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Abstract

Recent advances on Vision Transformer (ViT) and its im-
proved variants have shown that self-attention-based net-
works surpass traditional Convolutional Neural Networks
(CNNs) in most vision tasks. However, existing ViTs fo-
cus on the standard accuracy and computation cost, lack-
ing the investigation of the intrinsic influence on model ro-
bustness and generalization. In this work, we conduct sys-
tematic evaluation on components of ViTs in terms of their
impact on robustness to adversarial examples, common cor-
ruptions and distribution shifts. We find some components
can be harmful to robustness. By leveraging robust compo-
nents as building blocks of ViTs, we propose Robust Vision
Transformer (RVT), which is a new vision transformer and
has superior performance with strong robustness. Inspired
by the findings during the evaluation, we further propose
two new plug-and-play techniques called position-aware at-
tention scaling and patch-wise augmentation to augment
our RVT, which we abbreviate as RVT∗. The experimen-
tal results of RVT on ImageNet and six robustness bench-
marks demonstrate its advanced robustness and general-
ization ability compared with previous ViTs and state-of-
the-art CNNs. Furthermore, RVT-S∗ achieves Top-1 rank
on multiple robustness leaderboards including ImageNet-C,
ImageNet-Sketch and ImageNet-R.

1. Introduction
Following the popularity of transformers in Natural Lan-

guage Processing (NLP) applications, e.g., BERT [8] and
GPT [30], there has sparked particular interest in inves-
tigating whether transformer can be a primary backbone
for computer vision applications previously dominated by
Convolutional Neural Networks (CNNs). Recently, Vi-
sion Transformer (ViT) [10] successfully applies a pure
transformer for classification which achieves an impres-
sive speed-accuracy trade-off by capturing long-range de-
pendencies via self-attention. Base on this seminal work,
numerous variants have been proposed to improve ViTs
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Figure 1. Comparison between RVT and the baseline transform-
ers. The robust accuracy in figure is recorded under FGSM [11]
adversary.

from different perspectives containing training data effi-
ciency [40], self-attention mechanism [25], introducing
convolution [23,45,50] or pooling layers [20,43], etc. How-
ever, these works only focus on the standard accuracy and
computation cost, lacking the investigation of the intrinsic
influence on model robustness and generalization.

In this work, we take initiatives to explore a ViT model
with strong robustness. To this end, we first give an em-
pirical assessment of existing ViT models in Figure 1. Sur-
prisingly, although all ViT variants reproduce the standard
accuracy claimed in the paper, some of their modifications
may bring devastating damages on the model robustness. A
vivid example is PVT [43], which achieves a high standard
accuracy but suffered with large drop of robust accuracy.
We show that PVT-Small obtains only 26.6% robust accu-
racy, which is 14.1% lower than original DeiT-S in Figure 1.

To demystify the trade-offs between accuracy and ro-
bustness, we analyze ViT models with different patch em-
bedding, position embedding, transformer blocks and clas-
sification head whose impact on the robustness that has
never been thoroughly studied. Based on the valuable find-
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ings revealed by exploratory experiments, we propose a
Robust Vision Transformer (RVT), which has significant
improvement on robustness, but also exceeds most other
transformers in accuracy. In addition, we propose two new
plug-and-play techniques to further boost the RVT. The
first is Position-Aware Attention Scaling (PAAS), which
plays the role of position encoding in RVT. PAAS im-
proves the self-attention mechanism by filtering out redun-
dant and noisy position correlation and activating only ma-
jor attention with strong correlation, which leads to the en-
hancement of model robustness. The second is a simple
and general patch-wise augmentation method for patch se-
quences which adds rich affinity and diversity to training
data. Patch-wise augmentation also contributes to the model
generalization by reducing the risk of over-fitting. With the
above proposed methods, we can build an augmented Ro-
bust Vision Transformer∗ (RVT∗). Contributions of this pa-
per are three-fold:

• We give a systematic robustness analysis of ViTs and
reveal harmful components. Inspired by it, we reform
robust components as building blocks as a new trans-
former, named Robust Vision Transformer (RVT).

• To further improve the RVT, we propose two new
plug-and-play techniques called position-aware atten-
tion scaling and patch-wise augmentation. Both of
them can be applied to other ViT models and yield sig-
nificant enhancement on robustness and standard accu-
racy.

• Experimental results on ImageNet and six robustness
benchmarks show that RVT exhibits best trade-offs
between standard accuracy and robustness compared
with previous ViTs and CNNs. Specifically, RVT-S∗

achieves Top-1 rank on ImageNet-C, ImageNet-Sketch
and ImageNet-R.

