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Figure 1. DAD-3DHeads, a Dense, Accurate, and Diverse 3D Head dataset, labeled with over 3.5K verified accurate landmarks. A model
trained on DAD-3DHeads achieves superior performance on diverse 3D head tasks. It is robust to domain shifts common in the wild,
including head pose changes, occlusions, facial expressions, age groups, illumination conditions, and image quality. Best viewed in color.

Abstract

We present DAD-3DHeads, a dense and diverse large-
scale dataset, and a robust model for 3D Dense Head Align-
ment in-the-wild. It contains annotations of over 3.5K land-
marks that accurately represent 3D head shape compared
to the ground-truth scans. The data-driven model, DAD-
3DNet, trained on our dataset, learns shape, expression,
and pose parameters, and performs 3D reconstruction of
a FLAME mesh. The model also incorporates a landmark
prediction branch to take advantage of rich supervision and
co-training of multiple related tasks. Experimentally, DAD-
3DNet outperforms or is comparable to the state-of-the-art
models in (i) 3D Head Pose Estimation on AFLW2000-3D
and BIWI, (ii) 3D Face Shape Reconstruction on NoW and
Feng, and (iii) 3D Dense Head Alignment and 3D Land-
marks Estimation on DAD-3DHeads dataset. Finally, diver-
sity of DAD-3DHeads in camera angles, facial expressions,
and occlusions enables a benchmark to study in-the-wild
generalization and robustness to distribution shifts. The
dataset webpage is https://p.farm/research/dad-3dheads.

*These authors contributed equally to this work.

1. Introduction

Tremendous progress in 3D face analysis has been made
since the first 3D morphable model (3DMM) [4] from an
image had been proposed [22]. The use cases for precise
3D face models are abundant: accurate face recognition and
face detection [16], realistic 3D avatars and animation for
VR and games [37], face re-enactment and synthesis for
dubbing [59], virtual mirrors and try-on, statistical shape
models for medical tasks such as segmentation and analysis
of variations in anatomical structures [73].

These applications require not only accurate 3D face ge-
ometry but also (1) handling the diversity, e.g., ethnic, age,
gender subgroups, and (2) generalizing to in-the-wild de-
ployment conditions, i.e., beyond controlled capture and be-
yond the data they are trained on. The largest face models
up-to-date [8,45] have focused on the (1) aspect by collect-
ing diverse 3D face and head scans, and building 3DMMs
models for different age, gender and ethnicity. In-the-wild
generalization has been identified as a pressing challenge of
the next generation 3D face models [22]. This (2) aspect of
in-the-wild generalization is the focus of our study.

The progress that we have witnessed with deep learn-
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ing has impacted closely related facial analysis tasks such
as Landmark Localisation [14, 20, 46, 51, 57], Facial Align-
ment in 2D and 3D [2, 10–12, 17, 31, 32, 48, 63, 70], and
Face Detection [2, 17, 20, 25, 46, 70]. This has been driven
by the community effort towards collecting and annotating
large image datasets captured in unconstrained conditions,
building enhanced models that can take advantage of such
large datasets, and most importantly openness, i.e., making
the models and datasets publicly available for research use.

Nevertheless, 3D face or head alignment from a single
image in the wild remains an open challenge. The diffi-
culty comes from (1) lack of 2D-3D ground-truth data and,
as a result, (2) ambiguity of the task and reliance on 3D
shape priors. Many methods have been developed to fill
the gap of missing 2D-3D annotations (1), primarily using
2D landmarks datasets for fitting, or exploring extra knowl-
edge such as identity invariance [53], or co-training with
related face detection [20], [16] tasks to drive the recovery
of 3D face geometry. Up until now, evaluation of the effi-
ciency of these approaches has been problematic due to the
lack of ground-truth data. Regarding (2), the state-of-the-
art 3D face reconstruction methodologies such as non-linear
3DMMs and deep learning models [5,6,8,38,45] are based
on learning a statistical 3D facial model and fitting it to the
image as a shape (or shape and texture) prior. This direc-
tion has a long history tracing back to the seminal work of
Blanz and Vetter [4]. It relies on a large and diverse dataset
of 3D/4D scans to build the statistical 3D face model that
can be decomposed into facial shape (identity and expres-
sion), and the camera parameters. This comes at the cost
of laborious data collection with expensive 3D acquisition
devices, and the fact that 3D acquisition devices cannot op-
erate in arbitrary conditions. Hence, the current 3D facial
databases have limited data sample size and have been cap-
tured not-quite-in-the-wild [53].

In this work, we show that without expensive devices,
like scanners, that are difficult to deploy in the wild, we
can collect accurate annotations of 3D landmarks directly
from images, which is labor-efficient and effective to push
the state-of-the-art results for 3D head recovery from im-
ages.

Our contributions are as follows:

• A new Dense, Accurate and Diverse dataset for 3D
Dense Head Alignment in-the-wild, DAD-3DHeads.
It has over 3.5K verified accurate landmarks, the dens-
est annotations for 3D dense head alignment in-the-
wild currently available. DAD-3DHeads contains a va-
riety of extreme poses, facial expressions, challenging
illuminations, and severe occlusions cases. Accuracy
and consistency of the annotations are compared to the
ground truth 4D scans and head pose labels.

