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Figure 1. Generated images conditioned on text prompts (top row) disclose the entanglement of written words and their visual concepts.

Our proposed orthogonal projections of the vector space disentangle the space into one corresponding to visual concepts (middle row), and

written words (bottom row).

Abstract

The CLIP network measures the similarity between nat-

ural text and images; in this work, we investigate the entan-

glement of the representation of word images and natural

images in its image encoder. First, we find that the image

encoder has an ability to match word images with natural

images of scenes described by those words. This is consis-

tent with previous research that suggests that the meaning

and the spelling of a word might be entangled deep within

the network. On the other hand, we also find that CLIP has

a strong ability to match nonsense words, suggesting that

processing of letters is separated from processing of their

meaning. To explicitly determine whether the spelling ca-

pability of CLIP is separable, we devise a procedure for

identifying representation subspaces that selectively isolate

or eliminate spelling capabilities. We benchmark our meth-

ods against a range of retrieval tasks, and we also test them

by measuring the appearance of text in CLIP-guided gener-

ated images. We find that our methods are able to cleanly

separate spelling capabilities of CLIP from the visual pro-

cessing of natural images.

1. Introduction

The distinction between written words and visual objects

is crystal clear for us: we would never confuse an object

with a written word describing that object. However, it has

been shown [9] that attaching a white sheet of paper with

ªiPadº written on it to an apple, will cause a neural net-

work to shift its prediction to lean towards what is written

instead of recognizing the fruit. We hypothesize that the

network learns to confuse text with objects because of the

prevalence of text in real-world training data: text on prod-

ucts, signs, and labels is often visible next to the thing it

represents (Figure 2), which is perhaps why a neural net-

work would struggle to distinguish an object from its writ-

ten name. Beginning with a pretrained network that exhibits

this text/object confusion, we ask if the perception of text by

a network can be separated from the perception of objects.

We study the representations of the CLIP [20] network,

which is trained to measure the similarity between natu-

ral text and images, and which has been shown to be vul-

nerable to confusion between written text and visual con-

cepts [9,16]. In [9], feature visualizations of neurons within

CLIP revealed the presence of ªmulti-modal neuronsº that
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Figure 2. Top row: examples of written text in natural images, bot-

tom row: generated images conditioned on words ("peas", "stop

sign", "hall", "bar", "snickers").

activate when presented with different forms of the same

concept; for example, the same neuron will activate on an

image of a written word and an image of the object de-

scribed by that word. In addition to this, we have found that

text-to-image generation methods that use CLIP will spell

out the word they have been conditioned on (Figure 1). To-

gether, these findings indicate a deeply rooted correlation

between written words and their visual concepts in the im-

age encoder of CLIP.

In this paper, we investigate how CLIP makes sense

of written words, and whether CLIP distinguishes its un-

derstanding of written words from their visual meaning.

Specifically, we investigate whether the image encoding

permits separation of information about written words from

the visual concepts described by those words. We find that

a simple setup and an orthogonal projection can in fact sep-

arate the two capabilities. We demonstrate applications of

this disentanglement by removing text artifacts in text-to-

image generation, and by defending against typographic at-

tacks. We collect a dataset of 180 images of 20 objects and

8 attacks and measure the confusion between the true object

labels and typographic attacks between the CLIP model and

our disentangled representation. We find that in both dis-

tinct applications, the effect of text is greatly reduced.

2. Related Works

Understanding Representations Our work follows the

tradition of a line of approaches for understanding the in-

ternal representations of a model by training a small model

on the representation: [1] proposed training simple classi-

fier probes for testing the presence of information in a net-

work; [26] observes that such linear probes can be used to

create explanations of a decision and [7] uses such probing

models to map a dictionary of concepts through a network.

Conversely, [15] proposes using gradients of a simple clas-

sifier to estimate the sensitivity of a network to a classified

concept, and to distinguish between causal and correlative

effects. Our work to identify the text processing subspace

within CLIP differs from previous methods because we use

a contrastive loss to identify a large representation subspace

for information about visual words. Rather than measuring

classification accuracy, we verify our findings by applying

the probed model to generate images. Concurrent work [16]

applies cognitive science tools and finds evidence that the

vision and language do not share semantic representation in

CLIP network, consistent with our findings.

