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Figure 1. Action-driven stochastic human motion prediction. Given a past motion (pink) and a sequence of future action labels, our
model generates action-specific future poses (yellow). We show two different futures generated for the same history and actions. Our
model allows these predictions to have different lengths. The motions are down-sampled to the same frame rate for visualisation.

Abstract

We introduce the task of action-driven stochastic human
motion prediction, which aims to predict multiple plausi-
ble future motions given a sequence of action labels and a
short motion history. This differs from existing works, which
predict motions that either do not respect any specific ac-
tion category, or follow a single action label. In particular,
addressing this task requires tackling two challenges: The
transitions between the different actions must be smooth;
the length of the predicted motion depends on the action
sequence and varies significantly across samples. As we
cannot realistically expect training data to cover sufficiently
diverse action transitions and motion lengths, we propose
an effective training strategy consisting of combining mul-
tiple motions from different actions and introducing a weak
form of supervision to encourage smooth transitions. We
then design a VAE-based model conditioned on both the
observed motion and the action label sequence, allowing
us to generate multiple plausible future motions of varying
length. We illustrate the generality of our approach by ex-
ploring its use with two different temporal encoding mod-
els, namely RNNs and Transformers. Our approach out-
performs baseline models constructed by adapting state-of-
the-art single action-conditioned motion generation meth-
ods and stochastic human motion prediction approaches to

our new task of action-driven stochastic motion prediction.
Our code is available at https://github.com/wei—
mao-2019/WAT.

1. Introduction

Modeling human motion has broad applications in
human-robot interaction [26], virtual/augmented real-
ity (AR/VR) [46] and animation [49]. As such, it has been
an active research problem for many years [8]. In particular,
recently, great progress has been made in predicting future
motion given an observed past motion sequence [5,56]. Ad-
dressing this could have a significant impact on autonomous
systems, allowing them to forecast potential dangers and
plan their actions accordingly. Nevertheless, except for a
few early methods that predict motions of a single action
category [13, 21], recent methods [36, 56] mostly focus on
action-agnostic predictions. Thus, they cannot be used by
an autonomous system to generate specific potential future
scenarios encoded by a sequence of action labels, for ex-
ample to evaluate the consequences of a person on a side-
walk either walking to the crossing, waiting for the green
light, and crossing the road, or instead running on the street
and stopping in front of the car. By contrast, recent works
on human motion synthesis can generate action-specific se-
quences [17,42]. However, these methods neither lever-
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age past motion observations, nor synthesize transitions be-
tween different actions. In this work, we therefore introduce
the task of action-driven stochastic human motion predic-
tion, which aims to predict a set of future motions given a
sequence of action labels and past motion observations.

One of the key challenges of this task arises from the
fact that humans can perform motions with all kinds of ac-
tion transitions. For example, when one walks to a table,
they can then either grab a drink, or sit on a chair, or place
something on the table, or perform any combination of the
above. Constructing a dataset that covers this huge space of
possible action transitions is therefore virtually impossible,
significantly complicating training a model for this task. As
a matter of fact, to the best of our knowledge, almost all hu-
man motion datasets contain sequences that depict a single
action. While the recent BABEL dataset [43] constitutes
the only exception with multiple actions per sequence, it
contains only a small subset of action transitions, which, as
evidenced by our experiments, does not suffice to learn to
generalize to arbitrary ones.

To tackle the diversity of human action transitions with
such limited data, we develop a weakly-supervised train-
ing strategy that only relies on a motion smoothness prior.
Specifically, we generate multi-action sequences by com-
bining historical and future motions from different action
categories, and account for the lack of supervision during
the transition between two actions by simply encouraging
the predicted motion to be temporally smooth. As will be
shown by our experiments, such a simple prior suffices to
model natural action transitions.

The second main challenge of our task arises from the
stochastic nature of human motion: Several ways to per-
form one action sequence are equally plausible. To han-
dle this stochasticity, we design a model based on a vari-
ational autoencoder (VAE) [24], conditioning the VAE on
the observed past motion and on the action label sequence.
We demonstrate the generality of this model by exploit-
ing it with two different temporal encoding architectures,
an RNN-based one and a Transformer-based one. Further-
more, to reflect the fact that some action sequences require
more time to be executed than others, we introduce a sim-
ple yet effective strategy based on the prediction variance to
produce multi-action motions of different lengths. This con-
trasts with most of the motion prediction literature, which
predicts fixed-length motions, and, as illustrated by Fig. 1,
allows us to generate realistic, diverse future motions de-
picting the given actions in order and with varying length.
We believe that our approach can also be beneficial for other
tasks, e.g., music generation of variable length.

