
Transforming Model Prediction for Tracking

Christoph Mayer Martin Danelljan Goutam Bhat Matthieu Paul Danda Pani Paudel
Fisher Yu Luc Van Gool

Computer Vision Lab, D-ITET, ETH Zürich, Switzerland

Abstract

Optimization based tracking methods have been widely
successful by integrating a target model prediction mod-
ule, providing effective global reasoning by minimizing an
objective function. While this inductive bias integrates
valuable domain knowledge, it limits the expressivity of
the tracking network. In this work, we therefore pro-
pose a tracker architecture employing a Transformer-based
model prediction module. Transformers capture global
relations with little inductive bias, allowing it to learn
the prediction of more powerful target models. We fur-
ther extend the model predictor to estimate a second set
of weights that are applied for accurate bounding box
regression. The resulting tracker ToMP relies on train-
ing and on test frame information in order to predict all
weights transductively. We train the proposed tracker end-
to-end and validate its performance by conducting compre-
hensive experiments on multiple tracking datasets. ToMP
sets a new state of the art on three benchmarks, achiev-
ing an AUC of 68.5% on the challenging LaSOT [14]
dataset. The code and trained models are available at
https://github.com/visionml/pytracking

1. Introduction
Generic visual object tracking is one of the fundamental

problems in computer vision. The task involves estimating
the state of the target object in every frame of a video se-
quence, given only the initial target location. One of the
key problems in object tracking is learning to robustly de-
tect the target object, given a scarce annotation. Among
existing methods, Discriminative Correlation Filters (DCF)
[1,4,9,10,18,20,29,35] have achieved much success. These
approaches learn a target model to localize the target in
each frame, by minimizing a discriminative objective func-
tion. The target model, often set to a convolutional kernel,
provides a compact and generalizable representation of the
tracked object, leading to the popularity of DCFs.

The objective function in DCF integrates both fore-
ground and background knowledge over the previous

SuperDiMP
ToMP-50+ 
IoUNet

ToMP-101

63.1 64.7 68.5

64.7

65.2

66.9

SiamRCNN

TrDiMP

TransT

KeepTrack

63.9 67.1

63.9

63.9

66.2
66.4

LaSOT

N
FS

STARK-ST101

STARK-ST50

ToMP-50

66.7

66.4

Figure 1. Performance improvements when transforming the
model optimizer based tracker SuperDiMP [8] () step-by-step.
First, we replace the model optimizer by a Transformer based
model predictor (). Secondly, we replace the probabilistic
IoUNet by a new regressor and predict its weights with the same
model predictor (). The performance (success AUC) is reported
on NFS [17] and LaSOT [14] and compared with recent track-
ers (). ToMP-50 and ToMP-101 refer to the different employed
backbones ResNet-50 [19] and ResNet-101 [19].

frames, providing effective global reasoning when learning
the model. However, it also imposes severe inductive bias
on the predicted target model. Since the target model is ob-
tained by solely minimizing an objective over the previous
frames, the model predictor has limited flexibility. For in-
stance, it cannot integrate any learned priors in the predicted
target model. On the other hand, Transformers have also
been shown to provide strong global reasoning across mul-
tiple frames, thanks to the use of self and cross attention.
Consequently, Transformers have been applied to generic
object tracking [6, 40, 43, 45] with considerable success.

In this work, we propose a novel tracking framework that
aims at bridging the gap between DCF and Transformer
based trackers. Our approach employs a compact target
model for localizing the target, as in DCF. The weights of
this model are however obtained using a Transformer-based
model predictor, allowing us to learn more powerful target
models, compared to DCFs. This is achieved by introduc-
ing novel encodings of the target state, allowing the Trans-
former to effectively utilize this information. We further ex-
tend our model predictor to generate weights for a bounding

8731

box regressor network, in order to condition its predictions
on the current target. Our proposed approach ToMP obtains
significant improvement in tracking performance compared
to state-of-the-art DCF-based methods, while also outper-
forming recent Transformer based trackers (see Fig. 1).
Contributions: In summary, our main contributions are the
following: i) We propose a novel Transformer-based model
prediction module in order to replace traditional optimiza-
tion based model predictors. ii) We extend the model pre-
dictor to estimate a second set of weights that are applied
for bounding box regression. iii) We develop two novel
encodings that incorporate target location and target extent
allowing the Transformer-based model predictor to utilize
this information. iv) We propose a parallel two stage track-
ing procedure at test time to decouple target localization and
bounding box regression in order to achieve robust and ac-
curate target detection. v) We perform a comprehensive set
of ablation experiments to assess the contribution of each
building block of our tracking pipeline and evaluate it on
seven tracking benchmarks. The proposed tracker ToMP
sets a new state of the art on three including LaSOT [14]
where it achieves an AUC of 68.5% (see Fig. 1). In addition
we show that our tracker ToMP outperforms other Trans-
former based trackers for every attribute of LaSOT [14].

2. Related Work

Discriminative Model Prediction: DCF based approaches
learn a target model to distinguish the target from back-
ground by minimizing an objective. For long Fourier-
transform based solvers were predominant for DCF based
trackers [4, 11, 20, 29]. Danelljan et al. [9] employed a two
layer Perceptron as target model and used Conjugate Gra-
dient to solve the optimization problem. Recently, multiple
methods have been introduced that enable end-to-end train-
ing by casting the tracking problem into a meta-learning
problem [1, 39, 47]. These methods are based on the idea
of unrolling the iterative optimization algorithm for a fixed
number of iterations and to integrate it in the tracking
pipeline to allow end-to-end training. Bhat et al. [1] learn a
discriminative feature space and predict the weights of the
target model based on the target state in the initial frame and
refine the weights with an optimization algorithm.
Transformers for Tracking: Recently, several trackers
have been introduced that use Transformers [6, 40, 43, 45].
Transformers are typically employed to predict discrim-
inative features to localize the target object and regress
its bounding box. The training features are processed by
the Transformer Encoder whereas the Transformer Decoder
fuses training and test features using cross attention layers
to compute discriminative features [6, 40, 45].