• A novel way to address the problems of shape re-
construction and pose estimation simultaneously dur-

ing training via optimizing two loss components: (i)
Shape+Expression Loss and (ii) Reprojection Loss.
(i) is based on the normalized 3D vertices that en-
ables disentangling the shape and expression informa-
tion from the pose; (ii) is based on the full head dense
2D landmarks and assesses the pose accuracy. That
makes the rich annotations fully utilized, which could
not have been done previously due to the lack of GT
annotations. Extensive ablation studies show the im-
portance of both loss components.

• DAD-3DNet model that maps an input image to 3D
mesh representation consistent with the FLAME topol-
ogy. The model is trained end-to-end by regressing the
3DMM parameters and recovering the 3D head geom-
etry with differential FLAME decoder. The proposed
approach learns the head shape, pose, and expres-
sion simultaneously. DAD-3DNet outperforms state-
of-the-art on a range of tasks, suggesting that dense
supervision as provided in our dataset, enables a holis-
tic framework for 3D Head Analysis from images.

• A novel benchmark with the evaluation protocol for
quantitative assessment of 3D dense head fitting, i.e.
3D Head Estimation from dense annotations. Our eval-
uation protocol introduces two novel metrics: Repro-
jection NME computing the NME of the reprojected
3D vertices onto the image plane, and Zn Accuracy
evaluating the ordinal distance of the Z-coordinate and
accuracy of the 3D fitting.

2. Related Work
This section provides an overview of the available 3D

face datasets, followed by a survey of the methods targeting
3D head-related tasks.

3D Face Datasets. Existing 3D face datasets differ
based on registration of a 3D face model. Model fitting
datasets [5,7,30] fit the 3DMM to the images, which makes
it suitable for large-scale datasets. The main limitation of
such approach is shape detalization. To get a precise 3D fa-
cial shape, multi-view camera systems are applied [19, 72]
or depth camera [18, 52, 54, 67, 68, 71], however, these sen-
sors suffer from limited spatial resolution. The FaceScape
dataset [65] contains textured 3D faces recorded using a
dense camera array under controlled lighting, which re-
trieves the 3D facial model preserving low-level details such
as small wrinkles and pores. The 3DFAW-Video dataset
[34] lacks subjects diversity, and is not really ”in-the-wild”;
300W-LP [50, 76] is synthetic and focuses only on faces.
In contrast to our dataset, none of the datasets is diverse,
accurate, dense, and in-the-wild at the same time.

3D Head Pose Estimation. Classical methods for head
pose estimation are based on traditional techniques such
as cascade detectors [60] or template matching [9]. Cas-
cade detectors localize the head for each pose [35], while
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a template matching approach compares query image with
a set of pre-labeled templates and finds a corresponding
pose [41, 55]. Geometric methods use facial landmarks re-
trieved from the input image and estimate the head pose
empirically [13, 29]. Regression and classification meth-
ods include wide-ranging methods that fit a mathematical
model to predict the head pose from labeled training data or
discretized set of poses [3,40,49,56,64,79]. Multi-task ap-
proach combines a head pose estimation learning with other
facial analysis tasks, such as Face Detection [46, 47, 78],
Face Recognition [47], Landmark Localization [46, 47, 78],
Alignment [17, 47, 70]. Our approach is related to the latter
one, where the study of 3D Head Reconstruction is coupled
with learning parameters of a 3D head model and Landmark
Localization.

3D Face Alignment. Early 3D Morphable Face Models
(3DMM) [4,44] were derived from a small amount of regis-
tered 3D scans, e.g., Basel Face Model (BFM) [44] has 200
human faces. More recent models such as FLAME [38]
are learnt from a significantly larger amount of scans, i.e.,
FLAME uses 3,800 3D scans of human heads. Neverthe-
less, the diversity of the scans is limited.

RingNet [53] is trained to estimate the 3D face shape
from a single image without direct 3D supervision to over-
come this limitation. In contrast, we train our model to
perform 3D head reconstruction from an image directly by
the 2D-3D supervision as provided in our dataset. Sim-
ilarly motivated is 3DDFA [77], a Cascaded CNN model
which directly predicts a dense 3DMM from the facial im-
age. This approach has been further extended and opti-
mized in [28] with meta-joint optimization to facilitate pa-
rameters regression. Another approach called DECA [24]
is trained to regress a parameterized face model. A re-
cent FAN model [12] has been constricted by stacking four
Hourglass models [42, 66] in which all bottleneck blocks
were replaced with the hierarchical, multi-scale and parallel
binary residual blocks [11]. Instead of using Landmark Lo-
calization, in [16] the authors propose to align human faces
directly from an image using 6 degrees of freedom (6DoF
3D) – rotations and translations along X , Y , Z axis. [31]
introduces a model with a lightweight attention mechanism
for Face Alignment. In contrast, we collect a large-scale,
diverse dataset with annotations directly in 3D and corre-
spond with FLAME topology. This enables efficient train-
ing of the DAD-3DNet for a range of 3D head tasks.

