and implement an inexpensive and fast-processing data-
driven snapshot hyperspectral camera that uses two inte-
grated components: inverse-designed spectral encoders and
a monochrome camera. (ii) We implement an end-to-end
framework for hyperspectral semantic image segmentation
and spectral reconstruction, and benchmark it against the
state-of-the-art, reporting the highest performance to date.
(iii) We create FVgNET, the largest publicly available dataset
of 317 samples of labeled hyperspectral images for semantic
segmentation and classification.

2. Related Work
Hyperspectral reconstruction is an ill-posed problem

demanding the inverse projection from low-dimensional
RGB images to densely sampled hyperspectral images
(HSI) [5, 39]. Metamerism [15], which projects different
spectral distributions to similar activation levels of visual
sensors, represents a significant challenge. Traditional RGB
cameras project the entire visible spectra into only three pri-

mary colors. This process eliminates critical information
making it challenging to distinguish different objects [38].
For the specific task of hyperspectral reconstruction, we can
partially recover such lost information. Spectral projections
are similar to autoencoders in the sense that they downsam-
ple the input to a low-dimensional space. If we design a
suitable algorithm that explores this space efficiently, we
could retrieve sufficient data to reconstruct the initial input.

Reconstruction by sparse coding and deep learning:
Sparse coding [32, 45] represents perhaps the most intu-
itive approach to this idea. These methods statically discover
a set of basis vectors from HSI datasets known a priori.
Arad et al. [5] implemented the K-SVD algorithm to cre-
ate overcomplete HSI and RGB dictionaries. The HSI is
reconstructed by decomposing the input image into a linear
combination of basis vectors, then transferred into the hy-
perspectral dictionary. A limit of sparse-coding methods is
their applied matrix decomposition algorithms, which are
vulnerable to outliers and show degraded performance [27].
Recently, research groups extended the capabilities of sparse
coding by investigating deep learning. Galliani et al. [18]
demonstrated a supervised learning method, where a UNet-
like architecture [46] is trained to predict HSI out of single
RGB images. Nguyen [38] trained a radial basis function
network to translate white-balanced RGB values to reflec-
tion spectra. In another work, Xiong et al. [55] introduced a
2-stage reconstruction approach comprising an interpolation-
based upsampling method on RGB images. The end-to-end
training proposed recovers true HSI from the upsampled
images. Wug et al. [40] used different RGB cameras to
acquire non-overlapping spectral information to reconstruct
the HSI. These approaches reconstruct spectral information
from highly non-linear prediction models, limited by their
supervised learning structure. The models constrain data
downsampling to non-optimal RGB images by applying a
color generation function on HSI or generic RGB cameras.
With Hyplex™, we avoid all the issues of the sparse coding
and deep-learning reconstruction methods by exploring a
new concept, which performs spectral downsampling with
optimally designed metasurface projectors.

Hyperspectral imaging with trainable projectors: Optical
projectors in cameras mimic the chromatic vision of humans
based on primary colors [23]. In hyperspectral imaging,
however, the design of projectors requires further study to
identify their optimal number and response. Human eyes
are not the best imaging apparatus for every possible real-
world scenario. The works of [6, 47, 53] expand the concept
of RGB cameras to arbitrary low-dimensional sampling of
reflectance spectra. These works employ different variants
of optimization routines, which converge to a set of optimal
projectors from an initial number of candidates. The selected
projectors provide a three-channel reconstruction of the HSI
with superior performance. Nie et al. [39] demonstrated that
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a 1×1 convolution operation achieves similar functionality
to optical projectors while processing multi-spectral data
frames. The network is like an autoencoder, where the input
HSI is downsampled and then reconstructed by a decoder net-
work. Zhang et al. [62] designed and fabricated a broadband
encoding stochastic camera containing 16 trainable projec-
tors that map high-dimensional spectra to lower-dimensional
intensity matrices. Recently, Liutao et al. [56] proposed
FS-Net, a filter-selection network for task-specific hyper-
spectral image analysis. In [59], the authors showcased an
idea of filter optimization for hyperspectral-informed image
segmentation tasks.
Inverse design of metasurface projectors: Optimizing
best-fit filters is a dimensionality reduction problem, which
requires finding the principal component directions that en-
code eigenvectors showing the lowest loss. The state-of-the-
art results are generated either from theoretical calculation or
experimental measurement on thin-film filters, representing
a rough approximation of the precise principal components.
In hyperspectral imaging, these components typically exhibit
frequency-dependent irregular patterns composed of com-
plex distributions of sharp and broad resonances, indicating
the need for more dedicated control of material structures,
e.g. metasurface technology. Modern metasurface design
approaches [51,52] usually rely on a library of pre-computed
metasurface responses and polynomial fitting to further gen-
eralize the relationship between design parameters and the
device performance. We, instead, design our metasurface
optical projectors via ALFRED [20], a hybrid inverse de-
sign scheme that combines classical optimization and deep
learning [52]. In this work, we significantly extend the ca-
pabilities of the original code by adding differentiability,
physical-model regularization, and complex decoder pro-
jectors able to tackle different computer vision tasks and
perform thousands of parameter optimizations through the
supervised end-to-end learning process.

