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Abstract

Given weak supervision from image- or video-caption
pairs, we address the problem of grounding (localizing)
each object word of a ground-truth or generated sen-
tence describing a visual input. Recent weakly-supervised
approaches leverage region proposals and ground words
based on the region attention coefficients of captioning
models. To predict each next word in the sentence they at-
tend over regions using a summary of the previous words
as a query, and then ground the word by selecting the
most attended regions. However, this leads to sub-optimal
grounding, since attention coefficients are computed with-
out taking into account the word that needs to be local-
ized. To address this shortcoming, we propose a novel
Grounded Visual Description Conditional Variational Au-
toencoder (GVD-CVAE) and leverage its latent variables
for grounding. In particular, we introduce a discrete ran-
dom variable that models each word-to-region alignment,
and learn its approximate posterior distribution given the
full sentence. Experiments on challenging image and video
datasets (Flickr30k Entities, YouCook2, ActivityNet Enti-
ties) validate the effectiveness of our conditional generative
model, showing that it can substantially outperform soft-
attention-based baselines in grounding.

1. Introduction
Linking words to visual regions provides a fine-grained

bridge between vision and language modalities and is a fun-
damental block of many applications, such as human-robot
interaction [57, 60], visual question answering [27, 61], and
even unsupervised neural machine translation [58]. Thus,
visual grounding has become a prominent research area
at the intersection of vision and language [12, 16, 29, 51].
Training visual grounding systems typically requires an-
notations of textual descriptions combined with bounding
boxes for each groundable word (e.g., object nouns). Since
constructing datasets with such fine-grained bounding box
annotations is rather time-consuming and costly, we focus
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Figure 1. Our proposed framework jointly models visual de-
scriptions and word-to-region alignments conditioned on an in-
put image (or video) and region proposals. Without using any
bounding box annotations during training, it can tackle two tasks:
Visual Object Grounding and Grounded Visual Description. Un-
like prior work [74] that leverages soft attention for grounding and
always predicts the same region for two words given the same vi-
sual input and partial caption context, our model can ground words
by taking into account the full ground-truth or generated sentence.

on weakly-supervised training of visual grounding systems,
which require only image-caption pairs for training. In par-
ticular, we consider two tasks, as illustrated in Fig. 1: (1)
Weakly-Supervised Visual Object Grounding (WS-VOG),
where given an input image (or video) and its visual descrip-
tion, the goal is to localize the referred semantic entities in
the visual input, and (2) Weakly-Supervised Grounded Vi-
sual Description (WS-GVD), where given an input image
(or video), we must jointly generate a natural language de-
scription and localize the generated words.

Most prior work has focused on learning how to align
words with regions by learning how to correctly match
images and videos to sentences [8, 26, 56, 65]. How-
ever, these matching-based approaches can only tackle the
first task (WS-VOG), and cannot generate grounded vi-
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sual descriptions. On the other hand, captioning-based ap-
proaches [40, 74] aim to learn how to ground words by
learning how to generate captions based on region propos-
als, thus they can tackle both tasks. For example, the GVD
captioning-based model [74] grounds words by using the
region attention mechanism of a discriminative, encoder-
decoder captioning model to select regions with maximum
attention coefficients. Nonetheless, exploiting soft attention
as a grounding mechanism suffers from two major limita-
tions. First, despite being an effective, end-to-end learnable
mechanism for summarizing relevant context, attention is
not explicitly encouraged to capture meaningful alignments
and can result in poor grounding [36], unless it is super-
vised. Second, each word is generated using attention coef-
ficients computed from a query that summarizes the previ-
ously generated words. Hence, the coefficients do not take
into account the word to be grounded. For example, con-
sider grounding the words ‘hat’ and ‘jacket’ given the sen-
tences “A man is wearing a hat” and “A man is wearing a
jacket”, respectively. As shown in Fig. 1, existing attention-
based grounding approaches wrongly predict the same box
for ‘hat’ and ‘jacket’, since the partial caption is the same.

To overcome these limitations, we propose a conditional
generative model for the joint probability distribution of
sentences and latent word-to-region alignments given an in-
put image (or video) and a set of region proposals. That is,
we account for the lack of grounding annotations by intro-
ducing discrete latent variables that model word-to-region
alignments. We parameterize our model with state-of-the-
art visual encoders, language decoders and attention mod-
ules, and leverage Amortized Variational Inference [30, 59]
to learn its parameters. The resulting Grounded Visual
Description Conditional Variational Autoencoder (GVD-
CVAE) allows us to both generate sentences and also in-
fer the latent word-to-region alignments based on the whole
sentence, including the word to be grounded. Hence, it can
correctly ground the hat in the motivating example.