Our contribution can therefore be summarized as fol-
lows: (i) We introduce a new task, action-driven stochastic
human motion prediction, which bridges the gap between
motion synthesis and stochastic human motion prediction;

(i) We propose a weakly-supervised training strategy to
learn the action transitions without requiring an unrealis-
tic amount of annotated data; (iii) We develop a simple yet
effective way of predicting motions of varying length.

Our experiments on 3 human motion modeling bench-
marks demonstrate the effectiveness of our approach, out-
performing baseline models constructed by extending state-
of-the-art action-conditioned motion synthesis methods and
stochastic human motion prediction ones to our new task.

2. Related Work

Human Motion Prediction. Most human motion predic-
tion works [4, 9, 10, 13, 15, 16, 21, 29, 36-38, 41, 52] fo-
cus on predicting human movements in a very short fu-
ture (< 0.5s). These methods mainly differ in their
temporal encoding strategies, using either recurrent archi-
tectures [13, 15, 16, 21, 38, 41, 52] or feed-forward mod-
els [4,9,10,29,36,37]. Most of them, however, do not aim
to produce motions with the same past sequence that respect
any given action label. The only exceptions that incorporate
action information are the early works of [13,15,16,21,38].
However, such information is only used to help predict fu-
ture motion of the same action as the historical motion. By
contrast, we seek to predict future motions of different and
multiple action categories.

Because, given one sequence of action labels, we aim to
predict multiple plausible motions, which is more closely
related to diverse human motion prediction [5, 6, 18, 27,

,51,54,56]. To capture the distribution of future mo-
tions, these methods usually rely on deep generative mod-
els, such as VAEs [24] and generative adversarial net-
works (GANSs) [14]. Among the most recent ones, the work
of [5] prevents the VAE from ignoring the random vari-
ables by perturbing them; DLow [56] focuses on learning
the sampling process for diverse future predictions from a
pre-trained generative model. While these models indeed
produce diverse and plausible future motions, these gener-
ated motions do not follow any clear semantic categories.
As such, they could not be leveraged to help an autonomous
system evaluate different scenarios defined in terms of se-
mantic human behaviors. By contrast, our goal is to control
the predicted future motion type using semantic informa-
tion, i.e., a sequence of action labels. We therefore design
a VAE-based model and a weakly-supervised training strat-
egy that let us produce different plausible future motions for
the same past motion and a sequence of action labels.
Human Motion Synthesis. In contrast to motion predic-
tion, human motion synthesis aims to generate realistic hu-
man motions without any historical observations. While
earlier works [39, 48] focused on simple, cyclic move-
ments, e.g., using Principal Component Analysis [39] or the
Gaussian process latent variable model [48], recent deep-
learning-based methods [2, 17,28,30-32,42,45] can handle
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Figure 2. Overview of our approach.

more complicated motions. In this context, several works
have proposed to condition the generated motions on some
auxiliary signal, such as audio/music [28,30,31,45] or tex-
tual descriptions [2,32].

The methods most closely related to ours are [17,42]
which aim to generate action-specific human motions.
In particular, [17] introduces a frame-level VAE-based
model conditioned on the action label, and [42] a Trans-
former [50]-based VAE model with a sequence-level latent
embedding. However, these models can only generate mo-
tions depicting individual actions. In principle, given su-
pervised data covering all possible action transitions, they
could be trained to generate more complex motions. How-
ever, such data cannot practically be obtained. We over-
come this by designing a weakly-supervised training strat-
egy that lets us leverage limited, single-action sequences.
Variable-length Motion Prediction. Although generating
sequences of variable length has been well-studied for ma-
chine translation [50], it is rarely considered in human mo-
tion prediction/synthesis. However, as studied in [1] in the
context of predicting future actions’ semantics and dura-
tion from video data, different action categories, or even
instances of the same action, vary significantly in length.
Our method produces a variable-length future motion given
an action label and a past motion. While [42] also gener-
ates motions of variable lengths, these length must be set
manually. In contrast, we automatically find the appropri-
ate duration by learning the distribution of motion lengths.
Action-conditioned Video Generation. The work most
closely related to ours is PSGAN [55], which aims to pre-
dict future 2D human poses given one input image and a
target action label. However, with only one input image,
PSGAN cannot predict action transitions. Other action-
conditioned generative methods include [53] and [22].
However, these works aim to generate face images condi-
tioned on emotions, and the next game screen conditioned
on keyboard actions, respectively, which both fundamen-
tally differ from our task.