Controllable GAN Generation Increasingly powerful

image GAN models have sparked interest in steerable im-

age generation methods that synthesize an image by guid-

ing the generator towards some objective: GAN output can

be steered by directly guiding generation towards target im-

ages [12]; or by optimizing loss of a classifier [8, 23]; or

PCA, clustering or other methods can also be used to di-

rectly identify meaningful representation subspaces for ma-

nipulating a GAN [3, 11, 24]. The release of CLIP [20],

a large-scale model to score text-and-image similarity has

unleashed a wave of creativity, because it enables any gen-

erative model to be guided by open text. The state-of-the-

art DALL-E [21] uses CLIP; and CLIP has also been com-

bined with StyleGAN [2, 14, 19], BigGAN [18], and VQ-

GAN [4±6]. Like these methods, we investigate the ability

of CLIP to steer VQGAN, however instead of generating in-

dividual images, we ask whether the broad ability of CLIP

to read and draw visual words can be controlled.

3. Terminology

To avoid confusion while discussing words within im-

ages, we begin by defining some terminology.

Kinds of images:

• image text:

± synthetic image text : an image of text rendered on a

white background

± image text in the wild: text on a signboard found in a

photograph of a real scene

• natural images: images depicting the real world

• natural image with text: natural image is modified by adding

rendered text

• natural image with word class label: natural image with text,

where the text is a class name

Kinds of text:

• text class label: the text name of a class category, composed by

prepending a string ªan image of aº to the name

• text string: a word as processed by a text encoder; this could be

either a real English word or a fake nonsense string, composed

of random letters

4. Visual comprehension

Does the image encoder of CLIP encode image text dif-

ferently from the way it encodes the visual concept de-

scribed by that same text?
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Figure 3. Visual comprehension tasks, 1) associating natural im-

ages with word class label images, 2) word image and language

word retrieval.

Model Top-1 Accuracy

Places 365 ImageNet

CLIP ViT-B/32 ZS with PE 39.47 63.36

CLIP ViT-B/32 ZS without PE 37.25 56.72

CLIP image to image class 15.58 10.58

Random baseline 0.1 0.27

Table 1. Image classification as visual comprehension task, ZS

denotes zero-shot and PE prompt engineering.

We investigate this question by measuring the ability of

CLIP to solve a task that it was not originally trained to

do: rather than matching natural images with text strings

as encoded by the text encoder, we test the ability of CLIP

to match natural images with image text as encoded by the

CLIP image encoder, discarding the text encoder entirely.

For example, we ask whether the CLIP image encoder will

match visual image text of the word ªplaygroundº with a

natural image of a playground scene. (Figure 3)

We consider two datasets, Places 365 [25] and Ima-

geNet [22], and report the top-1 validation accuracy of our

task in Table 1. This visual comprehension task achieves

15.58% top-1 accuracy on Places 365 and 10.58% top-1 ac-

curacy on ImageNet. While accuracy is lower than zero-

shot image-to-text classification, our result is far better than

random, and it confirms our hypothesis that the CLIP image

encoder correlates written words with their visual meaning.

Next we investigate if CLIP relies on understanding the

meaning of a word to read a word. In particular, we ask

how well CLIP can associate any string, including both real

English words, and fake word nonsense strings, created by

uniformly sampling letters from the Latin alphabet of length

ranging from 3 to 8. We form image text with these strings,

and we compute the retrieval score (1 out of 20k) on the

set of real, fake and all strings and report the results in Ta-

ble 2. Strikingly, we observe that CLIP is able to retrieve

both real words and nonsense strings, despite (most likely)

never having seen those nonsense strings in natural images.

This leads us to the question: how does the image en-

coder of CLIP read? Is its reading capability separated

from its other visual processing, for example as a distinct

capability to recognize and spell out individual letters? Or

# image text and text string Retrieval score

Img2Txt Txt2Img

All strings 40 000 60.66 75.97

Real words 20 000 76.38 91.46

Nonsense strings 20 000 61.77 79.19

Table 2. Text to image retrieval on real words and nonsense

strings.

is its OCR deeply entangled with its understanding of real

words, inseparable from the perception of natural images

described by that word? To resolve that question, we design

and benchmark a method to disentangle text and natural im-

age processing.