In summary, this work makes three key contributions.
First, we introduce the GVD-CVAE, a novel conditional
generative model of visual descriptions with a sequential
discrete latent space and attention-based parameterization
of the prior and approximate posterior alignment distribu-
tions. Second, we propose a training objective that encour-
ages our model to learn latent variables that capture mean-
ingful word-to-region alignments. Third, we evaluate our
method on three challenging image and video datasets and
demonstrate that both our “prior” and “approximate poste-
rior” alignment distributions improve upon soft attention.
This leads to a 12% absolute improvement in WS-VOG on
Flickr30k Entities. Our model also achieves state-of-the-art
or competitive grounding and captioning performance com-
pared with a diverse family of state-of-the-art methods that
are tailored to WS-VOG or WS-GVD.

2. Related Work
Grounded Visual Description. Developing models that
can both generate a sentence and link the generated words
to visual regions is a nascent research area, motivated by
a need for more trustworthy and interpretable captioning
models [24,36,50]. Such models can be seen as an evolution
of early image auto-annotation methods [7], methods for
generating visually grounded storylines [20], or methods for
generating descriptions with grounded and co-referenced
people [52]. Zhou et al. [74] ground words by leverag-
ing the region attention coefficients of an attention-based
captioning models. However, in contrast to prior work on
phrase grounding that computes attention using the whole
phrase as query [51], the region attention in [74] is com-
puted based on previous words (partially generated sen-
tence), and it is thus agnostic to the word being grounded.

A recent line of work has attempted to mitigate this is-
sue. Ma et al. [40] propose a cyclical training regime for
WS-GVD of images and videos that involves two attention
mechanisms: one based on the partial caption and another
based on the groundable word. By forcing the words gen-
erated using these two attention mechanisms to match the
ground-truth words, the mechanisms are implicitly regular-
ized to produce similar attention weights during training.
Other approaches explicitly supervise the region attention
during training on image-caption pairs, either by using at-
tention coefficients based on future relevant words [37], or
by leveraging the word-to-region alignments of a separately
trained image-to-text matching model [77]. In summary, a
common thread in prior work is the usage of a regular re-
gion attention module of an UpDown [2] captioning model
for grounding, which is regularized only during training
based on auxilliary models or attention mechanisms. In
contrast, inspired by discrete latent-variable models for im-
age captioning/neural machine translation [13, 45, 54, 66],
our key innovation is to treat word-to-region alignments as
discrete latent variables in a grounded visual description
CVAE model and exploit the prior or approximate posterior
alignment distributions to infer the latent word-to-region
alignments. This enables us to consider the past, future and
current words for localizing each object word in the input
image or video during testing.
Visual Object Grounding. Grounding words (rather than
whole sentences [71] or phrases [21, 65]) in images and
videos is an active research field in the intersection of vision
and language. Early attempts for weakly-supervised visual
grounding given textual descriptions of images and videos
relied on graphical models [47, 68]. Powered by advances
in region proposal generation, a large group of recent meth-
ods [11, 29] cast the task as a Multiple Instance Learning
(MIL) problem. These methods define an image-sentence
matching score determined by word-to-region alignments
and learn how to correctly match images to sentences us-
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ing ranking losses. Such methods have also been extended
to videos [26, 56, 75] with frame-sentence matching scores
and mechanisms to account for missing objects. How-
ever, these MIL-based methods cannot both generate sen-
tences and ground objects. This limitation is lifted by the
captioning-based GVD-Grd method [74], which grounds
each word based on region attention coefficients, computed
with the previous words as query, combined with region-to-
class similarity coefficients. These are obtained by transfer-
ring object class knowledge from external datasets. In this
work, we also use captioning as a downstream task, but we
localize words with the distributions of a conditional gener-
ative model, leveraging the full sentence context.

Joint Vision-Language Representation Learning. In-
spired by advances in pretrained NLP models [14], re-
searchers have also started to use large-scale vision-text
corpora to learn cross-modal vision-language representa-
tions. There exist Transformer-based models [35, 38] that
are also trained using only pairs of images with object pro-
posals and associated textual descriptions. However, in-
stead of focusing on learning task-agnostic, visiolinguistic
representations using large-scale corpora to facilitate down-
stream tasks, we are interested in training visual grounding
systems on small-scale datasets. Importantly, we rely on
text as weak supervision for learning how to ground with-
out bounding box annotations directly on the target dataset.
Instead, these pretrained models require finetuning on a
smaller, fully-annotated dataset to tackle downstream tasks
such as referring expression grounding [38].