2. Related Work

Robustness Benchmarks. The rigorous benchmarks are
important for evaluating and understanding the robustness
of deep models. Early works focus on the model safety
under the adversarial examples with constrained perturba-
tions [11, 38]. In real-world applications, the phenomenon
of image corruption or out-of-distribution is more com-
monly appeared. Driven by this, ImageNet-C [17] bench-
marks the model against image corruption which simulates
distortions from real-world sources. ImageNet-R [16] and
ImageNet-Sketch [42] collect the online images consisting
of naturally occurring distribution changes such as image
style, to measure the generalization ability to new distri-
butions at test time. In this paper, we adopt all the above
benchmarks as the fair-minded evaluation metrics.

Robustness Study for CNNs. The robustness research
of CNNs has experienced explosive development in recent
years. Numerous works conduct thorough study on the ro-
bustness of CNNs and aim to strengthen it in different ways,
e.g., stronger data augmentation [16, 18, 33], carefully de-
signed [36,44] or searched [9,13] network architecture, im-
proved training strategy [22, 26, 47], quantization [24] and
pruning [49] of the weights, better pooling [41, 53] or acti-
vation functions [46], etc. Although the methods mentioned
above perform well on CNNs, there is no evidence that they
also keep the effectiveness on ViTs. A targeted research for
improving the robustness of ViTs is still blank.

Robustness Study for ViTs. Until now, there are sev-
eral works attempting at studying the robustness of ViTs.
Early works focus on the adversarial robustness of ViTs.
They find that ViTs are more adversarially robust than
CNNs [34] and the transferability of adversarial examples
between CNNs and ViTs is remarkably low [27]. Follow up
works [2, 29] extend the robustness study on ViTs to much
common image corruption and distribution shift, and indi-
cate ViTs are more robust learners. Although some findings
are consistent with above works, in this paper, we do not
make simple comparison of robustness between ViTs and
CNNs, but take a step further by analyzing the detailed ro-
bust components in ViT and its variants. Based on the anal-
ysis, we design a robust vision transformer and introduce
two novel techniques to further reduce the fragility of ViT
models.

3. Robustness Analysis of Designed Compo-
nents

We give the robustness analysis of four main components
in ViTs: patch embedding, position embedding, transformer
blocks and classification head. DeiT-Ti [40] is used as the
base model. All the robustness benchmarks mentioned in
section 2 are considered comprehensively. There is a pos-
itive correlation between these benchmarks in most cases.
Due to the limitation of space, we show the robust accuracy
under FGSM [11] adversary in the main body and other re-
sults in Appendix A.

3.1. Patch Embedding

F1: Low-level feature of patches helps for the ro-
bustness. ViTs [10] tokenize an image by splitting it into
patches with size of 16×16 or 32×32. Such simple tok-
enization makes the models hard to capture low-level struc-
tures such as edges and corners. To extract low-level fea-
tures of patches, CeiT [50], LeViT [12] and TNT [14] use
a convolutional stem instead of the original linear layer,
T2T-ViT [51] leverages self-attention to model dependen-
cies among neighboring pixels. However, these methods
merely focus on the standard accuracy. To answer how
is the robustness affected by leveraging low-level features
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Figure 2. Overall architecture of the proposed Robust Vision Transformer (RVT).

of patches, we compare the original linear projection with
two new convolution and tokens-to-tokens embedders, pro-
posed by CeiT and T2T-ViT respectively. As shown in Ta-
ble 2, low-level patch embedding has a positive effect on the
model robustness and standard accuracy as more detailed
visual features are exploited. Among them tokens-to-tokens
embedder is the best, but it has quadratic complexity with
the expansion of image size. We adopt the convolutional
embedder with less computation cost.

positional embedding Acc Robust Acc
(i) none 68.3 15.8
(ii) learned absolute position 72.2 22.3
(iii) sin-cos absolute position 72.0 21.9
(iv) learned relative position [35] 71.8 22.3
(v) input-conditioned position [3] 72.4 21.5

Table 1. Effect of different positional embeddings. We use Deit-
Ti as the base model.

3.2. Position Embedding

F2: Position encoding is critical for learning shape-
bias based semantic features which are robust to tex-
ture changes. Besides, existing position encoding meth-
ods have no big impact on the robustness. We first
explore the necessity of position embeddings. Previous
work [3] shows ViT trained without position embeddings
has 4% drop of standard accuracy. In this work, we find
this gap even can be larger on robustness. In Appendix
A, we find with no position encoding, ViT fails to recog-
nize shape-bias objects, which leads to 8% accuracy drop
on ImageNet-Sketch. Concerning the ways of positional
encoding, learned absolute, sin-cos absolute, learned rela-
tive [35], input-conditioned [3] position representations are
compared. In Table 1, the result suggests that most posi-

tion encoding methods have no big impact on the robust-
ness, and a minority even have a negative effect. Especially,
CPE [3] encodes position embeddings conditioned on in-
puts. Such a conditional position representation makes it
changed easily with the input, and causes the poor robust-
ness. The fragility of position embeddings also motivates
us to design a more robust position encoding method.