3. DAD-3DHeads Dataset
To create a large-scale dataset of in-the-wild images,

we repurpose a modern 3D modeling tool and introduce a
novel annotation scheme that addresses the problems ex-
hibited by existing labeling tools, such as ”guessing” the
positions of the correct landmarks for invisible parts of the
head, thus enabling accurate annotations for any head im-

ages. In this section we verify that obtained annotations are
accurate compared to the GT 3D scans, and of high quality,
i.e., reducing annotator’s errors by half.

3.1. Data acquisition

Figure 2. A labeling tool example. The annotator fits the 3D Head
model to the image by anchoring pinpoints. The corresponding 3D
textured render is available to ensure the visual plausibility of the
head shape.

We fit a 3D Morphable Model of a human head to a given
photo with a simple interface. The annotators do not ex-
plicitly control or label either the 3DMM parameters or the
blendshapes. The fitting is conditioned upon the visible part
of the head and the prior FLAME model [38]. The annota-
tors ”pin” the points on the 3D mesh surface (see Fig. 2,
left) to the specific pixels of the image. The mesh then un-
dergoes the optimization of the 3DMM parameters, so that
the ”pin” reprojection error is minimized. During the label-
ing process, labelers can see the texture rendered onto the
3D mesh with respect to their fitting to verify that the results
are visually plausible (Fig. 2, right). We use the 2D repro-
jection of the 3D mesh onto the image to ensure that the
boundaries of the facial features and the skull are correct,
and the relative depth information to confirm that the im-
age provides realistic texture mapping onto the human head
model. The details of the annotation procedure along with
the visuals - images of the intermediate steps and the full
video example - are provided in Supplementary. In total we
receive 5,023 dense landmarks consistent with the FLAME
topology, namely, FLAME mesh vertices.

3.2. Dataset Statistics

DAD-3DHeads dataset consists of 44,898 images col-
lected from various sources (37,840 in the training set,
4,312 in the validation set, and 2,746 in the test set). For
each image, we provide 5,023 vertices of the FLAME mesh,
3,669 of which are accurately labeled (we demonstrate it in
Sec. 3.3), neck and eyeballs excluded. We refer to this sub-
set of 3,669 landmarks as ”head” (see Fig.5 in Supplemen-
tary). We also provide the model-view and frustum pro-
jection matrices that map the 3D mesh from model space
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Figure 3. Dataset Properties: DAD-3DHeads is well balanced
over a wide range of poses, face expressions, and occlusions. The
attribute labels are a valuable signal for subgroup analysis and for
generalization to in-the-wild deployment conditions.

onto the image for different training scenarios and evalua-
tion purposes. In addition, we release rich attribute informa-
tion, showing the variability and unbiasedness of the data.
DAD-3DHeads attributes include head poses, presence of
emotions, occlusions (see Fig. 3), as well as gender, age
group, image quality, and illumination labels. The detailed
dataset card can be found in the Supplementary.

3.3. Annotation accuracy

To check the accuracy of our annotations, we calculate
the accuracy of the head shape reconstruction and head pose
estimation compared to ground-truth 3D scans.

3D Head Shape Reconstruction. To validate that DAD-
3DHeads annotations fit the head shape correctly, we com-
pare the 3D meshes to the ground-truth scans provided in
NoW [53] and Stirling [1] datasets, following the corre-
spondent evaluation protocols (see Sec. 5.3).

As both benchmarks provide scans only of the frontal
part of the face, the reconstruction of the whole skull can not
be validated by those methods - that is where we resort to
visual verification by our labelers as shown in Fig. 2 (right).

We explicitly validate the accuracy on neutral images
only since the 3D scans do not capture emotions, see the
quantitative results in Tab. 1a, Tab. 1b. For visual compari-
son, see Fig. 4. Note that the representation is coarse (same
as FLAME topology [38]), and we do not aim to model
wrinkles and other tiny details that scanners can capture.

3D Head Pose Estimation. To validate the goodness-of-
fit of the head pose, we compare the rotation matrices from
our annotations to the ground-truth matrices from the BIWI
dataset [23]. They are captured by Kinect v2 sensors, the
measurement error of which is 20mm [43].

(a) NoW [53] Dataset, ”multiview neutral” subset.

Model Median(mm) Mean(mm) Std(mm)
3DDFA-V2 [27, 28] 1.360 1.762 1.621
RingNet [53] 1.316 1.659 1.392
DAD-3DHeads 1.109 1.386 1.166

(b) Stirling [1] Database, ”Neutral expression, four views” subset.

Model 3DRMSE(mm) Median(mm) Mean(mm) Std(mm)
RingNet [53] 2.793 1.633 2.112 1.828
3DDFA-V2 [27, 28] 2.550 1.508 1.927 1.670
DAD-3DHeads 2.488 1.447 1.873 1.638

Table 1. DAD-3DHeads accuracy of 3D Face Shape Recon-
struction on NoW and Stirling DBs; SOTA methods as reference.