Modeling Sequential Data with Variational Autoen-
coders. Our proposed CVAE-based captioning model is
also related to regular or Conditional VAEs that are de-
veloped for modeling sequential data in NLP applications.
In particular, VAEs with sequences of latent variables [3,
9, 10, 18, 53, 69] instead of a single latent variable driving
the whole sequential generation process [5, 43, 63, 72] are
more closely related to our work. However, the majority
of those have non-interpretable, continuous latent variables,
unlike our discrete latent word-to-region alignments. A no-
table exception is the approach of Graber et al. [19] that
uses sequential discrete variables to model interactions be-
tween entities in interacting systems. Still, all these works
share the same goal of modeling the likelihood of sequen-
tial data, while we propose exploiting the latent variables
for grounding. To this end, we need to avoid training an
inference model that produces posteriors almost identical
to the prior, thus ignoring the word to be grounded. Re-
searchers are actively exploring various techniques to miti-
gate this posterior collapse issue by modifying: the training
objective [1, 17, 34, 42, 48, 55], the training procedure [22]
or the decoder architecture [15]. Similarly, we propose con-
trolling the relative factor between sentence reconstruction
term and the prior regularization term [1, 6, 55].
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Figure 2. We propose a deep conditional generative model of
visual descriptions that models each word-to-region alignment
with a discrete latent variable zt. It is able to attend over the re-
gion proposals in an input image (or video), tell what it shows by
marginalizing out the latent word-to-region alignments from the
joint distribution and ground each word by leveraging the learned
approximate posterior word-to-region alignment distribution.

3. Method
3.1. Problem Formulation

Let Y denote a visual description of a given visual input
I (i.e., an image or video). We represent Y = {y1, . . . ,yT }
as a sequence of T words from a vocabulary V , where yt is
the one-hot encoding of the t-th word, i.e., yt ∈ {0, 1}|V|
and ‖yt‖ = 1. In the VOG task, the goal is to ground words
in ground-truth descriptions of a visual input, i.e., we are in-
terested in localizing each mentioned groundable word with
a bounding box b̂t. In the GVD task, the goal is to both
generate a visual description Ŷ and localize each generated
groundable word ŷt with a bounding box b̂t.

In this work, we propose to design a model that can
tackle both tasks in both the image and video domains,
and can be trained with weak supervision in the form
of aligned visual input and and visual description pairs
{(I(n), Y (n))}Nn=1. To achieve this, we treat the problem
of grounding as a problem of word-to-region alignment by
leveraging M candidate region proposals R = {rm}Mm=1

obtained by an off-the-shelf object detector [23]. Then, the
localization problem is reduced to identifying the variable
zt ∈ {0, 1}M with ‖zt‖ = 1, which denotes which re-
gion corresponds to the t-th word. Our key idea is to model
word-to-region alignments as latent variables in a deep con-
ditional generative model. To this end, we propose a novel
Grounded Visual Description Conditional Variational Au-
toencoder (GVD-CVAE). As illustrated in Fig. 2, learning
such a model allows us to leverage the posterior distribution
of word-to-region alignments for grounding words based on
the entire sentence, unlike attention-based grounding.
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Figure 3. Our proposed GVD-CVAE architecture. The input
image and proposals are fed through a visual encoder to produce
region embeddings. The prior word-to-region alignment is com-
puted as a function of only the previous words, while the approxi-
mate posterior is computed as a function of the full sentence. Dur-
ing training, a region is sampled from the approximate posterior
and is fed to the language decoder that predicts the next word.

3.2. Attention-based Conditional Variational Au-
toencoder for Grounded Visual Description

Let Z = {z1, . . . , zT } be the sequence of latent vari-
ables corresponding to alignments between words and re-
gions, where zt ∈ {0, 1}M is a binary discrete random
variable with zt,i = 1 when the i-th region proposal cor-
responds to the t-th word yt. The joint conditional distribu-
tion pθ(Y,Z | R, I) of a caption Y and sequence of align-
ments Z, given the input video (or image) I and candidate
regions R can be factorized in an autoregressive manner:

T∏
t=1

pθ(yt | y<t, z≤t, R, I)pθ(zt | y<t, z<t, R, I), (1)

where y<t = y1:t−1 is the partial caption up to word t− 1,
and similarly z<t denotes the sequence of word-to-region
alignments up until word t − 1. We can simplify this joint
distribution by making two assumptions: (a) the t-th word
depends only on the region zt given the partial caption y<t,
and (b) the region-to-word alignments zt for each word are
conditionally independent of each other given the partial
caption. Hence, our joint probability distribution becomes:

pθ(Y,Z|R, I) =
T∏
t=1

language decoder︷ ︸︸ ︷
pθ(yt|y<t, zt, R, I)

region prior︷ ︸︸ ︷
pθ(zt|y<t, R, I) .