Table 2. Ablations on other ViT components, where ✓indicates
the use of the corresponding component.

Patch Emb. Local Conv.
CLS Acc

Rob.
Linear Conv. T2T SA FFN Acc

✓ ✓ 72.2 22.3
✓ ✓ 73.6 23.2

✓ ✓ 74.9 25.4
✓ ✓ ✓ 69.1 21.0
✓ ✓ 73.9 31.9
✓ ✓ 72.4 28.4

3.3. Transformer Blocks

F3: An elaborate multi-stage design is required for
constructing robust vision transformers. Modern CNNs
always start with a feature of large spatial sizes and a small
channel size and gradually increase the channel size while
decreasing the spatial size. The different sizes of feature
maps constitute the multi-stage convolution blocks. As
shown by previous works [4], such a design contributes to
the expressiveness and generalization performance of the
network. PVT [43], PiT [20] and Swin [25] employ this
design principle into ViTs. To measure the robustness vari-
ance with changing of stage distribution, we slightly modify
the DeiT-Ti architecture to get five variants (V2-V6) in Ta-
ble 3. We keep the overall number of transformer blocks
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consistent to 12 and replace some of them with smaller or
larger spatial resolution. Detailed architecture is shown in
Appendix A. By comparing with DeiT-Ti, we find all five
variants improve the standard accuracy, benefit from the ex-
traction of hierarchical image features. In terms of robust-
ness, transformer blocks with different spatial sizes show
different effects. An experimental conclusion is that the
model will get worse on robustness when it contains more
transformer blocks with large spatial resolution. On the
contrary, reducing the spatial resolution gradually at later
transformer blocks contributes to the modest enhancement
of robustness. Besides, we also observe that having more
blocks with larger input spatial size will increase the num-
ber of FLOPs and memory consumption. To achieve the
best trade-off on speed and performance, we think V2 is the
most compromising choice in this paper.

F4: Robustness can be benefited from the complete-
ness and compactness among attention heads, by choos-
ing an appropriate head number. ConViT [6], Swin [25]
and LeViT [12] both use more self-attention heads and
smaller dimensions of keys and queries to achieve better
performance at a controllable FLOPs. To study how does
the number of heads affect the robustness, we train DeiT-
Ti with different head numbers. Once the number of heads
increases, we meanwhile reduce the head dimensions to en-
sure the overall feature dimensions are unchanged. Simi-
lar with generally understanding in NLP [28], we find the
completeness and compactness among attention heads are
important for ViTs. As shown in the Table 4, the robustness
and standard accuracy still gain great improvement with the
head increasing till to 8. We think that an appropriate num-
ber of heads supplies various aspects of attentive informa-
tion on the input. Such complete and non-redundant atten-
tive information also introduces more fine-grained represen-
tations which are prone to be neglect by model with less
heads, thus increases the robustness.

variants [S1, S2, S3, S4] FLOPs Mem Acc Robust Acc
V1 [0, 0, 12, 0] 1.3 1.1 72.2 22.3
V2 [0, 0, 10, 2] 1.2 1.1 74.8 24.3
V3 [0, 2, 10, 0] 1.5 1.7 73.8 22.0
V4 [0, 2, 8, 2] 1.4 1.7 76.4 22.3
V5 [2, 2, 8, 0] 3.4 6.0 73.4 17.0
V6 [2, 2, 6, 2] 3.4 6.0 76.4 17.5

Table 3. Effect of stage distribution. We ablate the number of
blocks in stages S1, S2, S3, S4 of DeiT-Ti, where S1 is the stage
with the largest 56 × 56 input spatial dimension, and gradually
reduced to half of the original in later stages. The GPU memory
consumption is tested on input with batch size of 64.

F5: The locality constraints of self-attention layer
may do harm for the robustness. Vanilla self-attention
calculates the pair-wise attention of all sequence elements.
But for image classification, local region needs to be paid

Heads 1 2 4 6 8 12
Acc 69.0 71.7 73.1 73.4 73.9 73.5

Rob. Acc 17.6 21.4 22.8 24.6 25.2 24.7

Table 4. The performance variance with the number of heads.
DeiT-Ti with head number of 1, 2, 4, 6, 8 and 12 are trained for
comparison.

more attention than remoter regions. Swin [25] limits the
self-attention computation to non-overlapping local win-
dows on the input. This hard coded locality of self-attention
enjoys great computational efficiency and has linear com-
plexity with respect to image size. Although Swin can also
get competitive accuracy, in this work we find such local
window self-attention is harmful to the model robustness.
The result in Table 2 shows after modifying self-attention
to the local version, the robust accuracy is getting worse.
We think this phenomenon may be partly caused by the de-
struction of long-range dependencies modeling in ViTs.