3. Our Approach

Let us now introduce our approach to action-driven
stochastic human motion prediction. To represent a human
in 3D, we adopt the SMPL model [34], which parametrizes
a 3D human mesh in terms of shape and pose. Since we

focus on human motion and not human identity, our model
follows that of ACTOR [42] to only predict the pose pa-
rameters. The shape parameters are used for visualization
only. Given an action label represented by a one-hot vec-
tor a and a sequence of N past human poses represented
by X = [x1,X2, -+ ,xy] € REXN where x; € RE is
the pose in the ¢-th frame, our goal is to predict a future
motion Y = [y1,¥2,---,yr] € REXT, with y; € RE,
representative of the given action label. To learn to predict
transitions between different actions, as discussed in more
detail below, we will train our model using data where X
and the corresponding ground-truth future motion Y depict
different actions. This will eventually allow us to predict fu-
ture motions for sequences of action labels, by recursively
treating the previous prediction as historical information.

3.1. Action-driven Stochastic Motion Prediction

To predict action-driven future motions, we design a
model based on conditional VAEs (CVAEs) [24], whose
goal is to model the conditional distribution p(Y|X,a).
Specifically, as shown in Fig. 2, we first model the poste-
rior distribution ¢,(z|Y,X,a) via a neural network, the
encoder, where z is a latent random variable, and ¢ de-
notes the parameters of the encoder. From the latent vari-
able z, the CVAE then aims to reconstruct the future mo-
tion Y using another neural network, the decoder, expressed
as pg(Y|z, X, a), with parameters . The evidence lower
bound (ELBO) of the conditional distribution p(Y|X,a)
can then be written as

logp(Y|X,a) ZEq¢(Z|Y,X,a) [logpg(Y|z,X,a)]—
KL(q4(2Y, X, a)[[py(2|X,a)), (1)

where py(z|X, a) is the prior distribution of the latent vari-
able z, modeled by a neural network with parameters ),
and K L(+||-) is the KL divergence between two distribu-
tions. Training the CVAE then aims to maximize the log
probability log p(Y|X, a) by maximizing the ELBO.

In practice, the KL divergence term in the ELBO can be
computed as,

LxL = KL(N (p, diag(c?)) |V (1, diag(62)))

1 6% | o+ (i — fu)?
:22(1og%2 +A2—1> )

ok
i=1 ?

where N (u, diag(0?)) and N (fi, diag(5?)) are the poste-
rior and prior distributions, whose means and standard devi-
ations are produced by the encoder ¢4 and the prior network
Dy, respectively, and D is the dimension of z.

During training, the random variable z is sampled
from the posterior distribution via the reparameterization
trick [24], i.e., z = € ® o + u, where € ~ N(0,I). Given
z, the past poses X and the action label a, the goal of de-
coder py is to reconstruct the true future motion. This lets
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Figure 3. Network structure. We explore the use of two different temporal encoding structures to build our VAE: RNNs and Transformers.

us express the (negative of the) first term of the ELBO as
the reconstruction loss

T
rec—TZ 19 = yill5 3)

where Y = [§1,¥2, - -, ¥r] is the future motion generated
by the decoder.

Note that, during training, sampling z involves the en-
coder g4, which relies on the ground-truth motion Y. Since,
at test time, the ground-truth future motion is unknown, we

sample the random variable from the prior distribution.

3.2. Weakly-supervised Transitions Learning

Natural human movement involves transitions between
different action categories. The ability to generate these
transitions is therefore critical for the success and realism
of human motion modeling methods. However, acquiring
training data that covers all possible action transitions is vir-
tually intractable, and thus existing human motion datasets
typically contain motions depicting individual actions only,
without any transitions. To nonetheless effectively lever-
age this data to learn action transitions, we create synthetic
motions by combining historical motions from one action
category with future motions from another. As these syn-
thetic motions still do not contain realistic transitions, we
introduce a weakly-supervised training strategy to learn to
generate plausible transitions.

More specifically, given a historical motion X =
[x1,X2," - ,xn] from one action, we take motion Y’ =
[y1,¥5, -+, ¥/ from another action to be the continuation
of X after Ty frames. However, both the number of frames
Ty and poses in these frames are unknown, and one can-
not assume 7j to be constant for any pair of historical and
future motions. To address this, we define T}, to be a func-
tion of the last pose of X and of the first one of Y, i.e.,
To = f(xn,¥}), where f : RE xRX — N. In practice, we
found that a simple linear function suffices, and thus write
Ty = |kllxn — yill2], where k& > 0 is computed from the

training data. Details about computing k are provided in the
supplementary material.