(2)

Next, we describe how we parameterize our conditional
generative model with deep networks whose trainable
weights are denoted by θ, as illustrated in Fig. 3.

Visual Encoder. Images are encoded using a pretrained
CNN model with RoI-pooling operations and trainable lin-
ear projections [74]. The encoder captures global visual
context in the form of a coarse image-level feature vec-
tor, v, as well as fine-grained grid features F = {fl}Ll=1,
where l indexes the feature map spatial grid. It also gener-
ates grounding-aware region representations X = {xi}Mi=1,
where the representation xi of each region encodes infor-
mation about appearance, position and object class knowl-
edge [74] transferred from an object detector [23] trained
on an external dataset [31]. Videos are also encoded to a
global video feature v, a sequence of frame-level features
F = {fl}Ll=1, where l indexes the frames, and grounding-
aware region representations X = {xi}Mi=1, but using dif-
ferent network architectures, as detailed in the appendix.

Language Decoder. The decoder pθ(yt|y<t, zt, R, I) =
Cat(gθ(st, zt, X)) is a categorical distribution over words
in the vocabulary given the partial caption y<t, the word-
to-region alignments zt, the regions R, and the visual input
I . We parameterize this distribution with a shallow network

gθ(st, zt, X) = softmax(Wc tanh(Wp

[
st;

M∑
i=1

zt,ixi

]
)),

(3)

whose inputs are: (a) the state st ∈ Rd of a language model
that summarizes y<t, R and I , and (b) the aligned region
feature

∑M
i=1 zt,ixi ∈ Rd, where [·; ·] denotes concatena-

tion, and Wc ∈ Rd×d,Wp ∈ Rd×2d are learnable weights.
Although st can be chosen as the state of any stan-

dard language model [2, 76], we follow prior work on
grounded visual description [37, 40, 74, 77] and adopt a
variant of the UpDown [2] LSTM model. This language
model is composed of a word embedding layer (emb) and
two LSTM [25] layers with hidden states ut and st, re-
spectively. It also uses an additive attention mechanism [4]
fθ(ut, F ) = softmax(wT

f tanh(Wf [ut; fl])) over holistic
visual features F , where wf ,Wf are learnable attention
weights. Region features X are also summarized with an-
other additive attention mechanism kθ(ut, X).

ut = RNN1
θ (ut−1, [v; emb(yt−1)]) (4)

st = RNN2
θ

(
st−1,

[
L∑
l=1

f
(l)
θ (ut, F )fl;

M∑
i=1

k
(i)
θ (ut, X)xi;ut

])
.

(5)

Prior Model. The prior distribution, pθ(zt|y<t, R, I), is a
categorical distribution over possible word-to-region align-
ments. We choose to parameterize it with an additive at-
tention mechanism [4] that computes region attention co-
efficients αθ(st, X) ∈ RM using as a query the top LSTM
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state st that summarizes the partial caption and visual input:

zt | y<t, R, I ∼ Cat(αθ(st, X)). (6)

Variational Posterior. To learn the parameters of our con-
ditional generative model we leverage Amortized Varia-
tional Inference (AVI). Therefore, our model becomes a
CVAE [59] with sequential discrete latent space and sen-
tences as observations. In the CVAE framework, a varia-
tional distribution qφ(Z|Y,R, I) is introduced to approxi-
mate the true posterior and is parameterized via a neural
network with weights φ, also known as the “inference net-
work”. We choose to approximate the true posterior with
the following approximate posterior:

qφ(Z | Y,R, I) =
T∏
t=1

qφ(zt | Y,R, I). (7)

Then, we model the approximate posterior distribution
of each word-to-region alignment as a categorical distri-
bution that is parameterized by the attention coefficients
αφ(ht, X) ∈ RM obtained via another attention network,
implemented as additive attention [4] or general dot-product
attention [39]:

zt | Y,R, I ∼ Cat(αφ(ht, X)). (8)