F6: Feed-forward networks (FFN) can be extended
to convolutional FFN by encoding multiple tokens in lo-
cal regions. Such information exchange of local tokens
in FFN makes ViTs more robust. LocalViT [23] and
CeiT [50] introduce connectivity of local regions into ViTs
by adding a depth-wise convolution in feed-forward net-
works (FFN). Our experiment in Table 2 verifies that the
convolutional FFN greatly improves both the standard ac-
curacy and robustness. We think the reason lies in two as-
pects. First, compared with locally self-attention, convo-
lutional FFN will not damage the long-term dependencies
modeling ability of ViTs. The merit of ViTs can be inher-
ited. Second, original FFN only encodes single token rep-
resentation, while convolutional FFN encodes both the cur-
rent token and its neighbors. Such information exchange
within a local region makes ViTs more robust.

3.4. Classification Head

F7: Is the classification token (CLS) important for
ViTs? The answer is not, and replacing CLS with global
average pooling on output tokens even improves the ro-
bustness. CNNs adopt a global average pooling layer
before the classifier to integrate visual features at different
spatial locations. This practice also inherently takes advan-
tage of the translation invariance of the image. However,
ViTs use an additional classification token (CLS) to perform
classification, are not translation-invariant. To get over this
shortcoming, CPVT [3] and LeViT [12] remove the CLS to-
ken and replace it by average pooling along with the last
layer sequential output of the Transformer. We compare
models trained with and without CLS token in Table 2. The
result shows the adversarial robustness can be greatly im-
proved by removing CLS token. Also we find removing CLS

token has slight help for the standard accuracy, which can
be benefited from the desired translation-invariance.
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3.5. Combination of Robust Components

In the above, we separately analyze the effect of each de-
signed component in the ViTs. To make use of these find-
ings, we combine the selected useful components, listed in
follows: 1) Extract low-level feature of patches using a con-
volutional stem; 2) Adopt the multi-stage design of ViTs
and avoid blocks with larger spatial resolution; 3) Choose
a suitable number of heads; 4) Use convolution in FFN; 5)
Replace CLS token with token feature pooling. As we find
the effects of the above modifications are superimposed, we
adopt all of these robust components into ViTs, the resultant
model is called Robust Vision Transformer (RVT). RVT has
achieved the new state-of-the-art robustness compared to
other ViT variants. To further improve the performance,
we propose two novel techniques, position-aware attention
scaling and patch-wise data augmentation, to train our RVT.
Both of them are also applicable to other ViT models.

4. Position-Aware Attention Scaling
In this section, we introduce our proposed position en-

coding mechanism called Position-Aware Attention Scaling
(PAAS), which modifies the rescaling operation in the dot
product attention to a more generalized version. To start
with, we illustrate the scaled dot-product attention in trans-
former firstly. And then the modification of PAAS will be
explained.

Scaled Dot-product Attention. Scaled dot-product at-
tention is a key component in Multi-Head Self Attention
layer (MHSA) of Transformer. MHSA first generates set of
queries Q ∈ RN×d, keys K ∈ RN×d, values V ∈ RN×d

with the corresponding projection. Then the query vector
q ∈ Rd is matched against the each key vector in K. The
output is the weighted sum of a set of N value vectors v
based on the matching score. This process is called scaled
dot-product attention:

Attention(Q,K, V ) = Softmax(QKT /
√
d)V (1)

For preventing extremly small gradients and stabilizing
the training process, each element in QKT multiplies by a
constant 1√

d
to be rescaled into a standard range.

Position-Aware Attention Scaling. In this work, a more
effective position-aware attention scaling method is pro-
posed. To make the original rescaling process of dot-
product attention position-aware, we define a learnable po-
sition importance matrix Wp ∈ RN×N , which presents the
importance of each pair of q-k. The oringinal scaled dot-
product attention is modified as follows:

Attention(Q,K, V ) = Softmax(QKT ⊙(Wp/
√
d))V (2)
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Figure 3. Top: visualization of self-attention before and after the
position-aware attention scaling. Bottom: visualization of learned
scaling factor by our PAAS.

where ⊙ is the element-wise product. As Wp is input
independent and only determined by the position of each q,
k in the sequence, our position-aware attention scaling can
also serve as a position representation. Thus, we replace the
traditional position embedding with our PAAS in RVT. Af-
ter that the overall self-attention can be decoupled into two
parts: the QKT term presents the content-based attention,
and Wp/

√
d term acts as the position-based attention. This

untied design offers more expressiveness by removing the
mixed and noisy correlations [21].