5. Disentangling Text and Vision with Linear

Projections

Motivated by the deeply rooted confusion between writ-

ten text and visual concepts, we aim to disentangle the CLIP

vector space’s visual space from the written one. Our ap-

proach is to identify an orthogonal, lower-dimensional pro-

jection of the learned representations to achieve this goal.

To this end, we collect a dataset consisting of tuples with

five elements (xi, yi, xt, yt, xit). The first two elements

(xi, yi) are natural images and their text class labels. Im-

age texts and text strings (xt, yt), and xit being the natural

image xi with the string from the synthetic image text xt

rendered on it.

Figure 4. In our method, different pairs from the tuple

(xi, yi, xt, yt, xit) are trained to minimize their distance in the

projection space. The losses in red correspond to the task of visual

concepts, and the losses in blue to the distilling written words.
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Figure 5. Varying bottleneck dimension of the learned projection

matrix versus retrieval score on the text retrieval task.

We precompute the CLIP embeddings of the images and

text prompts using CLIP vision and text encoders, and train

an orthogonal matrix W for each of the tasks. During train-

ing, depending on the task, we apply a symmetric cross en-

tropy Li on the given pair of embeddings, following the

CLIP training procedure. We also introduce a regularizer

term to the loss R(W ) = ∥I −WWT ∥ that encourages W

to be orthogonal.
We call the projection that captures the written concepts

in the network: ªlearn to spellº model. This model should
be able to respond well to the text and images of text hence,
the embeddings of the image texts xt and the embedding
of the text strings yt should be close in space, similarly a
natural image with text xit should be close to either the im-
age text and text strings (xt, yt). Those losses are shown in
blue in Figure 4. The losses shown in red correspond to the
opposite task, learning to ignore the written text in natural
images. Thus, during training the ªlearn to spellº model,
we maximize the red objectives and minimize the blue ob-
jectives. The overall loss can be written as:

Lspell = −L1 − L2 − L6 + L3 + L4 + L5 + γR(W ) (1)

The ªforget to spellº model, that focuses on the visual parts
in images, will conversely aim to minimize the red and max-
imize the blue objectives.

Lforget = L1 + L2 + L6 − L3 − L4 − L5 + γR(W ) (2)

We empirically test the effects of the contributing loss terms

and present results in section 6.1.

6. Experiments

For training the projection matrices, we take the Ima-

geNet dataset, for each natural image and text class label

xi, yi we sample a string and generate a pair of a word im-

age and a text string xt, yt, and a natural image with text

xit. The string yi is written as a text ªan image of class

labelº. We use a corpus of 202587 English words, we use

182329 words in the training set and 20258 in the valida-

tion set, the words are all lower case, between 3 and 10

letters. For half of the tuples in our dataset we use non-

sense strings, which are generated by uniformly sampling a

length of the string (between 3 and 10), and sampling letters

from the Latin alphabet. We are not using any prompts for

the language embeddings and follow the image processing

pipeline from [20].

We train each projection matrix for 1 epoch, with learn-

ing rate 0.0001, step learning rate decay of factor 0.5 every

4000 steps with Adam optimizer. We use batch size 128.

The size of the matrix W is tuned for each task. For the

ªlearn to spellº task, we test bottleneck dimensions between

32 and 512 with increment of 32, using only loss L4 and

γ = 0.5, the retrieval accuracy image to text on fake images

is shown in Fig. 5. The matrix with 512x512 dimensions

achieves comparable performance to the original CLIP net-

work, this is because the regularizer term forces the matrix

W to be orthogonal, hence at the original dimension, we

simply learn a rotation in the space, and the accuracy score

remains (nearly) the same. We observe that the highest ac-

curacy is reached at 64 dimensions, and steadily decreases

when choosing a larger or smaller number. Intuitively, this

suggests that the ability to recognize written text can be en-

coded in 64 dimensions. Our next ablations for this model

are concerning a matrix 512x64 dimensions.