In this case, the attention query ht ∈ Rd summarizes the
whole sentence. It is obtained by summing the forward and
backward states of a BiLSTM network, whose inputs con-
sist of the global feature v and ground-truth word yt at each
timestep. Optionally, we can augment the unnormalized at-
tention coefficients α̃φ(ht, X) for the object words in the
input sentence with transferred object class knowledge:

zt | Y,R, I ∼ Cat(softmax(α̃φ(ht, X)+

+ γωt(w
T
cto+ 1bct))), (9)

where wct ∈ Rd0 , bct ∈ R are trainable weights, initialized
with the pretrained object classifier for the external dataset’s
object class ct that is closest to the object word yt, o ∈
Rdo×M are region object features, 1 ∈ RM is a vector of all
ones, and ωt is a binary word mask with ωt = 1 denoting a
groundable word. The hyperparameter γ ∈ {0, 1} controls
whether this transferred knowledge will be used or not.
Training. During training, we assume we are given N i.i.d.
pairs of visual inputs and their visual descriptions, without
grounding supervision. To train our Grounded Visual De-
scription CVAE (GVD-CVAE), we minimize the following
loss over the parameters θ and φ (omitting the conditioning
of all distributions on I(n) for readability) :

L =
1

N

∑
n,t

λLCV AE(n, t) + (1− λ)LCE(n, t) (10)

where LCE = − log pθ(y
(n)
t | E

zt∼pθ
[zt],y

(n)
<t , R

(n)) and

LCV AE(n, t) = E
zt∼qφ

[
− log pθ(y

(n)
t | y(n)

<t , zt, R
(n))
]

+ βKL
(
qφ(zt | Y (n), R(n)) || pθ(zt | y(n)

<t , R
(n))
)
.

(11)

For λ = β = 1, we recover the negative of the Evidence
Lower Bound Objective (ELBO) for our factorization of the
joint probability distribution and our choice of the approx-
imate posterior. Similar to prior work in generative model-
ing [6], we observe that optimizing the ELBO often results
in an inference model that produces approximate posteriors
almost identical to the prior. To mitigate this issue, we re-
weight the KL loss term with a scalar factor β. We found
that gradually increasing β up to a value βclip < 1 during
training or using a PI-controller [55] to reach a desired KL
divergence value are effective for training our GVD-CVAE.
Moreover, we experimentally observed that optimizing the
CVAE loss jointly with a cross-entropy word prediction loss
(λ = 0.5), that is applied on word predictions obtained
based on the p-attention-based weighted sum of region fea-
tures, further facilitates training. More details about training
with Gumbel-Softmax [28, 41] samples and about approxi-
mate inference with our model are included in the appendix.

4. Experiments
4.1. Datasets, Metrics and Implementation Details

Flickr30k Entities (F30k) is a large-scale image dataset,
originally annotated with phrase-to-region alignments [46].
To evaluate our results on object grounding (rather than
phrase grounding), we follow the setup from Zhou et
al. [74] to convert each noun phrase (e.g. her brown hat)
associated with each bounding box to a single groundable
object, such as hat. This results in |Vo| = 480 groundable
words out of the |V| = 8639 words comprising the vocab-
ulary. We use the standard dataset split with 29k/1k/1k im-
ages in the training, validation and testing sets, respectively.
ActivityNet Entities (ANet) is a large-scale video dataset,
containing 52k video segments annotated with a caption
each. Following the original setup [74], we use a vocab-
ulary of 4905 words, 431 of which are groundable. Each
groundable word in a sentence is associated with a bound-
ing box in a frame of the video where it can be clearly ob-
served. Since annotations for the testing set are not public
and the evaluation server is closed at the time of submission,
we follow [64] and report results on the validation set.
YouCook2-BB is a video dataset containing YouTube cook-
ing videos with video segments paired with captions and
bounding box annotations [75] at 1 fps for 67 object classes.
We use the same training/validation/test split as in [56].
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Table 1. Comparison of grounding performance between the
GVD and GVD-Grd models (baselines) and the GVD-CVAE
on the validation sets of F30k and ANet. We report the box accu-
racy metric for evaluating grounding given ground-truth sentences
and the F1all metric for evaluating grounding of object words in
generated sentences. GVD-CVAE-p (GVD-CVAE-q) denotes us-
ing our learned prior (approximate posterior) alignment distribu-
tion for grounding.

Dataset Method Box Acc. F1all

F30k (Image)

GVD [74] 22.0 4.4
GVD-Grd [74] 25.9 4.4

GVD-CVAE-p (Ours) 29.6 6.2
GVD-CVAE-q (Ours) 33.4 7.3

ANet (Video)

GVD [74] 14.9 3.7
GVD-Grd [74] 21.3 3.7

GVD-CVAE-p (Ours) 19.4 4.8
GVD-CVAE-q (Ours) 24.2 6.1

Metrics. Performance for WS-VOG is measured with Box
Accuracy [56, 74, 75], which computes the percentage of
correctly localized words of an object class. A word is con-
sidered to be correctly localized when its predicted box has
more than 0.5 Intersection-over-Union (IoU) with ground-
truth boxes. Metrics for WS-GVD evaluate both ground-
ing and captioning capabilities. We adopt the F1all and
F1loc grounding metrics [74] for evaluating grounding on
generated sentences, and standard language evaluation met-
rics, such as Bleu [44], METEOR [32], CIDEr [62], and
SPICE [2], for evaluating generated sentences. In F1all,
a region prediction is considered correct if the object word
is both correctly predicted and localized, while F1loc only
considers correctly predicted object words.