Robustness of PAAS. As mentioned in section 3.2, most
existing position embeddings have no contribution to the
model robustness, and some of them even do a negative
effect. Differently, our proposed PAAS can improve the
model robustness effectively. This superior property relies
on the position importance matrix Wp, which acts as a soft
attention mask on each position pair of q-k. As shown in
Figure 3, we visualize the attention map of 3th query patch
in 3th transformer block. Without PAAS, an adversarial in-
put can make some unrelated regions activated and produce
a noisy self-attention map. To filter out these noises, PAAS
suppresses the redundant positions irrelevant for classifica-
tion in self-attention map, by a learned small multiplier in
Wp. Finally only the regions important for classification are
activated. We experimentally validate that PAAS can pro-
vide certain defense power against some white-box adver-
saries, e.g., FGSM [11]. Not limited to adversarial attack, it
also helps to the corruption and out-of-distribution general-
ization. Details can be referred to section 6.3.
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5. Patch-Wise Augmentation

Image augmentation is a strategy especially important
for ViTs since a biggest shortcoming of ViTs is the worse
generalization ability when trained on relatively small-size
datasets, while this shortcoming can be remedied by suffi-
cient data augmentation [40]. On the other hand, a rich data
augmentation also helps with robustness and generalization,
which has been verified in previous works [18]. For improv-
ing the diversity of the augmented training data, we propose
the patch-wise data augmentation strategy for ViTs, which
imposes diverse augmentation on each input image patches
at training time. Our motivation comes from the difference
of ViTs and CNNs that ViTs not only extract intra-patch
features but also concern the inter-patch relations. We think
the traditional augmentation which randomly transforms the
whole image could provide enough intra-patch augmenta-
tion. However, it lacks the diversity on inter-patch aug-
mentation, as all of patches have the same transformation
at one time. To impose more inter-patch diversity, we retain
the original image-level augmentation, and then add the fol-
lowing patch-level augmentation on each image patch. For
simplicity, only three basic image transformations are con-
sidered for patch-level augmentation: random resized crop,
random horizontal flip and random gaussian noise.

Robustness of Patch-Wise Augmentation. Same with
the augmentations like MixUp [52], AugMix [18], Ran-
dAugment [5], patch-wise augmentation also benefit the
model robustness. It effects on the phases after conven-
tional image-level augmentations, and provides the mean-
ingful augmentation on patch sequence input. Different
from RandAugment, which adopts augmentations conflict-
ing with ImageNet-C, we only use simple image transform
for patch-wise augmentation. It confirms that the most part
of robustness improvement is derived from the strategy it-
self but not the used augmentation. A significant advantage
of patch-wise augmentation is that it can be in common use
across different ViT models and bring more than 1% and
5% improvement on standard and robust accuracy. Details
can be referred to section 6.3.

6. Experiments

6.1. Experimental Settings

Implementation Details. All of our experiments are
performed on the NVIDIA 2080Ti GPUs. We implement
RVT in three sizes named by RVT-Ti, RVT-S, RVT-B re-
spectively. All of them adopt the best settings investigated
in section 2. For RVT∗, we add PAAS on multiple trans-
former blocks. The patch-wise augmentation uses the com-
bination of base augmentation introduced in section 6.4.
Other training hyperparameters are same with DeiT [40].

Evaluation Benchmarks. We adopt the ImageNet-
1K [7] dataset for training and standard performance eval-
uation. No other large-scale dataset is needed for pre-
training. For robustness evaluation, we test our RVT in
three aspect: 1) for adversarial robustness, we test the adver-
sarial examples generated by white-box attack algorithms
FGSM [11] and PGD [26] on ImageNet-1K validation set.
ImageNet-A [19] is used for evaluating the model under
natural adversarial example. 2) for common corruption ro-
bustness, we adopt ImageNet-C [17] which consists of 15
types of algorithmically generated corruptions with five lev-
els of severity. 3) for out-of-distribution robustness, we
evaluate on ImageNet-R [16] and ImageNet-Sketch [42].
They contain images with naturally occurring distribution
changes. The difference is that ImageNet-Sketch only con-
tains sketch images, which can be used for testing the classi-
fication ability when texture or color information is missing.