3. Methodology
The Hyplex™ hyperspectral imaging system consists of

two parts: a hardware linear spectral encoder E and a soft-
ware decoder (Fig. 2). The encoder compresses an input
high-dimensional HSI β to a lower multispectral image ten-
sor Ŝ = E(β), while the decoder maps the tensor Ŝ to
user-defined task-specific outputs. In this work, we consider
two types of tasks: hyperspectral reconstruction and seman-
tic segmentation. Spectral reconstruction aims to reconstruct
with minimum losses the input HSI tensor. We define the loss
via the Root Mean Squared Error (RMSE) β̂ = Drec(E(β))
between reconstructed and input spectra. Semantic segmen-
tation, conversely, provides a pixel-by-pixel classification
of HSI. In this task, we use as decoder Dseg the U-Net ar-
chitecture, with adjusted input and output layers to meet
the dimensionality of the HSI tensor. The decoder outputs

hardware encoder software decoder

reconstruction

segmentation

HSI Image tensor

Figure 2. Conceptual sketch of Hyplex™ system. The system is
constructed by a hardware optical encoder E that is implemented via
trainable metasurface arrays and a software decoder D optimized
for two different tasks, including hyperspectral reconstruction and
spectral-informed semantic segmentation.

softmax logits ŷ, representing the probability of observing
each pixel ground-truth label y. We assess these predictions
quantitatively by using the Cross-Entropy loss function Lseg .

3.1. Hardware encoder

Recent work demonstrates that the transfer function of an
array of sub-micron nanostructured geometries can approx-
imate arbitrarily defined continuous functions [19, 36]. In
Hyplex™, we exploit such universal approximation ability
to design and implement an optimal linear spectral encoder
hardware for a specific hyperspectral information-related
imaging task.

Figure 3 summarizes the data workflow of Hyplex™ for
a generic linear encoder operator E = Λ̂

†
. Panel (a) shows

an example hyperspectral image. The data is represented as
a tensor β with three dimensions: two spatial dimensions
(x, y), corresponding to the camera virtual image plane, and
one frequency axis ω, measuring the power density spec-
tra retrieved at one camera pixel (Fig. 3b). Following a
data-driven approach, we implement a linear dimensional-
ity reduction operator that finds a new equivalent encoded
representation of β (Fig. 3c). The hyperspectral tensor of a
dataset of images is flattened to a matrix B that contains, on
each column, the power density spectra of a set of camera
pixels. We then the apply the linear encoding Λ† to obtain an
approximation of B [8] via a set of linear projectors Λ(ω),
which map pixel-by-pixel the spectral coordinate βij to a set
of scalar coefficients Sijk:

Sij = Λ̃(ω)βij(ω), Sijk =

∫
Λk(ω)βij(ω) dω . (1)