Method ||I −R1RT
2 ||F Angle error (degrees)

Img2Pose [2] 0.228 9.336
DAD-3DHeads 0.149 6.037

Table 2. DAD-3DHeads accuracy of 3D Head Pose estimation
on BIWI [23]; SOTA method as reference. The measure of R1R

T
2

deviation from identity matrix lies in the (0, 2
√
2) range [30].

Method FQ (avg NME) Best sample NME
2D 68 keypoints 3.210 2.326

DAD-3DHeads 68 landm. 1.737 (↓ 45.8%) 1.302

Table 3. Quality score. Annotation in 3D reduces the global av-
erage NME by 45.8%, see e.g. Fig. 5.

To compare the matrices R1 and R2, we calculate the
difference rotation R1R

T
2 , and measure (i) Frobenius norm

of the matrix I − R1R
T
2 , as in [30], and (ii) the angle in

axis-angle representation of R1R
T
2 , see Tab. 2.

3.4. Annotation quality

To verify the quality of our annotations, we have selected
a subset of N = 30 images from different categories in
the dataset. Each image was manually labeled with 68 fa-
cial landmarks, in the traditional configuration of [26], by
m = 10 different annotators. The same pictures were la-
beled following our annotation scheme (Sec. 3.1) in the 3D
labeling tool. The 68 reprojected landmarks were computed
from the 3D annotations to be comparable with the manual
2D-point labels. We compute the quality score FQ for each
approach (see Table 3), averaging across the images, as a
normalized mean error between each pair of labels:

FQ =
1

N

N∑
n=1

1

dn
· 2

m(m− 1)

m∑
i=1

∑
j>i

∣∣∣∣∣∣−→xin −
−→
xjn

∣∣∣∣∣∣
2
, (1)

where dn is the head bounding box size, as used in [32,
69], −→x is an array of 68 labeled landmarks. As our data is
mainly non-frontal, we do not use eye landmark distances
as a normalization factor.
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Figure 4. DAD-3DHeads accuracy on selected samples from the NoW dataset. (a) GT scan; (b) input image; (c) the result of our
annotation; (d) alignment of the mesh (wireframe) and the GT scan (with color-coded errors overlayed). The scale of the errors relates
to the real-world size of the scans. Note that the resulting meshes accurately capture the coarse shape of the frontal part of the head, the
regions of higher error heavily overlap with finer facial structures. We provide more examples, in high resolution, in the Supplementary
visualising this phenomenon. Best viewed zoomed in and in color.

Figure 5. Annotation Consistency. Images labeled with our 3D
annotation scheme (left) and with 68 2D points (right). Different
colors correspond to different labelers. The annotators are con-
sistent due to the conditioning by a 3D head model prior, which
ensures high quality of the DAD-3DHeads dataset even under ex-
tremely diverse conditions. Labeling of invisible landmarks is
highly inconsistent with the traditional approach, while using the
3D mesh fitting ensures high consistency even on occluded parts.

Limitations. Such labelling scheme provides only par-
tial control over depth. To mitigate this issue, we (i) provide
the annotators with the ability to see the rendered texture
onto the mesh in 3D, so they can inspect visually whether
the lack of depth information corrupted the skull shape, and
if the image provides realistic texture; (ii) propose Zn met-
ric (see Sec. 5.1) that assesses the depth quality.

4. Method

Our goal is to estimate a compact 3D Head represen-
tation from a single image. Given an image, we assume
the head is detected, loosely cropped, and approximately
centered. We introduce a novel architecture, DAD-3DNet,
that predicts a vector of 3DMM parameters disentangled

into shape, expression and pose, and a dense set of 2D
landmarks. The landmarks serve as additional supervision
and regularization and extend the range of applications that
could benefit from the DAD-3DNet model. The DAD-
3DNet architecture is illustrated in Fig. 6.

4.1. DAD-3DNet Architecture

Our architecture consists of (i) a CNN Encoder to extract
features from the image, (ii) a Landmark Heatmap Estima-
tor based on the BiFPN [58] to predict coarse locations of
2D landmarks, (iii) a Fusion Module that fuses the heatmap
predictions with the encoder features, and (iv) a Regression
Module that predicts finer facial landmarks locations and
3DMM parameters. We also use (v) a differential FLAME
Layer that maps the 3DMM vector to the 3D mesh vertices.

A pre-trained CNN Encoder extracts features from the
first four stages of a backbone network. The Landmark
Heatmap Estimator takes second to fourth stage feature
maps as an input and predicts coarse Gaussian heatmaps
using BiFPN, allowing easy and fast multi-scale feature fu-
sion. The Gaussian heatmaps with 1/4 of the original spa-
tial resolution are then interpolated to the size of the fourth
stage feature maps. The Fusion Layer incorporates the in-
terpolated Gaussian heatmaps, the original feature map, and
the BiFPN feature maps to encode a multi-scale representa-
tion with an Inception Module. A linear layer follows en-
coder representation to extract 2D landmarks locations.