6.2. Standard Performance Evaluation

For standard performance evaluation, we compare our
method with state-of-the-art classification methods includ-
ing Transformer-based models and representative CNN-
based models in Table 5. Compared to CNNs-based models,
RVT has surpassed most of CNN architectures with fewer
parameters and FLOPs. RVT-Ti∗ achieves 79.2% Top-1
accuracy on ImageNet-1K validation set, which is com-
petitive with currently popular ResNet and RegNet series,
but only has 1.3G FLOPs and 10.9M parameters (around
60% smaller than CNNs). With the same computation
cost, RVT-S∗ obtains 81.9% test accuracy, 2.9% higher than
ResNet-50. This result is closed to EfficientNet-B4, how-
ever EfficientNet-B4 requires larger 380×380 input size
and has much lower throughput.

Compared to Transformer-based models, our RVT also
achieves the comparable standard accuracy. We find just
combining the robust components can make RVT-Ti get
78.4% Top-1 accuracy and surpass the existing state-of-the-
art on ViTs with tiny version. By adopting our newly pro-
posed position-aware attention scaling and patch-wise data
augmentation, RVT-Ti∗ can further improve 0.8% on RVT-
Ti with little additional computation cost. For other scales
of the model, RVT-S∗ and RVT-B∗ also achieve a good pro-
motion compared with DeiT-S and DeiT-B. Although the
improvement becomes smaller with the increase of model
capacity, we think the advance of our model is still obvious
as it strengthen the model ability in various views such as
robustness and out-of-domain generalization.

6.3. Robustness Evaluation

We employ a series of benchmarks to evaluate the model
robustness on different aspects. Among them, ImageNet-C
(IN-C) calculates the mean corruption error (mCE) as met-
ric. The smaller mCE means the more robust of the model
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Table 5. The performance of RVT and several SOTA CNNs and Transformers on ImageNet and six robustness benchmarks. RVT∗

represents the RVT model but trained with our proposed PAAS and patch-wise augmentation. Except for different architectures, we also
compare some methods such as AugMix, which aims at improving the model robustness based on ResNet-50.

Group Model FLOPs Params ImageNet Robustness Benchmarks
(G) (M) Top-1 Top-5 FGSM PGD IN-C (↓) IN-A IN-R IN-SK

CNNs

ResNet-50 [15] 4.1 25.6 76.1 86.0 12.2 0.9 76.7 0.0 36.1 24.1
ResNet-50∗ [15] 4.1 25.6 79.0 94.4 36.3 12.5 65.5 5.9 42.5 31.5
Inception v3 [37] 5.7 27.2 77.4 93.4 22.5 3.1 80.6 10.0 38.9 27.6

RegNetY-4GF [31] 4.0 20.6 79.2 94.7 15.4 2.4 68.7 8.9 38.8 25.9
EfficientNet-B4 [39] 4.4 19.3 83.0 96.3 44.6 18.5 71.1 26.3 47.1 34.1

ResNeXt50-32x4d [48] 4.3 25.0 79.8 94.6 34.7 13.5 64.7 10.7 41.5 29.3

DeepAugment [16] 4.1 25.6 75.8 92.7 27.1 9.5 53.6 3.9 46.7 32.6
ANT [33] 4.1 25.6 76.1 93.0 17.8 3.1 63.0 1.1 39.0 26.3

AugMix [18] 4.1 25.6 77.5 93.7 20.2 3.8 65.3 3.8 41.0 28.5
Anti-Aliased CNN [53] 4.2 25.6 79.3 94.6 32.9 13.5 68.1 8.2 41.1 29.6

Debiased CNN [22] 4.1 25.6 76.9 93.4 20.4 5.5 67.5 3.5 40.8 28.4

Transformers

DeiT-Ti [40] 1.3 5.7 72.2 91.1 22.3 6.2 71.1 7.3 32.6 20.2
ConViT-Ti [6] 1.4 5.7 73.3 91.8 24.7 7.5 68.4 8.9 35.2 22.4

PiT-Ti [20] 0.7 4.9 72.9 91.3 20.4 5.1 69.1 6.2 34.6 21.6
PVT-Tiny [43] 1.9 13.2 75.0 92.5 10.0 0.5 79.6 7.9 33.9 21.5

RVT-Ti 1.3 8.6 78.4 94.2 34.8 11.7 58.2 13.3 43.7 30.0
RVT-Ti∗ 1.3 10.9 79.2 94.7 42.7 18.9 57.0 14.4 43.9 30.4

DeiT-S [40] 4.6 22.1 79.9 95.0 40.7 16.7 54.6 18.9 42.2 29.4
ConViT-S [6] 5.4 27.8 81.5 95.8 41.0 17.2 49.8 24.5 45.4 33.1
Swin-T [25] 4.5 28.3 81.2 95.5 33.7 7.3 62.0 21.6 41.3 29.1