The spectral information contained in βij(ω) is embed-
ded into an equivalent barcode Sijk of a few components.
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Figure 3. Metasurface subpixel array as a linear spectral encoder. (a) A spectral image tensor (β) is captured by a hyperspectral camera.
(b) The corresponding pixel spectra (β̂ij) at position ij in the xy camera plane. (c) Example of dimensional reduction linear operator Λ†

of a flattened matrix B with the resulted projected encoder barcode for a pixel spectra at the ij position. (d) Optimal encoder functions
Λ†. (e) Non-differentiable inverse design optimization framework implemented via ALFRED utilized to find a set of metasurfaces L with
desired response Λi. (f) Differentiable backbone enabling simultaneous optimization of responses Λ and structures L. Metasurface pixel (g)
composed of a two-dimensional array of resonant metapixels with corresponding fitted transmission responses Λ̂. (h) Conceptual sketch of
the Hyplex™ system with an enlarged spectral-specific barcode (i) produced by an imaging-based readout of the metasurface’s transmission
response.(j) Recovered pixel spectra through decoder Drec projection β̂ij .

To implement the Λ encoder projectors into hardware, Hy-
plex™ uses two different engineering lines (Fig. 3e-f). When
the user end task does not require additional constraints, such
as in, e.g. spectral reconstruction, Hyplex™ implements the
projector by utilizing optimization frameworks to minimize
the norm between the physical metasurface response Λ̂ and
the target Λ (Fig. 3e). Conversely, in tasks that require
further conditions such as, e.g. hyperspectral semantic seg-
mentation, Hyplex™ uses a learnable backbone (Fig. 3f).
This optimization exploits d-ALFRED, a new version of
ALFRED that creates a differentiable physical model that is
trained with an end-to-end approach. d-ALFRED designs
metasurface geometries with an iterative process that mini-
mizes the loss function Lseg by optimizing simultaneously
the projector responses Λ and the vector L containing all
the parameters defining the metasurface. A single Hyplex™

pixel (Fig. 3g) integrates various metasurface projectors in
a two-dimensional array of sub-pixels, which are replicated
in space to form the Hyplex™ hardware encoder (Fig. 3h).
The encoder transforms a reflection spectra arising from a
scene into a barcode Ŝij (Fig. 3i), composed of a set of in-
tensity signals proportional to the overlap between the input
spectra and each projector’s response as defined in Eq. (1).
A standard monochromatic camera, placed behind the meta-
surfaces, acts as an imaging readout layer. Each pixel of the
camera matches the sub-pixel of the hardware encoder and
retrieves one intensity signal of the barcode Ŝij (Fig. 3j).

PCA projectors engineered with ALFRED: We use a lin-
ear encoder Λ obtained through an unsupervised learning
technique via principal component analysis (PCA). The PCA
performs hardware encoding E by selecting the k strongest
(k = 9 for this work) principal components Λ̃† from the
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singular value decomposition of B = ΛΣV† [8], and ap-
proximating B as follows:

B ≈ Λ̃Σ̃Ṽ̃ṼV † (2)

Equation (2) offers the closest linear approximation of B
in least square sense. We implement the decoder D with the
linear projector β̂ij = Λ̃Ŝij , which recovers the best least
square approximation of the pixel spectra β̂ij(ω) ≈ βij(ω)
(Fig. 3j) from the selected PCA component.

3.2. Learnable backbone via differentiable physical
model

In this approach, we represent the decoder operator D as
a set of hierarchical nonlinear operators F , which project
the input tensor Ŝ into an output measurement tensor ŷ.
This process is iteratively trained via supervised learning,
comparing the measurement ŷ with some ground-truth tensor
ỹ. This end-to-end training finds the optimal feature space Ŝ
and the associated linear projectors Λ. To train Hyplex™ in
this framework with backpropagation, the encoder E needs
to be differentiable.