To account for the fact that the poses within the transi-
tion sequence, namely poses for T frames, are unknown,
we leverage a simple temporal smoothness prior based on
the intuition that the transition from X to Y’ should form
a smooth sequence. Inspired by [3, 20, 37], we make use
of the Discrete Cosine Transform (DCT) to define our
smoothness prior, exploiting the insight that a smooth tra-
jectory can be accurately represented by low frequency
DCT bases. More precisely, let Y = [¥1,¥2: ", YTo+7]
denote the prediction of our model. We first concatenate
the last L poses of the history and the first L ones of the
prediction to form a sequence of length 2L denoted by
Z = [XN—L+1,XN-L+2, " ,XN,¥1, Y2, "+, ¥L], where
L < N and Z € RE*2L We then approximate this se-
quence with the first M DCT bases as Z = ZDD7, where
D € R26xM encodes the low-frequency DCT basis and
M < 2L. Given Z and its approximation Z, we define our
temporal smoothness prior as the loss

1 . -
Esmooth = i ; ||Zl - Zi”% s “)

where z; and z; are the i-th pose in 7 and Z, respectively.
Since we only have ground-truth supervision for the last
T predicted frames, we redeﬁne the reconstruction loss as

Lrec = Z HyTo+z YZ||2 (5)

Note that our formulatlon still allows us to exploit data

where Y’ and X are from the same motion sequence by

simply setting the corresponding 7y to zero.

Altogether, we express our complete training loss as

L= )\recﬁrec + )\smoothﬁsmoolh + EKL ) (6)

where A and A\p.x are hyper-parameters setting the rela-

tive influence of the different terms.

3.3. Variable-length Motion Prediction

Generating sequences of variable length has been well-
studied in the field of Natural Language Processing
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(NLP) [50], where the standard strategy consists of pre-
dicting a specific stop token. Here, instead of predicting a
stop token, which is ill-defined for human motion, we sim-
ply encourage the model to generate static poses (the last
pose of the ground-truth motion) after reaching the motion
end during training. Specifically, we make the model gen-
erate P additional frAames, leading to a future sequence of
To+T+ P frames (Y = [y1,¥2, -, YT+1p+P))- We then
supervise these additional frames with the last ground-truth
future pose. Combining this with the normal supervision of
the other frames yields the updated reconstruction loss

1 TP
Lee =7 ; ¥z — vill3 (7

During testing, as we do not know the length of the pre-
dicted future, we stop prediction when the variance of the
last @) consecutive frames falls below a threshold. Specifi-
cally, given the predicted future motion Y, we compute, for
@ consecutive frames starting from the i-th one,

1 =4Q 1 4Q
vi==> 55— 5> Il ®)

Q j=i Q k=i
where ¢ € [1,2,-- , Tinax — Q], and T« is the maximum

number of frames the model can predict. We stop the pre-
diction at frame 7 if v; < 4.

3.4. Network Structure

To show the generality of our approach, we exploit it
using two different temporal encoding structures, namely,
Recurrent Neural Networks (RNNs) and Transformers [50].

For our RNN-based model, shown in Fig 3 (a), we build
the encoder g4, the prior p,, and the decoder py using Gated
Recurrent Units (GRUs). In particular, the encoder g, first
uses GRUs to encode the historical human poses X and the
future human motion Y to temporal features. These tem-
poral features concatenated with the action token obtained
from a fully connected layer are then fed into a fully con-
nected network that predicts the parameters (the mean g and
the standard deviations o) of the posterior distribution. The
prior network produces the parameters (the mean /i and the
standard deviations &) of the prior distributions in a similar
manner. Given the latent code z sampled from either the
posterior (during training) or the prior (during testing), the
temporal features of the historical motion X and the action
label a, the decoder again uses GRUs to predict the future
poses in an autoregressive manner.

We show our Transformer-based model in Fig. 3 (b). For
the encoder and prior network, we adopt the same strat-
egy as [42], which was inspired by BERT [I!] in NLP
and ViT [12] in Computer Vision. In particular, we append
two extra tokens obtained from the action label a to aggre-
gate temporal information to predict the parameters of the
posterior and prior distributions. For the decoder, we pad

the historical human motion with its last pose, forming a
longer sequence, and then input the padded sequence to the
Transformer-based decoder that outputs the future motion.
To introduce the action information and the latent random
code as conditions, we further use the pseudo self attention
strategy proposed in [58].

4. Experiments
4.1. Datasets

We evaluate our method on three different datasets. Each
motion sequence in these datasets is annotated with a single
action label, except for BABEL [43]. Some information for
each dataset is provided in Table 1. We also evaluate on
the dataset HumanAct12 [17]. The results are in the supple-
mentary material.

Dataset ‘ motion len. train  test transi. action
GRAB [7,47] 100-501 1149 319 0 4
NTU RGBD [33,44] 35-201 3399 361 0 13
BABEL [43] 30-300 9643 3477 2584 20

Table 1. Datasets’ details. We list the range of motion length
in frames, the number of training/testing samples, the number of
training samples with action transitions and the number of actions
in each dataset.