PVT-Small [43] 3.8 24.5 79.9 95.0 26.6 3.1 66.9 18.0 40.1 27.2
PiT-S [20] 2.9 23.5 80.9 95.3 41.0 16.5 52.5 21.7 43.6 30.8
TNT-S [14] 5.2 23.8 81.5 95.7 33.2 4.2 53.1 24.7 43.8 31.6

T2T-ViT t-14 [51] 6.1 21.5 81.7 95.9 40.9 11.4 53.2 23.9 45.0 32.5
RVT-S 4.7 22.1 81.7 95.7 51.3 26.2 50.1 24.1 46.9 35.0

RVT-S∗ 4.7 23.3 81.9 95.8 51.8 28.2 49.4 25.7 47.7 34.7

DeiT-B [40] 17.6 86.6 82.0 95.7 46.4 21.3 48.5 27.4 44.9 32.4
ConViT-B [6] 17.7 86.5 82.4 96.0 45.4 20.8 46.9 29.0 48.4 35.7
Swin-B [25] 15.4 87.8 83.4 96.4 49.2 21.3 54.4 35.8 46.6 32.4

PVT-Large [43] 9.8 61.4 81.7 95.9 33.1 7.3 59.8 26.6 42.7 30.2
PiT-B [20] 12.5 73.8 82.4 95.7 49.3 23.7 48.2 33.9 43.7 32.3

T2T-ViT t-24 [51] 15.0 64.1 82.6 96.1 46.7 17.5 48.0 28.9 47.9 35.4
RVT-B 17.7 86.2 82.5 96.0 52.3 27.4 47.3 27.7 48.2 35.8

RVT-B∗ 17.7 91.8 82.7 96.5 53.0 29.9 46.8 28.5 48.7 36.0

under corruptions. All other benchmarks use Top-1 accu-
racy on test data if no special illustration. The results are
reported in Table 5.

Adversarial Robustness. For evaluating the adver-
sarial robustness, we adopt single-step attack algorithm
FGSM [11] and multi-step attack algorithm PGD [26] with
steps t = 5, step size α = 0.5. Both attackers perturb the
input image with max magnitude ϵ = 1. Table 5 suggests
that the adversarial robustness has a strong correlation with
the design of model architecture. With similar model scale
and FLOPs, most Transformer-based models have higher
robust accuracy than CNNs under adversarial attacks. This
conclusion is also consistent with [34]. Some modifications
on ViTs or CNNs will also weaken or strengthen the ad-
versarial robustness. For example, Swin-T [25] introduces
window self-attention for reducing the computation cost
but damaging the adversarial robustness, and EfficientNet-
B4 [39] uses smooth activation functions which is helpful
with adversarial robustness.

We summarize the robust design experiences of ViTs

in this work. The resultant RVT model achieves superior
performance on both FGSM and PGD attackers. In detail,
RVT-Ti and RVT-S get over 10% improvement on FGSM,
compared with the previous ViT variants. This advance is
further expanded by our PAAS and patch-wise augmenta-
tion. Adversarial robustness seems unrelated with standard
performance. Although models like Swin-T, TNT-S get
higher standard accuracy than DeiT-S, their adversarially
robust accuracy is well below the baseline. However, our
RVT model can achieve the best trade-off between standard
performance and adversarial robustness.

Common Corruption Robustness. To metric the model
degradation on common image corruptions, we present the
mCE on ImageNet-C (IN-C) in Table 5. We also list some
methods from ImageNet-C Leaderboard, which are built
based on ResNet-50. Our RVT-S∗ gets 49.4 mCE, which
has 4.2 improvement on top-1 method DeepAugment [16]
in the leaderboard, and bulids the new state-of-the-art. The
result also indicates that Transformer-based models have a
natural advantage in dealing with image corruptions. At-
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tributed to its ability of long-range dependencies modeling,
ViTs are easier to learn the shape-bias features. Note that
in this work we are not considering RandAugment. As a
training augmentation of ViTs, RandAugment adopts con-
flicted augmentation with ImageNet-C and may cause the
unfairness of the comparison proposed by [1].

Out-of-distribution Robustness. We test the gener-
alization ability of RVT on out-of-distribution data by
reporting the top@1 accuracy on ImageNet-R (IN-R)
and ImageNet-Sketch (IN-SK) in Table 5. Our RVT and
RVT∗ also beat other ViT models on out-of-distribution
generalization. As the superiority of Transformer-based
models on capturing shape-bias features mentioned above,
our RVT-S also surpasses most CNN and ViT models
and get 35.0% and 46.9% test accuracy on ImageNet-
Sketch and ImageNet-R, buliding the new state-of-the-art.