In the inverse-design of projectors, the encoder E = H,
with H(ω) representing the output transmission function
of the metasurface response, which is obtained from the
solution of the following set of coupled-mode equations [36]: ã(ω) = K̃

i(ω−W )+ K̃K̃†
2

s̃+

s̃−(ω) = C̃(ω) ·
(
s̃+ − K̃† · ã

) (3)

where W is a diagonal matrix with resonant frequencies ωn

of the modes Wnn = ωn, C̃(ω) is a scattering matrix mod-
eling the scattering of impinging waves s̃+ on the resonator
space, and K̃ is a coupling matrix representing the inter-
action between traveling waves s̃±(t) and resonator modes
ã(t). Equations (3) describe the dynamics of a network of
resonator modes ã = [ã1(ω), . . . , ãn(ω)], interacting with
s̃± = [s̃1±(ω), . . . , s̃m±(ω)] incoming (+) and reflected
(−) waves. Section 1 of the Supplementary Material pro-
vides more details on the quantities appearing in Eq. (3).

The input-output transfer function H = s̃−/s̃+ resulting
from the solution of Eq. (3) is the superposition of two main
terms: a propagation term defined by the scattering matrix
C̃(ω) and a nonlinear term containing the rational function

K̃
σ(ω−W ) . Equation (3) represents a differentiable function of
W through which it is possible to backpropagate (Fig. 4 b).
d-ALFRED: To project the resonator quantities in Eq. (3)
to metasurface input parameters L, we use a supervised opti-
mization process. We train a deep neural network to learn the
relationship between L and the resonator variables in Eq. (3).
Following the same approach of [37], we train the network
with a supervised spectral prediction task by using arrays
of silicon boxes with simulated transmission/reflection re-
sponses (see Sec. 2 of Supplementary Material).

Figure 4. Coupled mode network as a differentiable metasurface
physical model. (a) Coupled-mode photonic network as a feedback-
loop with skip connection. (b) trainable coupled resonance layer.
(c) d-ALFRED: trained differentiable projections from parametric
geometry shapes to resonances.

4. Datasets

To train and validate the Hyplex™ system, we use three
publicly available datasets: the CAVE dataset, consisting
of 32 indoor images covering 400 nm to 700 nm, and the
Harvard and KAUST sets, which contain both indoor and
outdoor scenes, and amount to 75 and 409 images, respec-
tively, with spectral bands covering 420 nm to 720 nm and
400 nm to 700 nm respectively. We create an additional hy-
perspectral dataset FVgNET. FVgNET is comprised of 317
scenes showing fruits and vegetables, both natural and artifi-
cial, taken indoors under controlled lighting conditions, and
covering the 400 nm to 1000 nm range. We acquired the im-
ages using a setup consisting of a white paper sheet arranged
in an infinity curve, a configuration employed in photogra-
phy to isolate objects from the background. We achieve good
spectral coverage while minimizing the presence of shadows
in the final images by illuminating the objects with overhead
white LED indoor lighting, a 150W halogen lamp (OSL2
from Thorlabs) equipped with a glass diffuser and a 100W
tungsten bulb mounted in a diffuse reflector.

Figure 5a-b shows the distribution of object classes in
the dataset. For each class of objects (e.g., apple, orange,
pepper), we generated an approximately equal number of
scenes showing: natural objects only and artificial objects
only. The dataset consists of 12 classes, represented in the
images proportionally to their chromatic variety. Further-
more, we annotated 80% of our images with addititional
segmentation masks. We incorporate semantic segmenta-
tion masks into the dataset by processing the RGB images
generated from the 204 spectral channels. We acquired the
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Figure 5. Example and statistical analysis on our dataset (a) Overview of the composition of the dataset. There exist a near equal number
of natural and artificial objects in the scenes, 80% of the images are with segmentation masks and the rest with labels only. (b) Distribution
of scene objects in classes. Each class has a roughly equal number of instances in the dataset with the exception of apples and peppers, as
they have more chromatic variety. (c) Left: RGB visualization of hyperspectral image. Right: Segmentation mask and labels for each object.

images in such a way to avoid the intersection of objects,
allowing for automatic generation of masks for the areas
occupied by each object. We then annotated each marked
object, identifying each object class and whether they are
natural or artificial. Figure 5c illustrates the implementa-
tion of the semantic segmentation mask on an image of the
dataset. For more details about the FVgNET dataset please
refer to Sec. 3 of Supplementary Material.