We ablate different terms in of the Lspell loss and re-

port the results in Table 3, for the tasks involving image

classification we report top-1 accuracy, for the other tasks

we report the retrieval score on the set of 20258 real words

images and text and the same number of fake words for a

fair comparison. We choose to report the score separately

for the set and real and fake images, because the network

has a prior knowledge about real words, and we want to

test its generalization ability to any strings. The tasks that

should improve are noted with ↑, and conversely the task

that should impair are denoted with ↓. The columns marked

blue are the ones corresponding to ªlearn to spell taskº, we

expect the performance of on those tasks to improve, and

conversely the performance on the tasks marked with red to

deteriorate. We can observe that the positive terms in the

loss generally improve the performance of the model, albeit

the full loss as show in 5 is not the best performing, as our fi-

nal model we choose the model trained with L1, L3, L4, L5.

We compare our best model with a model trained without

the regularization term, we can see that it achieves lower

performance by 10% on the most important tasks involv-

ing correlating word images with text strings, and natural

images with text with text strings ((xt, yt), (xit, yt)).

Similarly, for the ªforget to spellº model, we empirically

find that the model performs the best at task 1 (xit, xi) with

256 dimensions. We present the ablations with different loss
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Figure 6. Images generated with text-conditioning using CLIP, "learn to spell" model, and "forget to spell" model. Text prompts used

for nonsense strings (from left to right, starting from top left: ’vfnpcd’, ’ebnr’, ’hcioo’, ’vhhh’, ’feayv’, ’jqtibdy’, ’jlsbmg’, ’wcpinc’,

’fysllqb’, ’duxwf’, ’ipaut’, ’vjcxc’, ’ipcui’, ’froyl’, ’imcqvg’, ’irmin’, ’qzdyf’, ’qhyx’, ’yfeseni’, ’xdegiw’. Text prompts used for real

words: ’long’, ’quiet’, ’white’, ’economics’, ’physics’, ’internet’, ’private’, ’ordinary’, ’special’, ’equal’, ’soft’, ’drawing’, ’negative’,

’feeling’, ’homework’, ’wing’, ’western’, ’exam’, ’politics’, ’formal’.
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Top-1 Accuracy Retrieval Accuracy [img2txt]

Loss ↓ (xi, yi) ↓ (xit, yi) ↑ (xt, yt) ↑ (xit, xt) ↓ (xit, xi) ↑(xit, yt)

real fake real fake real fake real fake

L1 L2 L3 L4 L5 L6 R(W )
56.72 33.04 76.27 61.88 98.87 95.64 89.97 89.53 62.57 48.52

✓ 0.5 0.99 0.16 89.62 87.58 99.00 98.13 4.29 2.36 84.01 79.69

✓ ✓ 0.5 0.52 0.12 90.88 87.59 99.46 98.93 1.29 1.06 88.81 83.81

✓ ✓ ✓ 0.5 0.2 0.13 90.86 87.49 99.43 98.94 1.19 0.94 88.58 83.96

✓ ✓ ✓ 0.5 0.51 0.11 91.86 88.06 99.54 99.06 1.22 1.05 90.28 84.75

✓ ✓ ✓ ✓ 0.5 0.19 0.13 91.89 88.15 99.55 99.1 1.21 0.98 90.3 84.77

✓ ✓ ✓ ✓ ✓ 0.5 0.17 0.06 89.81 87.49 99.29 99.00 1.22 1.02 87.43 83.51

✓ ✓ ✓ ✓ ✓ ✓ 0.5 0.01 0.05 84.11 85.0 99.25 98.9 1.56 1.06 81.13 80.32

✓ ✓ ✓ ✓ 0.5 0.19 0.13 91.89 88.15 99.55 99.1 1.21 0.98 90.3 84.77

✓ ✓ ✓ ✓ 0.0 0.08 0.08 82.07 79.86 98.19 97.88 0.6 0.23 76.78 74.38

Table 3. The ablation of the effects of different loss terms across classification and retrieval tasks of the tuples on the validation set for the

"learn to spell" model.