GRAB [7,47] consists of 10 subjects interacting with 51
different objects, performing 29 different actions. Since,
for most actions, the number of samples is too small for
training, we choose the four action categories with the most
motion samples, i.e., Pass, Lift, Inspect and Drink. We use
8 subjects (S1-S6, S9, S10) for training and the remaining
2 subjects (S7, S8) for testing. In all cases, we remove the
global translation. The original frame rate is 120 Hz. To
further enlarge the size of the dataset, we downsample the
sequences to 15-30 Hz. Our model is trained to observe 25
frames to predict the future. The observed frames and the
future ones are from either the same or different motions.
NTU RGB-D [33,44] (NTU). We use the subset of 13 ac-
tions of [17], with noisy SMPL parameters estimated by
VIBE [25]. As for GRAB, we remove the global transla-
tion. While [17] used all the data for training, we split the
dataset into training and testing by subjects. Our model is
trained to observe 10 past frames.

BABEL [43] is a subset of the AMASS dataset [35] with
per-frame action annotations. Since there are multiple ac-
tion labels in one motion sequence, we split the dataset into
two parts: single-action sequences and sequences that de-
pict transitions between two actions. We downsample all
motion sequences to 30 Hz. For single-action motions, we
first divide the long motions into several short ones. Each
short motion performs one single action. and the remove se-
quences that are too short (< 1 second). We also eliminate
the action labels with too few samples (< 60) or overlap
with other actions, e.g. foot movement sequences some-
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times overlap with kicking. This leaves us with 20 action
labels. We complement this data with the sequences with
transitions that contain these 20 actions. During training,
our model observes 10 past frames to predict the future.

4.2. Evaluation Metrics and Baseline

Metrics. We follow the similar evaluation protocol as for
human motion synthesis/prediction [17,42,56] and employ
the following metrics to evaluate our method.

(1) To measure the distribution similarity between the
generated sequences and the ground-truth motions, we
adopt the Fréchet Inception Distance (FID) [19]

FID =| pgen — Mgt||2

+ TT(Egen + Egt - 2(2g6n2g1)1/2) ’ (9)

where p. € R¥ and B. € RF*F are the mean and co-
variance matrix of perception features obtained from a pre-
trained action recognition model, with F' the dimension of
the perception features. The detail of the action recogni-
tion model is included in the supplementary material. T'r(-)
computes the trace of a matrix.

(2) To evaluate motion realism, we report the action
recognition accuracy of the generated motions using the
same pretrained action recognition model as above.

(3) To evaluate per-action diversity, we measure the pair-
wise distance between the multiple future motions gener-
ated from the same historical motion and action label'.
Specifically, given a set of future motions {Y’ 2| pre-
dicted by our model, the diversity is computed as

- S S Tmax || &0 ~7
Div = ﬁ > Zj:i+1 ﬁ S Iy = villz . (10)

where T« is the maximum number of frames our model
can predict, and y¢ represents the k-th frame of motion Y.

To calculate above mentioned diversity, we assume
that the model generates the maximum number of fu-
ture frames in all cases. To further evaluate the diversity
across variable length future motions, we compute the av-
erage per-action diversity after performing Dynamic Time
Warping (DTW) [57] With a minor abuse of notation, let
{Y?}3_, denote the set of variable length predictions. DTW
then temporally aligns any pair of motions as YiYI =
DTW (Y%, Y7) , where Y? and Y/ € RX*Tis have the
same number of frames (7} ;). We then compute the diver-
sity after DTW as

. s s Tij \oi _ o
Divy, = ﬁ 2t =it ﬁ 2l Ve = villz . (D)

(4) To measure the prediction accuracy, we adopt the Av-
erage Displacement Error (ADE) computed as

ADE = min 1 Y0, 193 — yellz (12)

where T is the length of the ground-truth future motion, y,
is the k-th frame of the i-th sample generated by the model

Note that we only report diversity per action because motions of dif-
ferent actions are inherently diverse.

with the ground-truth action label” and y}, the correspond-
ing ground truth. Similarly to the diversity, we report the
ADE after DTW (ADE,,).

Baselines. Since there is no prior work that tack-
les the task we introduce, we adapt the state-of-the-
art action-specific human motion synthesis methods, Ac-
tion2Motion [17], ACTOR [42], and stochastic human mo-
tion prediction method, DLow [56], to our task. Ac-
tion2Motion [17] relies on a frame-wise motion VAE with
GRUs to encode the temporal information. We adapt their
VAE so as to take the temporal feature of historical poses
as an additional input for both encoding and decoding. This
temporal feature is extracted from a GRU-based temporal
data encoding module. Similarly, we modify the trans-
former decoder of ACTOR [42] to condition it on the histor-
ical motion. Furthermore, we adapt the VAE in DLow [56]
to take the action label as input.