Implementation details. For the F30k and Anet datasets,
our GVD-CVAE receives as inputs the region proposals, re-
gion features and image/video global features from Zhou et
al. [74], with 100 region proposals per frame/image. For
YouCook2, we use 20 region proposals and the features ex-
tracted by Shi et al. [56]. Hyperparameters such as learning
rate, βclip, attention mechanisms, number of samples, are
chosen based on the validation sets of F30k and YouCook2.
For evaluating on the ANet validation set, we train a model
with hyperparameters selected based on the F30k validation
set. All other hyperparameters, such as layer sizes, are in
general adopted from prior work [56, 74]. Additional train-
ing and implementation details are included in the appendix.

4.2. Baselines and Ablation Studies

(1) Are the regions localized via our learned word-
to-region alignment distributions better than those lo-
calized via soft-attention-based baselines? Our base-
line is the attention-based encoder-decoder GVD caption-

Table 2. Ablation analysis of the decoder and inference model
design on the F30k validation set. Types of UpDown [2] model at-
tention: Grid: over grid features, Reg.: over region features, Both:
both attention mechanisms. Obj. Cls. denotes inference model
with transferred object class knowledge (γ = 1).

Approximate Posterior Box Acc. F1all

Decoder Cond. Obj. Cls. p q p q

UpDown (Both) zt|y≤T 3 29.6 33.4 6.2 7.3

UpDown (Both) zt|y≤T 7 25.1 32.3 5.4 7.0
UpDown (Both) zt|y≤t 7 26.3 31.4 6.0 7.4

UpDown (Grid) zt|y≤T 3 30.7 34.4 7.3 7.2
UpDown (Reg.) zt|y≤T 3 26.6 33.0 5.8 6.3

LSTM zt|y≤T 3 30.2 34.8 6.9 7.5

ing model, trained with teacher-forcing language generation
cross-entropy loss. We ensure that our GVD-CVAE exactly
mirrors the inputs and the visual encoder/language decoder
modules of this baseline model. Baseline object grounding
is performed either by (a) selecting the region with max-
imum region attention coefficient k(i)θ (ut, X) (GVD [74])
given the partial caption y<t, or (b) by combining the atten-
tion coefficients with region-to-class similarity scores based
on the word yt to be grounded for the VOG task (GVD-
Grd [74]). In Table 1, we compare our GVD-CVAE’s abil-
ity to ground objects in ground-truth or generated sentences
with these two powerful, discriminative baselines. We ob-
serve that even grounding based on our learned prior word-
to-region alignment distribution (GVD-CVAE-p) improves
upon the soft-attention baseline by a significant margin in
both benchmarks and tasks (e.g., it improves Box Accu-
racy from 22% to 29% on F30k), despite similarly capturing
only the history of previous words. The reason for this im-
provement is that our prior distribution is encouraged during
training to “look ahead” when sampling a region to generate
a word, by mimicking the approximate posterior alignment
distribution which has access to future words. Using the
latter for grounding conditioned on the full sentence further
improves results (from 29.6% to 33.4%), verifying our intu-
ition that leveraging the word to be grounded in its language
context can help us better localize the word. Additionally,
it outperforms the GVD-Grd discriminative baseline which
also takes into account the word to be grounded, demon-
strating the benefits of our conditional generative modeling.

(2) How does the choice of the language model and ap-
proximate posterior affect grounding performance? Ta-
ble 2 demonstrates the grounding performance obtained
with different design choices. First, results suggest that
taking the full sentence into account via a BiLSTM
(q(zt|y≤T )) leads to better VOG grounding compared to
only seeing the sentence up to the current word y≤t with
an LSTM (e.g., improving Box Acc. from 31.4% to 32.3%)
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Table 3. Impact of various training objectives on weakly-
supervised object grounding. Performance measured via Box
accuracy (%) on the F30k validation set.