5. Results

5.1. Hardware implementation

We fabricate arrays of metasurface projectors by pattern-
ing thin layers of amorphous silicon deposited on optical
grade fused silica glass slides. Figure 6a shows a scanning
electron microscope (SEM) image of a manufactured meta-
surface pixel, detailing the nanoscale structure of each of the
nine projectors. We produce each projector of the 3× 3 sub-
array, so it occupies the area of a 2.4 µm wide square, a size
typical for the pixels present in modern digital camera sen-
sors, which allows integration with the camera in the scheme
of Fig. 1b. We characterize the optical response of each
projector by using linearly polarized light with wavelengths
from 400 nm to 1000 nm. Figure 3 in the Supplementary
Material shows the experimentally measured responses of
the metasurfaces, illustrating excellent agreement with the
expected theoretical responses. We utilize the fabricated
projector as a fixed encoder to optimize the reconstruction
ability of the neural network decoders.

5.2. Spectral Reconstruction

We perform spectral reconstruction from the barcodes ob-
tained from both the theoretical and experimental responses
of the fabricated metasurface projectors. Figure 6b shows a

Figure 6. Spectral reconstruction. (a) Scanning electron micro-
scope image of the array of projectors. (b) The output of the scene
processed by our projectors. (c) Comparison between acquired
and recovered hyperspectral image using the theoretical (middle
row) and experimental (lower row) responses of our projectors. (d)
Comparison between the original spectra and their reconstruction
using the projectors and the reconstruction algorithm by Nie et
al. [39] for random pixels of the scene in (c).
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Model Dataset

CAVE [57] Harvard(out) [11] Harvard(in) [11] KAUST [33] FVgNET

Nguyen et al. [38] 14.91±11.09 9.06±9.69 15.61±8.76 - -
Arad and Ben-Shahar [5] 8.84±7.23 14.89±13.23 9.74±7.45 - -
Jia et al. [25] 7.92±3.33 8.72 ±7.40 9.50±6.32 - -
Nie et al. [39] 4.48 ± 2.97 7.57±4.59 8.88 ± 4.25 - -
Hyplex™ 2.05± 1.82 2.13 ± 1.81 6.65 ± 5.88 2.23 ± 3.35 1.73 ± 1.35

Table 1. Comparison of baselines. We report the RMSE from spectral reconstruction in multiple hyperspectral datasets

scene from the FVgNET dataset as perceived through each
of the projectors based on experimental data. In Fig. 6c we
present a qualitative comparison between the hyperspectral
reconstruction of this scene based on both the simulated
and experimental barcodes against the original. Figure 6d
illustrates a quantitative comparison between the original
spectra and its reconstructions as obtained from the experi-
mental implementation Hyplex™ and the algorithm by Nie
et al. [39]. The reconstruction is carried out through the use
of the connected MLP decoder introduced in Sec. 3. We
designate 80% of our dataset for training the decoder and
the remainder for validation purposes.

Table 1 presents a performance comparison of Hyplex™
against state-of-the-art reconstruction approaches. We
present the results of the reconstruction from the datasets
described in Sec. 4, as well as for the validation part of our
own dataset. For the consistency of the comparison, we
adapted the metrics and data reported in [39], where the
calculated RMSE is normalized into the range [0, 255] to
approximately represent the error in pixel intensity. The
reconstruction error of Hyplex™ is the lowest value among
CAVE and both indoor and outdoor images in the Harvard
dataset, showing superior performance against all state-of-
the-art models. We further tested our model on the KAUST
dataset and FVgNET dataset by using the optical response
of the fabricated metasurfaces.