Implementation details. We implement our models in
Pytorch [40] and train them using the ADAM [23] optimizer
for 500 epochs. We use different hyperparameters for differ-
ent models. In particular, for RNN-based model, the initial
learning rate is 0.001 on BABEL and 0.002 on all the other
datasets. We set the loss weights (Arec, Asmooth) to (50.0,
10.0) for BABEL dataset and (100.0,100.0) for all the other
ones. For Transformer-based model, the initial learning rate
is 0.0001 on BABEL and 0.0005 on all the other datasets.
The loss weights (Arec, Asmootn) are set to (100.0, 10.0) for
BABEL dataset and (1000.0,100.0) for all the other ones.
Additional details are in the supplementary material.

4.3. Results

Quantitative results. In Table 2, we compare our re-
sults with those of baselines on GRAB, NTU RGB-D and
BABEL. Given a past motion, all models predict multiple
future motions conditioned on any given action label. Our
approach, based on either RNNs or Transformers, outper-
forms the baselines on almost all metrics. In general, the
RNN-based model performs better than the Transformer-
based one. We expect this to be due to the datasets being too
small to train the Transformer-based model from scratch.

In Table 3, we compare the prediction accuracy (ADFE,
ADE,,) of our results with the baselines. Here, for each
past motion, each model predicts multiple future motions
using the ground-truth action label. The prediction accu-
racy (ADE) is then computed based on the future motion
yielding the minimum error. Because our model is trained
to predict not only the ground-truth future but also motions
with different action labels, it may sacrifice some accuracy
when evaluated on the ground-truth future only, as on NTU
and BABEL.

During training, our model only takes one action label

2Since we only have the ground-truth future motion for the ground-
truth action label.
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Figure 4. Results on NTU RGB-D. Given the same history (pink), our model can generate future motions (yellow) of different actions,
e.g., “Pickup” (top left) or “Throw” (top right). Moreover, it can also generate motions depicting a sequence of multiple actions (bottom).

Method | Acct FID, | FID. | Divy, Div t
Act2Mot [17] | 70.6F13  80.22%6:61 4781109 (50000 () 76+0-01

2 DLow [56] | 67.6¥07 127.49%6:90  2371%279 (74001 ( gg+0.01
% ACTOR [ -I 8340i0'3 62.68i1'26 114485i3'4ﬁ LOGiU.OU 1A04i0.00
Ours (RNN) | 92.6500  44.59%1-39  3g 3149 1,10%0-01  1,37+001
Ours (Tran.) | 85.5F12  48.58%05 25.72%2:16 1 g5+0-01 1 og*0-01
Ac2Mot [17] | 66.3F02  144.98F27T  113.6170°% (755000 119001

o DLow([56] | 70.6%02 151.11%+12  157.54*1.62 (97000 7 972000
£ ACTOR[42] | 66.35%"  355.69%°™ 19358+ 1.84F0:00 9 g7£0.00
Ours (RNN) | 76.0%02  72.18%%9  111.01%128 1252000 2 ¢*0:00
Ours (Tran.) | 71.3%02 83,1417 114,62%093  1,25+0.00 9 19+0.01
Act2Mot [17] | 14.8F92  42,02F040 37 41F0-47( 79F0-0T 7 1(F0-0T

2 DLow[50] | 12.7502 2799045 2418059 (65000 .9p*0-00
2 ACTOR [42] | 40.9%02  29.34+0:10  3031+016  2,94+000  ,71+000
® Ours RNN) | 49.650% 22545027 99 39#036 | 354000 1 740.00
Ours (Tran.) | 39.5%03  20.02%%2% 194103  1.39+000 1 g9+0.01

Table 2. Quantitative

results. We report the action recogni-
tion accuracy (Acc), the FID to training data (F'I D) and to the
testing split (F'I D), and the diversity before (Div) and after

DTW (Divy). We adapt Action2Motion [

DLow [

and a motion history as input. During testing, to predict

] to our task.

], ACTOR [

] and

GRAB NTU BABEL
Method ADE, | ADE| | ADE,| ADE| | ADE,| ADE]
Act2Mot [17] | 1.92%008 9 9g+0.03 | 7g+0-01  117+001 | 1 954002 1 g7H0.01
DLow [ ] 1'7810113 l_gﬁil).(](i 0_95i0.01 1_2010,(11 1.10i0-l)1 1.19*0'(”
ACTOR[ ] 2.41t0.02 245710.02 1.26i0'01 1.4910,01 241910.02 2'29i0.02
Ours (RNN) 1_73&0.(]2 1.93i0-03 0_89i0.01 1_20t0,(ll 1_31il).0(l l_47i0.[)1
Ours (Tran.) | 1.69*007  1.93+0:03 | 84001 7 93+0.01 ‘ 1.240.01 1 40002

Table 3. Results of prediction accuracy Our model may trade
some performance with GT action label for the ability of predict-
ing future motion of different action labels.