Training objective CVAE-p CVAE-q

ELBO 3.29 3.16
CE + ELBO 25.22 23.99
CE + ELBO + β anneal 26.07 25.61
CE + ELBO + β anneal + clip 26.31 28.88
CE + ELBO + PI Controller 29.27 31.71

(rows 2-3). Another observation is that explicitly adding
transferred information about object class distributions in
the inference model (γ = 1) improves grounding given
ground-truth sentences (Box Accuracy) with both the prior
and approximate posterior distributions (rows 1-2). This
further demonstrates that knowledge from the inference
model is distilled to the prior during training via the KL
loss, resulting in a model that is looking at better localized
regions while generating descriptions based on the prior
and decoder modules. Interestingly, results suggest that our
GVD-CVAE is robust to the choice of the language decoder
(rows 1,4-6), and achieves top grounding performance even
when using a simple LSTM in the decoder or an UpDown
LSTM with soft-attention only over grid features, demon-
strating the effectiveness of our latent-variable modeling.

(3) What is the effect of the proposed training objective?
We first train our GVD-CVAE with the vanilla CVAE loss,
i.e., with λ, β = 1. Without any of our proposed modifica-
tions, this results in a very low grounding performance, as
can be seen in the first row of Table 3. By adding the cross-
entropy loss term that penalizes word predictions based on
soft region context determined by the p-attention network
(CE+ELBO), we are able to improve upon the soft-attention
baseline of 22%. However, learning curves (included in the
appendix) show that the KL loss term has vanished, sug-
gesting that the model’s posterior has collapsed to the prior
and the approximate posterior alignment does not addition-
ally take into account the word being grounded. Applying
known solutions to KL vanishing, such as linearly annealing
the β hyperparameter from 0 to 1 (CE+ELBO+β anneal),
does not solve the problem. Instead, our proposed clipped
linear annealing schedule leads to overall better grounding
of 28.9% (KL term ≈ 0.06). Alternatively, after we de-
termine a desirable value for the KL term, we can use the
PI-Controller [55] anneal β, which we found to be less sen-
sitive to changes in architecture and requires minimal cali-
bration. Note that in this ablation we used a single LSTM
language decoder and an LSTM in the inference model for
faster experimentation.

4.3. Comparison with the State of the Art

As shown in Table 4, our GVD-CVAE improves weakly-
supervised object grounding by 12% compared to the GVD

Table 4. Results on the Flickr30k Entities test set. The perfor-
mance of the fully-supervised GVD model (Sup.) is reported as
an upper-bound to the weakly-supervised approaches. Types of
model inputs during inference: region proposals extracted and en-
coded following GVD [74] or BUTD [2], or Scene-graphs [70].
† denotes models trained using auxiliary image-to-text matching
models [33]. RL denotes models fine-tuned via Reinforcement
Learning [49]. Note that results in the third block are obtained
with different inputs, and thus they are not directly comparable to
ours. We report average results for our GVD-CVAE after 5 ran-
dom runs (standard deviations are included in the appendix).

VOG GVD

Captioning Grounding

Feat Acc B@4 M C S F1all F1loc

GVD [74] (Sup.) G 41.4 27.3 22.5 62.3 16.5 7.55 22.2

GVD [74] G 21.4 26.9 22.1 60.1 16.1 3.88 11.7
GVD-Grd [74] G 25.5 26.9 22.1 60.1 16.1 3.88 11.7
Cyclical [40] G - 26.6 22.3 60.9 16.3 4.85 13.4
DPA [37] G - 27.6 22.6 62.7 16.7 4.79 15.5
SCAN-RL [77] † G - 28.0 22.6 66.2 17.0 6.53 15.8

BUTD [2] U 24.2 27.3 21.7 56.6 16.0 - -
DPA [37] U - 27.2 22.3 60.8 16.3 5.45 15.3
Sub-GC [73] S - 28.5 22.3 61.9 16.4 5.98 16.5
SCAN-RL [77] † U - 30.1 22.6 69.3 16.8 7.17 17.5

GVD-CVAE G 33.7 24.0 21.3 55.3 15.7 6.70 19.2
GVD-CVAE-RL G 31.6 29.8 23.1 67.6 17.2 6.94 17.6

Table 5. Results on the ActivityNet Entities validation set. We
report average results for our GVD-CVAE after 5 random runs.