Layers
Pos.

Acc
Rob.

Emb. Acc

0-1
Ori. 78.2 34.1
Ours 78.4 34.3

0-5
Ori. 78.4 34.6
Ours 78.6 35.2

0-10
Ori. 78.4 34.8
Ours 78.6 35.3

Table 6. Comparison of sin-
gle and multiple block PAAS.
Ori. stands for the learned ab-
solute position embedding in
original ViTs.

Augmentations
Acc Rob. Acc

RC GN HF

✓ 78.9 41.5
✓ 79.0 42.0

✓ 79.1 41.3
✓ ✓ 78.8 41.3

✓ ✓ 79.0 41.9
✓ ✓ ✓ 79.2 41.7

Table 7. Ablation experiments on
patch-wise augmentation. RC, GN,
HF represent random resized crop,
random gaussian noise and random
horizontal flip respectively.

6.4. Ablation Studies

we conduct ablation studies on the proposed compo-
nents of PAAS and patch-wise augmentation in this sec-
tion. Other modifications of RVT are not involved since
they have been analyzed in section 2. All of our ablation
experiments are based on the RVT-Ti model on ImageNet.

Single layer PAAS vs. Multiple layer PAAS. We evalu-
ate whether using PAAS on multiple transformer blocks can
benefit the performance or robustness. The result is sug-
gested in Table 6. Learned absolute position embedding in
original ViT model is adopted for comparison. With more
transformer blocks using PAAS, the standard and robust ac-
curacy gain greater enhancement. After applying PAAS on
5 blocks, the benefit of PAAS gets saturated. There will be
the same trend if we replace PAAS with the original posi-
tion embedding. But the original position embedding is not
performed as good as our PAAS on both standard and robust
accuracy.

Different types of basic augmentation. Due to the lim-
ited training resources, we only test three basic image aug-
mentations: random resized crop, random horizontal flip
and random gaussian noise. For random resized crop, we
crop the patch according to the scale sampled from [0.85,

1.0], then resize it to original size with aspect ratio un-
changed. We set the mean and standard deviation as 0 and
0.01 for random gaussian noise. For each transformation,
we set the applying probability p = 0.1. Other hyper-
parameters are consistent with the implementation in Ko-
rnia [32]. As shown in Table 7, we can see both three aug-
mentations are beneficial of standard and robust accuracy.
Among them, random gaussian noise is the better choice as
it helps for more robustness improvement.

Combination of basic augmentations. We further eval-
uate the combination of basic patch-wise augmentations.
For traditional image augmentation, combining multiple ba-
sic transformation [5] can largely improve the standard ac-
curacy. Differently, as shown in Table 7, the benefit is
marginal for combining basic patch-wise augmentations,
but combination of three is still better than using only sin-
gle augmentation. In this paper, we adopt the combination
of all basic augmentations.

Effect on other ViT architectures. For showing the ef-
fectiveness of our proposed position-aware attention scaling
and patch-wise augmentation, we apply them to train other
ViT models. DeiT-Ti, ConViT-Ti and PiT-Ti are adopted
as the base model. The experimental results are shown in
Table 8, with combining the proposed techniques into these
base models, all the augmented models achieve significant
improvement. Specifically, all the improved models yield
more than 1% and 5% promotion on standard and robust
accuracy on average.

Vanilla
Acc Rob. Acc

Improved
Acc Rob. Acc

models models

DeiT-Ti 72.2 22.3 DeiT-Ti∗ 74.4 29.9
ConViT-Ti 73.3 24.7 ConViT-Ti∗ 74.4 30.7

PiT-Ti 72.9 20.4 PiT-Ti∗ 74.3 27.7

Table 8. Effect of our proposed PAAS and patch-wise augmenta-
tion on other ViT architectures.

7. Conclusion

We systematically study the robustness of key compo-
nents in ViTs, and propose Robust Vision Transformer
(RVT) by alternating the modifications which would dam-
age the robustness. Furthermore, we have devised a novel
patch-wise augmentation which adds rich affinity and di-
versity to training data. Considering the lack of spa-
tial information correlation in scaled dot-product atten-
tion, we present position-aware attention scaling (PAAS)
method to further boost the RVT. Experiments show that our
RVT achieves outstanding performance consistently on Im-
ageNet and six robustness benchmarks. Under the exhaus-
tive trade-offs between FLOPs, standard and robust accu-
racy, extensive experiment results validate the significance
of our RVT-Ti and RVT-S.
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