Prediction Step

Metrics 1 2nd 3rd 4t S¢h
Acct 92.6+00 94,3506 93.4%09 93500 92.6%1-0
o FIDel | 44.50%139  31.45%073 31535030 38.99%05L - 43.14+10.20
< FID | | 38.03%149  7485%1884 91 65+721 1113652436 117.30%13.99
% Divy, T ]_10i0.01 1.31 +0.01 1_33i0.01 ]_32i0.03 1_3410.01
Divt | 137001 1.60+0-01 1.62+0-02 1.61%0:03 1.64%0:02
Acct 76.0+02 61.9%0-7 61.4%07 60.6%0-6 60.1%0-6
FID | | 72185095  219,08%1368  94g91%13.65 943 575711 940, 40F11-43
B FIDc| | 11LOI#L2  236.8241015 334 4p1671 334 gudass 3168741328
Z Div,, T 1_2510.00 1.99+0.02 1_2310.01 1.92+0.02 1.91%+0.01
Div T 2_20i0.00 2_1610.01 2_18i0.01 2_17i0.04 2_1510.02
Acct 49.6+04 544110 53.8+10 55.0+1-0 544517
g2 FIDgl | 22542027 27755100 97985001 98.10%052 2827042
@ FID. | | 22395036 27.97£0:99 2806060 2839065 98 55+0-51
g Div,, T 1‘35i0v00 L3210.02 1(31i0.01 1.29+0.01 Lgoiﬂ.l‘ll
Div T 1_7410.00 1_7110.02 1_6910.01 1_6710 01 1_6810.02

future motions for a sequence of action labels of arbitrary
length, we follow a recursive strategy. We evaluate this in
the case of 5-action sequences. Specifically, we randomly
sampled sequences of 5 action labels to generate future mo-
tions in an autoregressive manner, and report the results at
each prediction step, i.e., corresponding to each action la-
bel. The results shown in Table 4 indicate that our model
remains stable. Note that the performance gap between the
Ist and 2nd step on NTU may be caused by the fact that our
model is trained with the jittery “ground-truth” NTU mo-
tion history, while at the 2nd step, it starts taking as input
the smooth motion predicted during the 1st step.

Qualitative results. In Fig. 1, we show diverse futures
generated by our model on GRAB given the same past mo-
tion and the same action sequence. Additional qualitative
results on the NTU RGB-D dataset are provided in Fig. 4.
Given the same historical poses, our model can generate fu-
tures of different actions and sequences of multiple actions.
More results are provided in the supplementary material.

Trajectory smoothness. We also compare the trajecto-
ries produced by different models in Fig. 5 (a). The mo-
tions predicted by Action2Motion [17] suffer from heavy

Table 4. Results on prediction with action label sequences. Our
model achieves stable performance at each prediction step.

jitter, especially during the transition between the histor-
ical motion and the predicted one (as highlighted by the
red circle). The reason is that Action2Motion employs a
frame-wise random code, thus making the input to the de-
coder vary significantly across the frames. Note that this
jitter makes our variance-based stopping criterion inappli-
cable to Action2Motion. We therefore tested different stop-
ping strategies, detailed in the supplementary material, and
report the one that gave the best results. When comparing
our two models, we found the RNN-based one to produce
smoother future motions than the Transformer-based one.

4.4. Ablation Study

To provide a deeper understanding of our model, we
evaluate the influence of its two main components, i.e., en-
couraging the model to predict static poses at the end of
the sequence, which we refer to as “padding”, and weakly-
supervised action transition learning (“weakly-sup”). The
results are shown in Table 5. In general, the model with
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History

w/ padding
—— w/o padding
Ours (RNN) * stop frame

Action2Motion
—— Ours (Tran.)
— Ours (RNN) —— w/ padding
—— w/o padding
* stop frame Ours (Tran.) *  stop frame
0 100 200 400 500 0 100 200 300 400 500

frame

(a) Action2Motion v.s. Ours

Figure 5. Motion trajectories. (a) The trajectories from our model are smoother than those of Action2Motion [

frame

(b) Ours w/ padding v.s. w/o padding
]. (b) The trajectories

from our model without “padding” either are unstable (top), or do not converge to static poses (bottom).