VOG GVD

Captioning Grounding

Acc B@4 M C S F1all F1loc

GVD (Sup.) [74] 35.7 2.59 11.2 47.5 15.1 7.1 24.1

MIL-based
NAFAE [56] 19.5 - - - - - -
STVG [67] 21.1 - - - - - -
SCL [64] 23.8 - - - - - -

Captioning-based
GVD [74] 14.9 2.28 10.9 45.6 15.0 3.7 12.7
GVD-Grd [74] 21.3 2.28 10.9 45.6 15.0 3.7 12.7
Cyclical [40] - 2.45 11.1 46.4 14.8 4.7 15.8

GVD-CVAE 23.9 1.90 10.4 41.8 13.3 5.8 21.7

method (21.4% to 33.7%) on the F30k image dataset.
Thus, it sets the state-of-the-art VOG result, and reduces
the gap with the fully-supervised GVD approach (41.4%).
It also generates more grounded captions (higher F1all
and F1loc scores) than all other methods, given the same
features (from GVD). We even outperform methods using
Scene Graphs [70] for grounding [73]. Note that the F1all
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Table 6. Results on the YouCook2 test set following the exper-
imental setup of Shi et al. [56]. GVD* denotes our implementa-
tion and training of the GVD model [74].

Box accuracy (%)

macro micro

Upper Bound 62.41 -

MIL-based methods
DVSA-frm [29] 37.55 44.16
Zhou [75] 35.08 42.42
NAFAE [56] 40.71 46.33
STVG [67] 41.67 48.22
SCL [64] 42.80 48.60

Captioning-based methods
GroundR [51] 19.94 -
GVD* [74] 37.40 44.15
GVD-CVAE (Ours) 38.85± 0.20 44.62± 0.09

scores obtained by both our CVAE-p (6.43%) and CVAE-q
(6.70%) distributions outperform Cyclical [40] (4.85%) and
DPA [37] (4.79%). This suggests that modeling alignments
as latent variables works better than applying attention reg-
ularization techniques during training. Despite generating
more grounded captions, our method has lower captioning
metrics than SoTA methods, some of which apply reinforce-
ment learning (RL). However, our language model can also
be finetuned with a CIDEr-based SCST loss [49] (GVD-
CVAE-RL), leading to competitive captioning metrics.

Results on the ANet video dataset (Table 5) show similar
trends. Our GVD-CVAE yields better metrics when ground-
ing ground-truth or generated sentences. It also outper-
forms video-tailored, video-to-text matching models, such
as NAFAE [56]. Although powerful, these models cannot
tackle the WS-GVD task. Since we evaluate only on the val-
idation set, we did not select the model with best CIDEr
score, or tune the learning rate based on it. This might
have led to our slightly inferior captioning metrics com-
pared to [40,74], which used the validation set for selecting
a model to be evaluated on the now closed test server.

We also compare our method to MIL-based grounding
approaches in the YouCook2 test split in terms of Box Ac-
curacy (additional metrics are reported in the appendix).
As seen in Table 6, although our method outperformed all
video-to-text-matching methods on the ANet video dataset,
it is, for instance, lagging behind NAFAE [56] by around
2% on the YouCook2 dataset. A possible explanation is
that, while in ANet grounding is evaluated on a single
frame, in YouCook2 grounding predictions are evaluated
in every frame. Therefore, MIL-based methods that model
the consistency between the localized regions at each frame
or model inter-object interactions perform better. We be-
lieve that extending our GVD-CVAE to model such rela-
tionships will improve these metrics, and we leave that to

future work. Finally, we show qualitative image grounding
results in Fig. 4.

Limitations. Similar to all other proposal-based ap-
proaches, our model’s performance is limited by the qual-
ity of the region proposals. Also, our GVD-CVAE does
not model the dependency between alignments for consec-
utive words. Finally, we applied the same framework for
image and video object grounding to demonstrate its gener-
ality and effectiveness, without taking advantage of several
inductive biases in the video domain, such as the visual sim-
ilarity between grounded regions in consecutive frames.

GT: an adult soccer game, soccer players

chasing after the ball during a live game 

GT: one football player in a red jersey jumping 

onto a player wearing a white jersey

GT: a woman outside on a street wearing a 

yellow shirt and sunglasses

Attn.

Attn.

CVAE-p CVAE-q

CVAE-p CVAE-q

Attn. CVAE-p CVAE-q

Figure 4. Qualitative WS-VOG results on the F30k validation
set. For each ground-truth caption, we show grounding results
obtained by (a) the soft-attention baseline, (b) our prior, and (c) our
approximate posterior alignment distributions. We observe that
knowing the words to be grounded improves grounding of small
objects. Third row shows a failure case, in which our CVAE-q
predicts the same bounding box for all groundable words.

5. Conclusion

In this paper, we proposed a novel grounded visual
description CVAE. We showed how leveraging the latent
alignment distributions of our model outperforms soft at-
tention for grounding given ground-truth or generated sen-
tences. We also demonstrated the generality and effective-
ness of our model by evaluating it on both image and video
datasets. Our novel approach yields competitive results in
both grounding and grounded video description, while com-
paring against methods optimized for one of the two tasks.
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