Top-1 Accuracy Retrieval Accuracy [img2txt]

Loss ↓ (xi, yi) ↓ (xit, yi) ↑ (xt, yt) ↑ (xit, xt) ↓ (xit, xi) ↑(xit, yt)

real fake real fake real fake real fake

L1 L2 L3 L4 L5 L6 R(W )
56.72 33.04 76.27 61.88 98.87 95.64 89.97 89.53 62.57 48.52

✓ 0.5 41.30 34.01 2.11 0.08 7.78 1.46 99.02 99.19 0.15 0.03

✓ ✓ 0.5 49.92 40.96 5.87 0.3 13.51 2.81 98.34 98.88 0.38 0.04

✓ ✓ ✓ 0.5 51.52 41.39 8.47 0.5 21.21 4.96 97.57 98.28 0.57 0.04

✓ ✓ ✓ ✓ 0.5 50.37 40.62 1.39 0.09 9.14 1.98 97.84 98.42 0.18 0.05

✓ ✓ ✓ ✓ ✓ 0.5 49.68 40.05 0.08 0.00 10.67 2.8 98.01 98.56 0.13 0.04

✓ ✓ ✓ ✓ ✓ ✓ 0.5 49.60 40.05 0.07 0.01 10.45 2.78 97.99 98.58 0.15 0.03

✓ ✓ ✓ ✓ 0.5 50.37 40.62 1.39 0.09 9.14 1.98 97.84 98.42 0.18 0.05

✓ ✓ ✓ ✓ 0.0 12.89 9.40 0.01 0.01 0.09 0.02 23.48 31.88 0.01 0.01

Table 4. The ablation of the effects of different loss terms across classification and retrieval tasks of the tuples on the validation set for the

"forget to spell" model.

terms in Table 4. We choose our final model as the model

trained with combination of loss terms, L1, L2, L5, L6. In

this case, we expect the performance of the tasks marked

red to improve and the performance of the columns marked

with blue to drop. Again, for this task, the orthogonal-

ity constraint is crucial. We observe that the performance

of the model trained without the orthogonal regularization

term drops drastically for all the tasks.

7. Evaluation

7.1. Text Generation

To visualize the written text (dis-)entanglement, we gen-

erate images conditioned on text prompts. We use an open-

source implementation from [5] of a VQGAN generation

model [6] which steers the image generation based on a text

prompt. A discrete latent code is randomly sampled, and

then optimized such that the cosine similarity between the

CLIP embedding of a generated image and the CLIP em-

bedding of the target text prompt is maximized.

To inspect our learned projections, we follow the same

Figure 7. Text detection evaluation in images generated with dif-

ferent models.

scheme, but compute the loss on the W-projections of the

synthesized image and text CLIP embeddings. It is impor-

tant to highlight that our goal is not a novel font synthe-

sis or improving the quality of the text-to-image generation,

but rather using this task as a lens into our learned projec-

tions. We generate 1000 images conditioned on real English
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Figure 8. Qualitative examples of the OCR detection in the images

generated using the CLIP model and our learned projections.

words from our validation set, and 1000 images conditioned

on nonsense strings from the validation text string set using

VQGAN+CLIP and both of our projection models. Figure 1

presents samples of generated images: the first row shows

images generated with the original VQGAN+CLIP setting,

capturing the visual concepts of the target prompts, and in

cases of ªpeasº, ªtimeº, ªfocusº, and ªpoliceº also show-

ing the letters of the words. The ªforget to spellº model

is able to capture the visual concepts of the words without

the letters, and the ªlearn to spellº model shows imperfect,

but legible letters corresponding to the text prompt. Fig-

ure 6 shows more qualitative results, using both real and

fake words as text prompts. In case of nonsense strings,

the VQGAN+CLIP method is more likely to produce im-

age text, possibly because nonsense string text prompts do

not have a visual meaning associated with them. The im-

ages generated with the ªforget to spellº model still contain

text-like texture, but with less resemblance to the Latin al-

phabet than to Asian text forms.

To quantify the appearance of text, we detect words in

images using an open-source OCR tool [13]. State-of-the

art OCR recognition models are typically trained on either

natural images with text [10] or synthetic datasets of nat-

ural images with rendered text [10]. While our generated

images are much different from those training datasets, we

qualitatively inspect the predictions and find them accurate

(Figure 8). A text detection in an image is recognized if

the area of the detected word is larger than 10% of the area

of the image and there are at least 2 letters in the predicted

word that are the same as the target text prompt.

Results of OCR text detection are shown in Figure 7.

The difference in all detections across all words between the

original model and the ªlearn to spellº projection is 25.43%,

and between the ªlearn to spellº model and the ªforget to

spellº model is 54.92%. The gap is more prominent when

Figure 9. Word detection rates in "learn to spell" models trained

with and without orthogonality constraint.