Method | Acct FID, | FID | Divy T Div t
w/o padding 88.4i0‘6 32'74i0,95 45_6111.62 1‘14i0.01 1_3510.(11
Z  wioweakly-sup | 74.2508  3.84%129  1142¥L76 (203000 (99000
~
g wiboth | 92.670C  44.59%1:3 gy zEl4 0001 137001
O wopadding | 80.4%05 463814 44.63F119  123%001  112%0.00
S wlo weakly-sup | 48.7%0%  184.86+345  23,035129 012000 (,01%0-00
= : e T
w/ both 855512 4858305 25728216 1 5001 (g*0.01
w/o padding | 70.1F92 119.25F09% 215,972 1.347000 ] gaF0.01
Z  wlo weakly-sup | 73.6503  107.88%221  114,00%0.71  (.5350:00  (gg001
=4
= wiboth | 760707 72.18*0% 11101517 1258000 2.9*000
Z _ w/opadding | 69.1%01  101.22%165 11844207 1 91000 7 3+0.00
§ wloweakly-sup | 64.7502 2165629  264.92+627 025000 0,02%0-00
=
w/ both 713402 8314 114.62409% 125000 2.19%001
w/o padding | 46.3702  39.08%02T  37.33%0.29  154F000 178F000
B Z  wioweakly-sup | 156501 17.67041 1557041 05E0.00  ( gE0.00
o X y = -
2 w/both | 49.670%  22.54%0:27 9 39*036 ] 35E0.00 1 74000
m . w/o padding 37»810.:6 28_7010.31 27_6410.15 1_38itl.00 1.61 +0.01
§ wloweakly-sup | 12.3%0-2  20.76+026  17.62%046  .01+0-00 (,01%0-00
= 5
w/both | 39.5%0% 20,0250 19.41#0.35 139000 1 gp=0 01

Table 5. Ablation studies on generating additional static frames
for variable length prediction (padding) and weakly-supervised ac-
tion transition learning (weakly-sup). Note that, without “weakly-
sup”, the Transformer-based models suffer from mode collapse,
leading to very low motion diversity.

Method | Acct FID,|  FID.|  Divyt Div t

w/o both 15.6%01  17.67%041 15575041 05000 ( g+0-00

7 wlgttransi | 16.4%04  21.28F031  18.83*+0-34 g7+0-00  (,11%0:00
Z  w/weakly-sup | 49.6501 22544027 9939036 1 35E0.00  p 74%0.00
w/ both 48,4105 92702023 99 47033 1 312000 712001

w/o both 12,3102 20.76+026  17,62+046 (01000 (), +0:00

= w/gttransi | 13.0¥03 2040037 17.56%0%  (.01%0-00 (,01%0.00
£ wi/weakly-sup | 39.550% 20025021 19.41%085 1 39+0.00 | gok0.01
w/ both 38,5103 20791027 90, 12+0-39 1 41F0.00 1 geH001

Table 6. Ablation studies on training with ground truth transition
v.s. our weakly-supervised action transition learning.

both components achieves the best performance across all
datasets for both temporal encoding structures. Although
the numerical results of the models without padding are
close to those with padding, we observed the trajectories
generated by such models to occasionally either be unsta-
ble (RNN-based model) or not converge to a static pose
(Transformer-based model), as shown in Fig. 5 (b). Without
our weakly-supervised transition learning, the models often
fail to produce diverse future motions and the Transformer-
based model suffers from mode collapse.

Finally, we compare the performance of using the
ground-truth transitions (““gt-transi”) to that of our weakly-

supervised strategy (‘“weakly-sup””) on BABEL in Table 6.
Since the limited ground-truth transitions in BABEL do
not cover all possible cases, using them as supervision is
ineffective. Specifically, as shown in Table 1, there are
only around 2500 ground-truth transition sequences, de-
picting 170 types of transitions. By contrast, our weakly-
supervised strategy leverages almost 100,000 pseudo transi-
tions covering all 380 possible types. This further evidences
the importance of our weakly-supervised action transition
learning strategy.

S. Conclusion

In this paper, we have introduced the task of action-
driven stochastic human motion prediction, which aims to
predict future trajectories of a given action category. Since
it is unrealistic to expect a human motion dataset to in-
clude all possible action transitions, we have introduced a
weakly-supervised training procedure to learn those transi-
tions from a dataset with only a single action label per se-
quence. Furthermore, we have introduced a variance-based
strategy to produce motions of variable length. Our current
model can only generate motions of actions observed in the
training set, thus not allowing us to explore novel actions at
test time. We will seek to address this in our future work.
Limitations & Negative Societal Impacts

One limitation of our work arises from the fact that our
model does not predict global translations. The human
movements include local body motions and global transla-
tions. However, without scene context, we cannot ensure a
valid global translation. For example, a “sit” motion needs
to result in sitting on a chair (or something) of the scene.

A potential risk of applying our method to real sce-
nario is that, without considering the scene context, the pre-
dicted human motions can lead to unsafe situations, such
as collision. We recommend to validate the outputs of
our model w.r.t. the environment before applying them to
robots/agents.
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