4.2. Objective Function

We introduce a multi-component loss function for the
end-to-end training of DAD-3DNet to provide supervision
for different branches of the network. The loss function
consists of four different parts: Shape+Expression Loss
measuring goodness-of-fit of the 3D Head Shape (L3D),
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Figure 6. DAD-3DNet architecture design and model training benefit from the rich annotations in a multi-branch setup. The Gaussian
heatmap estimator predicts coarse locations of the head landmarks. The fusion block combines the coarse heatmap, BiFPN feature map,
and CNN encoder output to regress a set of 3D head model parameters and finer locations of head landmarks.

Reprojection Loss (Lproj) that incorporates pose infor-
mation, Landmark Regression (L1) and Gaussian Heatmap
Loss (LAWing [61]) to provide the supervision for the 2D
Facial Landmarks prediction branch. The detailed ablation
studies (Sec. 5.4) show the importance of each component.

Shape+Expression Loss: Following the notations used
in [53] , we denote the 3DMM coefficients as follows: shape
coefficients

−→
β ∈ R|

−→
β |, expression coefficients

−→
ψ ∈ R|

−→
ψ |.

The global rotation pose is modeled by
−→
θr ∈ R6 for continu-

ity of representation [74], and is separated from the jaw ro-
tation pose vector

−→
θj ∈ R3. In our approach we assume that

neck
−→
θn ∈ R3 and eyeballs

−→
θe ∈ R6 rotation coefficients are

equal to zero. The global rotation predictions are set to zero
to evaluate the discrepancy between our predictions and the
ground truth in 3D. The 3D vertices are computed from the
3DMM parameters using a differentiable FLAME layer. As
FLAME model [38] contains both the head and the neck,
but our task is narrowed down to the head mesh estimation,
we subsample the vertices vector −→v = −→v

(−→
β ,

−→
ψ ,

−→
θj
)

over
the set of ”head” vertex indices I: −→v |I .

The ground truth and the predicted mesh can differ in
scale and location, so we normalize φ both to fit into the
unit cube after subsampling.

The final loss term measures discrepancy between nor-
malized subsampled vertices:

L3D

(−→
β ,

−→
ψ ,

−→
θj

)
=

∣∣∣φ(−−−−→vpred|I
)
− φ

(−−−→
vGT |I

)∣∣∣
2
. (2)

Reprojection Loss is computed by projecting the 3D
vertices of the posed mesh onto the image. The posed mesh
is a ”zero-pose” mesh described above, to which we apply
the similarity transform (rotation R(

−→
θr), uniform scaling s,

and translation
−→
t ). The reprojection then is a simple or-

thographic projection onto the image plane. Here, as well,
only the ”head” vertices are included in the loss compu-
tation. The L1 criterion is used as a discrepancy measure

between the reprojected subsampled vertices.
The overall loss is a combination of the four terms:

L = λ1L3D + λ2L1 + λ3Lproj + λ4LAWing.
We use 50.0, 1.0, 0.05, 1.0 as λ1, λ2, λ3, λ4 respectively.

4.3. Implementation details

We implemented all of our models using PyTorch.
The backbone network is initialized using the pre-trained
weights on ImageNet. The differentiable FLAME layer is
kept fixed during the training. The number of learnable head
shape and expression parameters are set to 300 and 100, re-
spectively. All the models are trained using 1 RTX A6000
GPU, with a batch size of 256. We use an ADAM optimizer
with a learning rate = 1 ∗ 10−4 and a plateau learning rate
reducer with a reduce factor = 0.5 every six epochs when
the validation loss stops decreasing. The training takes one
day to converge. To preserve the scale ratio and shape of
the head, images are padded to the square size and then re-
sized to 256x256. We trained all models without any image
augmentations.

5. Experimental Evaluation

We propose DAD-3DHeads Benchmark for evaluating
(i) the task of 3D Dense Head Alignment from an image, (ii)
in-the-wild model generalization (when trained on our data)
to a range of 3D Head Learning tasks, and (iii) robustness to
extreme poses. To address (i), we provide a comprehensive
analysis of DAD-3DNet and several existing methods on
our benchmark, and report the findings in Tab. 4. To test
generalization (ii), we analyze the performance of DAD-
3DNet on the established benchmarks for 3D Face Shape
Reconstruction and 3D Head Pose Estimation, detailed in
Sec. 5.2, Sec. 5.3. To test robustness (iii), we evaluate DAD-
3DNet under train/test distribution shift in camera poses and
report our findings in Supplementary.
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Table 4. Comparison with state-of-the-art 3D Dense Head Alignment models on DAD-3DHeads Benchmark: We compute the metrics
on full test dataset as well as on challenging atypical poses (Pose), compound expressions (Expr.) and heavy occlusions (Occl.) subsets.
DAD-3DNet shows superior performance on all subsets. Note: Zn is computed only for methods that use FLAME mesh topology.

.

Pose NME↓ Z5 Accuracy↑ Chamfer Distance↓ Pose Error↓
Overall Pose Expr. Occl. Overall Pose Expr. Occl. Overall Pose Expr. Occl. Overall Pose Expr. Occl.