5.3. Hyperspectral Semantic Segmentation

Here we present labeling of artificial and real fruits from
scenes of the FVgNET dataset. Artificial and real fruits have
similar RGB colors. However, they differ significantly in
their reflection spectra. Supplementary Fig. 4 provides an
example of this. We showcase the learning ability of the
proposed physical encoders by training two classification
networks. One model uses the spectral encoders for semantic
segmentation labeling, and the second the RGB channels.
Both models use an identical U-Net-like decoder and identi-
cal parameters (number of epochs, batch size, learning rate).
The results are summarized in Fig. 7, where the panel a
shows a qualitative comparison of the segmentation predic-
tion quality for both models against the ground-truth mask.

RMSE mIoU

Simulation 4.23 0.812
Experiment 5.41 0.741

Table 2. Simulation and experiment results. We report RMSE
and mIoU seperately for reconstruction and segmentation tasks

Object class
Hyperspectral
segmentation

RGB
segmentation

IoU F1 IoU F1

real orange 0.979 0.989 0.935 0.966
artificial orange 0.954 0.976 0.609 0.757
real grape 0.829 0.907 0.009 0.017
artificial grape 0.897 0.946 0.494 0.661

Table 3. Quantitative comparison. We report 4 examples of object
classes segmented with HSI and RGB images.

While the mask quality is similar for both methods, the
mean Intersection over Union (IoU) score for the spectral-
informed model is significantly higher compared to the RGB
one. The mIoU computed with the theoretical and exper-
imental responses of encoders reaches 81%, and 74%, as
shown in Tab. 2. With the RGB model, conversely, the mIoU
decreases to 68%. The confusion matrix of the RGB trained
model shows that the RGB model struggles to predict correct
results for real-artificial pairs of fruits with similar colors
(Fig. 7b). The spectral-informed model, conversely, gener-
ates correct labels for most real-artificial pairs (Fig. 7c) and
outperforms the RGB model in IoU and F1 (Tab. 3). These
results demonstrate that the small-sized barcodes generated
by Hyplex™ efficiently compress spectral features that con-
vey key information about the objects imaged. Table 1 and 2
in Supplementary Material provide detailed metrics for each
object type (apple, potato, etc.) on both models.

6. Discussion and Limitations
In this work, we designed and implemented Hyplex™, a

new hardware system for real-time and high-resolution hy-
perspectral imaging. We validated Hyplex™ against current
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Figure 7. Spectral and RGB-based semantic segmentations. (a) Comparison between segmentation masks generated from a spectral-
informed model, an RGB-only model, and the ground truth. (b) Confusion matrix for RGB only model. (c) Confusion matrix for the
spectral-informed model. Each value in the confusion matrix represents the number of pixels of the segmentation mask of the item in the
column that was classified as the item in the row.

state-of-the-art approaches and proved it to be outperforming
in all benchmarks. Additionally, we demonstrated the supe-
riority of hyperspectral features and trainable encoders by
designing a model for spectral-informed semantic segmenta-
tion and comparing its performance against RGB models.

One of the limitations in the current implementation of
Hyplex™ is the linear structure of the physical encoder. The
study of nonlinear encoders [3] could enable more com-
plex feature embeddings. This topic may stimulate future
research that could generalize the Hyplex™ framework to
include nonlinear metasurfaces, an essential area of research
in the field of meta-optics [30, 35]. The second area of im-
provement is the spectral sparsity assumption at the core
idea of efficient dimensionality reduction. While this as-
sumption is practically verified in the majority of computer
vision problems [43,61], it may not hold for specialized tasks.
Fabrication errors are also an essential aspect that, if not ad-
equately considered, can limit performance. In this work,
we mitigate this effect by tuning the software decoder to

best use the experimental response of the projectors. Future
work could investigate techniques from robustness control
in inverse design, a new promising area of research [31, 37].

Improved results could also be obtained if we augment the
publicly available hyperspectral datasets with more scenes
obtained at different wavelengths and in different settings
such as, e.g., medical. Such study could generalize the re-
sults of Hyplex™ to provide high impact systems for person-
alized healthcare and precision medicine. Hyplex™ could
provide a game-changer technology in this field, leveraging
its vast capacity to fast-process high-resolution hyperspec-
tral images (see Sec. 7 of Supplementary Material) at speed
comparable with current RGB cameras.
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