Figure 10. Images generated conditioned on regularized and un-

regularized "forget to spell" model.

looking at real-word-conditioned generations, which con-

firms the qualitative analysis. The difference between the

prevalence of detections is less significant in fake-word-

conditioned generations, which we attribute to the fact that

those words lack visual meaning.

Non-orthogonal projections We compare the image

generation experiments between the projections trained

with and without orthogonal constraints. The orthogonal

ªlearn to spellº model shows 17.5% more text detections

than its non-orthogonal comparison (Figure 9). Similarly,

we test the importance of orthogonality in the ªforget to

spellº model. While the detection rate in those images is

close to 0%, the images generated using non-orthogonal

model have collapsed to a single pattern of red background

(Figure 10). Without the orthogonality constraint, the pro-

jection is no longer able to preserve the original CLIP model

representations, and loses any meaning.

7.2. Robustness

Our second evaluation task is OCR. We consider the

IIIT5K dataset [17], a dataset of natural images of cropped

words. We compute a retrieval score on the lexicon clas-

sification task (1 out of 1000), and a retrieval amongst all

the unique words in the dataset (1 out of 1772). In the
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a)

b)

Matches for 
true label are 

preserved

Typographic
attack labels

True object 
labels

. . .

Matches for 
attack text 

are reduced

c)
b)

A typographic attack image

Figure 11. A test on a data set of 200 text attack images, a) shows a similarity matrix between the embeddings images with typographic

attacks and the the text embeddings of typographic attack labels and true object labels obtained by the CLIP model, b) shows the same

similarity matrix obtained by the Forget-to-Spell model.

Model Dimension Regularized Accuracy

IIIT5K 1K IIIT5K

CLIP 512 69.43 63.00

Learn to spell 128 ✓ 67.67 63.20

Learn to spell 128 45.56 39.23

Learn to spell 64 ✓ 64.56 61.17

Learn to spell 64 44.80 39.00

Table 5. Out-of-domain generalization evaluation on the IIIT5K

dataset.

first task, our projection with 128 dimensions is able to

achieve a performance only 1.76% lower than the original

512-dimensional embedding, despite the testing task being

out-of-domain. When testing on the full dataset, we see a

0.2% improvement over the original CLIP model. When

testing on a 64-dimensional projection, the orthogonal pro-

jection obtains a 4.87% drop in performance, whereas the

non-orthogonal projection suffers a 24.63% drop (Table 5).

To test the typographic attack setting, we collect a dataset

of 180 images of 20 objects and 8 typographic attacks.

The accuracy of CLIP on true object labels is only 49.4%,

whereas the ªforget- to-spellº model obtains 77.2%. Fig-

ure 11 shows the full similarity matrices, in Figure 11a, the

diagonal pattern for each object on all typographic attack

labels shows that CLIP responds strongly to the text label,

while in Figure 11b, this sensitivity to text is reduced. Sen-

sitivity to the true object label is preserved. Note, that the

projection matrices were trained to disentangle text in im-

ages only with synthetic text images, and the testing data

shows natural images with text, which demonstrates the out-

of-domain generalization of the Forget-to-spell model.

8. Limitations

Our method delivers orthogonal subspaces of the CLIP

vector space that can generate images with more and fewer

visual words in synthesized images. However, we can not

perfectly avoid text all together when using the ªforget to

spellº projection, nor can we guarantee perfectly written

text using the ªlearn to spellº projection. As seen in our

qualitative (Figure 6) and quantitative (Figure 9) results,

some target text prompts remain in generated images, and

in others we can observe some letters from the target word.

9. Conclusion

We have studied the relationship between rendered text

and its visual meaning as represented by the CLIP network,

motivating the problem with examples of text confusion

when generating an image. We have found that a learned

orthogonal projection is able to disentangle the written and

visual comprehension in the CLIP image encoding; orthog-

onality is crucial for our method. We have explored two

distinct applications: reducing text artifacts in text-to-image

generation, and defense against typographic attacks, col-

lecting an evaluation dataset of typographic attack images

to measure the latter. We find that our method is effective in

both applications, controlling generation of text in images,

and reducing text confusion in zero-shot classification.
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