3DDFA-V2 [27, 28] 3.580 7.630 3.168 3.195 - - - - 6.17 8.878 6.410 6.400 0.527 0.790 0.455 0.542
RingNet [53] 8.757 26.732 5.010 12.660 0.880 0.743 0.913 0.860 5.166 5.704 5.792 5.993 0.438 1.076 0.294 0.551
DAD-3DNet 2.302 6.049 1.748 2.036 0.954 0.916 0.958 0.943 3.178 4.094 3.375 3.774 0.138 0.343 0.112 0.203

5.1. Metrics

Given a ground-truth mesh M on a particular frame, and
post-processed model output - predicted 3D vertices V , we
calculate how well V fit M . The goodness-of-fit measures
the pose fitting, and both face and head shape matching.
We propose two new metrics for the evaluation protocol:
Reprojection NME and Zn accuracy, in addition to Cham-
fer Distance and Pose Error reported previously for the 3D
Head Learning tasks.

Reprojection NME: we compute the normalized mean
error of the reprojected 3D vertices onto the image plane,
takingX and Y coordinates into account. Similar to Eq. (1),
we use head bounding box size for normalization. The met-
ric is computed on 68 landmarks [26].

Zn Accuracy: as our annotation scheme is conditioned
only upon model prior and the reprojection onto the image,
we do not guarantee the absolute depth values to be as accu-
rate as sensor data. We address this issue by measuring the
relative depth as an ordinal value of the Z-coordinate. For
each of K vertices vi of the GT mesh, we choose K clos-
est vertices {v1i , ..., vKi } , and calculate which of them are
closer to (or further from) the camera. Then, we compare if
for every predicted vertex wi this configuration is the same:
Zn = 1

K
1
n

∑K
i=1

∑n
j=1

(
(vi ⪰z vji ) == (wi ⪰z wji )

)
.

We do so on the ”head” subset of the vertices only.
Chamfer Distance: as the Zn metric is valid only for

predictions that follow FLAME mesh topology, we add
Chamfer distance to measure the accuracy of fit. To en-
sure generalization to any number of predicted vertices, we
measure a one-sided Chamfer distance from our ground-
truth mesh to the predicted one. We align them by seven
key points correspondences [53], and compute the distances
from the ”face” subset of the vertices only (see Fig.5 in Sup-
plementary), following the traditional approach [39, 53].

Pose Error: measuring the accuracy of pose prediction,
we want to overcome the issues observed in AFLW2000-
3D [36] Dataset. Creators of AFLW2000-3D measure the
head pose resorting to Euler angles. Such representation
is highly dependent on the order in which the rotations are
applied. Whenever the second rotation reaches over π

2 in
any direction, i.e., extreme head poses, other rotation axes
become linearly dependent, yielding an infinite number of
representations for the same transformation [15]. One can

Figure 7. AFLW2000-3D label inconsistencies. Some labels of
side or extreme atypical poses are inconsistent as the Euler angle
representation used is ambiguous due to gimbal lock.

observe inconsistencies caused by this in the AFLW2000-
3D [36] benchmark in Fig. 7.

To avoid that, we measure accuracy of pose prediction
based on rotation matrices [30] (see Sec. 3.3):

Errorpose = ||I −R1R
T
2 ||F

5.2. 3D Head Pose Estimation

We evaluate DAD-3DNet on AFLW2000-3D and BIWI
datasets for the task of 3D Head Pose Estimation.

BIWI Dataset [23] is gathered in a laboratory setting by
recording RGB-D video of different subjects across various
head poses using a Kinect v2 device. It contains frames with
the rotations ±75◦ for yaw, ±60◦ for pitch, and ±50◦ for roll.
A 3D model was fit to each individual’s point cloud, and the
head rotations were tracked to produce the pose annotations.

AFLW2000-3D Dataset [76] consists of the first 2,000
subjects of the in-the-wild AFLW dataset, which has been
re-annotated with image-level 68 3D landmarks and conse-
quently, contain fine-grained pose annotations.

Results: We report the results in Tab. 5a, Tab. 5b. The
proposed model outperforms all other 3DMM estimation
methods by a large margin, and shows comparable perfor-
mance to other state-of-the-art methods for head pose esti-
mation.

5.3. 3D Face Shape Reconstruction

For the task of 3D Face Shape reconstruction, we com-
pare the performance of DAD-3DNet with two state-of-the-
art publicly available methods: 3DDFA-V2 [27, 28], and
RingNet [53] on two 3D Face Shape reconstruction bench-
marks: NoW [53] and Feng et al. [39].

NoW Face Challenge: NoW benchmark is designed for
the task of 3D face reconstruction from single monocular
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Table 5. 3D head pose estimation results.

Model MAE ↓ Pitch MAE ↓ Roll MAE ↓ Yaw MAE ↓

3DDFA [27, 77] 19.07 12.25 8.78 36.18
Fan (12 points) [16] 7.88 7.48 7.63 8.53
Dlib (68 points) [33] 12.25 13.80 6.19 16.76
HopeNet [21] 4.90 6.61 3.27 4.81
Img2Pose [2] 3.79 3.55 3.24 4.57
3DDFA-V2 [27, 28] 8.81 12.08 7.54 6.80
RingNet [53] 7.34 5.37 7.82 8.82
WHENet [75] 3.81 4.39 3.06 3.99
DAD-3DNet 3.98 5.24 2.92 3.79

(a) BIWI [23]

Model MAE ↓ Pitch MAE ↓ Roll MAE ↓ Yaw MAE ↓

3DDFA [27, 77] 7.39 8.53 7.39 5.40
Fan (12 points) [16] 9.12 12.28 8.71 6.36
Dlib (68 points) [33] 13.29 12.60 9.00 18.27
HopeNet [21] 6.16 6.56 5.44 6.47
RetinaNet [20] 6.22 9.64 3.92 5.10
Img2Pose [2] 3.91 5.03 3.28 3.43
SynergyNet [62] 3.35 4.09 2.55 3.42
3DDFA-V2 [27, 28] 7.56 8.48 9.89 4.30
RingNet [53] 8.27 4.39 13.51 6.92
DAD-3DNet 3.66 4.76 3.15 3.08

(b) AFLW2000-3D [76]
Table 6. 3D face shape reconstruction results.

Model Median(mm) ↓ Mean(mm) ↓ Std(mm) ↓
3DDFA-V2 [27, 28] 1.234 1.566 1.391
RingNet [53] 1.207 1.535 1.306
DAD-3DNet 1.236 1.541 1.285

(a) NoW [53]

Model 3DRMSE↓ Median(mm)↓ Mean(mm)↓ Std(mm)↓
HQ LQ HQ LQ HQ LQ

3DDFA-V2 [27, 28] 2.998 1.500 1.779 1.942 2.350 1.704 2.149
RingNet [53] 2.809 1.698 1.634 2.161 2.113 1.832 1.831
DAD-3DNet 2.749 1.558 1.624 1.940 2.082 1.581 1.795

(b) Feng et al. [39]

images. The dataset contains 2054 2D images of 100 sub-
jects. Following the evaluation protocol, we predict the
meshes that are then rigidly aligned with corresponding
ground truth scans based on seven landmark points. The
scan-to-mesh distance is computed between them. The cal-
culated mean, median, and standard deviation errors are re-
ported in Table 6a.

Feng et al. Benchmark: [39] provides a subset of Stir-
ling/ESRC 3D face database as the test dataset for their
challenge. The test dataset consists of 2,000 2D various
expression facial images, including 656 high-quality (HQ)
images taken in controlled scenarios and 1,344 low-quality
(LQ) images extracted from video frames [1]. Follow-
ing [39] protocol that rehearses [53] we perform the afore-
mentioned steps and compute the scan-to-mesh distance
between the predicted meshes and the ground truth scans.
These distances are used to compute the 3DRMSE. We also
compute mean, median and standard deviation errors for
HQ and LQ images separately for in-depth analysis. The

results of evaluation are provided in the Table 6b.
Results: DAD-3DNet shows superior performance to

other methods for coarse 3D dense head alignment without
using explicit Shape and Expression disentanglement loss.

5.4. Ablation study

In this section, we verify the efficiency of the separate
loss components and demonstrate the impact of the training
data. We report the results of an ablation study in Table 7.

Component NME↓ Z5 Acc.↑ Pose↓
1 baseline 2.576 0.880 0.267
2 + full face reprojection loss 2.395 0.873 0.263
3 + full head reprojection loss 2.500 0.943 0.172
4 + shape+expression loss 2.471 0.951 0.139
5 + landmark prediction head 2.302 0.954 0.138

Table 7. DAD-3DNet ablation study on DAD-3DHeads: The
loss terms have significant impact on the fitting accuracy, and the
multi-head architecture improves the model generalization.

Reprojection Loss: Supervision based on reprojected
landmarks is a core part of the training algorithms. Com-
pared to the models that use supervision based on 68 key-
points, we have only added the reprojection loss based on
all available face and head points. Incorporating informa-
tion about other facial landmarks improves the accuracy of
reprojected 68 landmarks but does not impact the other met-
rics and does not improve the 3D fitting; adding points of
the whole head improved all the metrics by a large margin.
Additional full head supervision improves the model stabil-
ity by enforcing to learn the entire head shape.

Shape+Expression Loss: Rich supervision of the nor-
malized 3D vertices locations enables the model to encode
more nuanced information about the 3D head pose. As
shown in Table 7 this component improves all of the metrics
and reduces the 3D head pose error significantly.

Landmarks Head: Multi-task training improves the
model stability and enforces the model to prefer more gen-
eral representations. With the landmarks regression and
coarse heatmap estimation modules, the model achieves a
significant boost in performance on all metrics yet again.

6. Conclusions

We introduce DAD-3DHeads, a dense, accurate, and di-
verse 3D Head dataset in the wild. We demonstrate the effi-
ciency and accuracy of the data and novel loss components
by training a data-driven DAD-3DNet model. DAD-3DNet
achieves superior performance on diverse 3D head tasks and
successfully generalizes to in-the-wild conditions.
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Çeliktutan, Berk Gökberk, Bülent Sankur, and Lale Akarun.
Bosphorus database for 3d face analysis. In European Work-
shop on Biometrics and Identity Management, pages 47–56.
Springer, 2008. 2

[55] Jamie Sherrah, Shaogang Gong, and Eng-Jon Ong. Under-
standing pose discrimination in similarity space. In British
Machine Vision Conference (BMVC), pages 1–10. Citeseer,
1999. 3

[56] Sujith Srinivasan and Kim L Boyer. Head pose estimation us-
ing view based eigenspaces. In Object recognition supported

20951



by user interaction for service robots, volume 4, pages 302–
305. IEEE, 2002. 3

[57] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolu-
tional network cascade for facial point detection. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2013. 2

[58] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet:
Scalable and efficient object detection. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 10781–
10790, 2020. 5

[59] Justus Thies, Mohamed Elgharib, Ayush Tewari, Chris-
tian Theobalt, and Matthias Nießner. Neural voice pup-
petry: Audio-driven facial reenactment. In European Confer-
ence on Computer Vision (ECCV), pages 716–731. Springer,
2020. 1

[60] Paul Viola and Michael Jones. Rapid object detection using
a boosted cascade of simple features. In IEEE Computer
Vision and Pattern Recognition (CVPR). IEEE, 2001. 2

[61] Xinyao Wang, Liefeng Bo, and Li Fuxin. Adaptive wing
loss for robust face alignment via heatmap regression. In
International Conference on Computer Vision (ICCV), pages
6971–6981, 2019. 6

[62] Cho-Ying Wu, Qiangeng Xu, and Ulrich Neumann. Synergy
between 3dmm and 3d landmarks for accurate 3d facial ge-
ometry. arXiv preprint arXiv:2110.09772, 2021. 8

[63] Wayne Wu, Chen Qian, Shuo Yang, Quan Wang, Yici Cai,
and Qiang Zhou. Look at boundary: A boundary-aware
face alignment algorithm. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2129–2138,
2018. 2

[64] Yan Yan, Elisa Ricci, Ramanathan Subramanian, Oswald
Lanz, and Nicu Sebe. No matter where you are: Flexible
graph-guided multi-task learning for multi-view head pose
classification under target motion. In International Confer-
ence on Computer Vision (ICCV), pages 1177–1184, 2013.
3

[65] Haotian Yang, Hao Zhu, Yanru Wang, Mingkai Huang, Qiu
Shen, Ruigang Yang, and Xun Cao. Facescape: a large-scale
high quality 3d face dataset and detailed riggable 3d face pre-
diction. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 601–610, 2020. 2

[66] Jing Yang, Qingshan Liu, and Kaihua Zhang. Stacked hour-
glass network for robust facial landmark localisation. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 2025–2033, 2017.
3

[67] Baocai Yin, Yanfeng Sun, Chengzhang Wang, and Yun Ge.
Bjut-3d large scale 3d face database and information pro-
cessing. Journal of Computer Research and Development,
46(6):1009, 2009. 2

[68] Lijun Yin, Xiaozhou Wei, Yi Sun, Jun Wang, and Matthew J
Rosato. A 3d facial expression database for facial behav-
ior research. In International Conference on Automatic Face
and Gesture Recognition (FGR06), pages 211–216. IEEE,
2006. 2

[69] Xiang Yu, Junzhou Huang, Shaoting Zhang, Wang Yan, and
Dimitris N Metaxas. Pose-free facial landmark fitting via op-
timized part mixtures and cascaded deformable shape model.

In International Conference on Computer Vision (ICCV),
pages 1944–1951, 2013. 4

[70] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao.
Joint face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Letters,
23(10):1499–1503, 2016. 2, 3

[71] Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Cana-
van, Michael Reale, Andy Horowitz, and Peng Liu. A
high-resolution spontaneous 3d dynamic facial expression
database. In IEEE International Conference and workshops
on Automatic Face and Gesture Recognition (FG), pages 1–
6. IEEE, 2013. 2

[72] Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Canavan,
Michael Reale, Andy Horowitz, Peng Liu, and Jeffrey M Gi-
rard. Bp4d-spontaneous: a high-resolution spontaneous 3d
dynamic facial expression database. Image and Vision Com-
puting, 32(10):692–706, 2014. 2

[73] Guoyan Zheng, Shuo Li, and Gabor Szekely. Statistical
shape and deformation analysis: methods, implementation
and applications. Academic Press, 2017. 1

[74] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 5745–5753, 2019. 6

[75] Yijun Zhou and James Gregson. WHENet: Real-time fine-
grained estimation for wide range head pose. arXiv preprint
arXiv:2005.10353, 2020. 8

[76] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and
Stan Z Li. Face alignment across large poses: A 3d solu-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 146–155, 2016. 2, 7, 8

[77] Xiangyu Zhu, Xiaoming Liu, Zhen Lei, and Stan Z Li. Face
alignment in full pose range: A 3d total solution. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
41(1):78–92, 2017. 3, 8

[78] Xiangxin Zhu and Deva Ramanan. Face detection, pose es-
timation, and landmark localization in the wild. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2879–2886. IEEE, 2012. 3

[79] Youding Zhu and Kikuo Fujimura. Head pose estimation for
driver monitoring. In IEEE Intelligent Vehicles Symposium,
2004, pages 501–506. IEEE, 2004. 3

20952