DTT [45] feeds these features to two networks that pre-
dict the location and the bounding box of the target. In con-

trast, TransT [6] employs a feature fusion network that con-
sists of multiple self and cross attention modules. The fused
output features are fed into a target classifier and a bound-
ing box regressor. TrDiMP [40] adopts the DiMP [1] model
predictor to produce the model weights given the output fea-
tures of the Transformer Encoder as training samples. Af-
terwards, the target model computes the target score map
by applying the predicted weights on the output features
produced by the Transformer Decoder. TrDiMP adopts
the probabilistic IoUNet [12] for bounding box regression.
Similar to our tracker, TrDiMP encodes target state infor-
mation but integrates it via two different cross attention
modules in the Decoder instead of using two encoding mod-
ules in front of the Transformer.

In contrast to the aforementioned Transformer based
trackers, STARK [43] adopts the Transformer architecture
from DETR [5]. Instead of fusing the training and test
features in the Transformer Decoder they are stacked and
processed jointly by the full Transformer. A single object-
query then produces the Decoder output that is fused with
the Transformer Encoder features. These features are then
further processed to directly predict the bounding box of
the target. In contrast, our tracker employs the same Trans-
former architecture from DETR [5] but to replace the model
optimizer. In the end, our resulting Transformer-based
model predictor estimates the weights of two separate mod-
els: the target classifier and the bounding box regressor.

3. Method
In this work, we propose a Transformer-based target

model prediction network for tracking called ToMP. We first
revisit existing optimization based model predictors and
discuss their limitations in Sec. 3.1. Next, we describe our
Transformer-based model prediction approach in Sec. 3.2.
We extend this approach to perform joint target classifi-
cation and bounding box regression in Sec. 3.3. Finally,
we detail our offline training procedure and online tracking
pipeline in Sec. 3.4 and Sec. 3.5, respectively.

3.1. Background

One of the popular paradigms for visual object tracking
is discriminative model prediction based tracking. These
approaches, visualized in Fig. 2a, use a target model to lo-
calize the target object in the test frame. The weights (pa-
rameters) of this target model are obtained from the model
optimizer, using the training frames and their annotation.
While a variety of target models are used in the litera-
ture [1, 9, 23, 29, 35, 39, 47], discriminative trackers share
a common base formulation to produce the target model
weights. This involves solving an optimization problem
such that the target model produces the desired target states
yi ∈ Y for the training samples Strain ∈ {(xi, yi)}mi=1.
Here, xi ∈ X refers to a deep feature map of frame i and m

8732

Ba
ck

bo
ne

Ba
ck

bo
ne

Model Optimizer

Target Model

Model 
Weights

Ba
ck

bo
ne

Ba
ck

bo
ne

Target State 
Encoding

Model 
Weights

Test Frame 
Encoding

Test Frame

Training Frames
Transformer

Encoder

Transformer

Decoder

Target Model

Test Frame

Training Frames

Target Scores

Target Scores
Model Predictor

(a) Tracker with optimization based model prediction.
Ba

ck
bo

ne
Ba

ck
bo

ne

Model Optimizer

Target Model

Model 
Weights

Ba
ck

bo
ne

Ba
ck

bo
ne

Target State 
Encoding

Model 
Weights

Test Frame 
Encoding

Test Frame

Training Frames
Transformer

Encoder

Transformer

Decoder

Target Model

Test Frame

Training Frames

Target Scores

Target Scores
Model Predictor

(b) Proposed tracker with Transformer based model prediction.

Figure 2. Comparison between trackers that employ optimization based model prediction and our Transformer-based model prediction.
The model optimizer [■] in Fig. 2a is replaced by the model predictor in Fig. 2b that consists of the proposed modules [■,■,■,■].

denotes the total number of training frames. The optimiza-
tion problem reads as follows,

w = argmin
w̃

∑
(x,y)∈Strain

f(h(w̃;x), y) + λg(w̃). (1)

Here, the objective consists of the residual function f which
computes an error between the target model output h(w̃;x)
and the ground truth label y. g(w̃) denotes the regulariza-
tion term weighted by a scalar λ, while w represents the
optimal weights of the target model. Note that the training
set Strain contains the annotated first frame, as well as the
previous tracked frames with the tracker’s predictions being
used as pseudo-labels.

Learning the target model by explicitly minimizing the
objective of (1) provides a robust target model that can dis-
tinguish the target from the previously seen background.
However, such a strategy suffers from notable limita-
tions. The optimization based methods compute the tar-
get model using only limited information available in previ-
ously tracked frames. That is, they cannot integrate learned
priors in the target model prediction so as to minimize future
failures. Similarly, these methods typically lack the possi-
bility to utilize the current test frame in a transductive man-
ner when computing the model weights to improve tracking
performance. The optimization based methods also require
setting multiple optimizer hyper-parameters, and can over-
fit/underfit on the training samples. Another limitation of
optimization based trackers is their procedure that produces
the discriminative features. Usually, the features provided
to the target model are simply the extracted test features.
Instead of reinforced features by using the target state in-
formation contained in the training frames. Extracting such
enhanced features would allow reliable differentiation be-
tween the target and background regions in the test frame.

3.2. Transformer-based Target Model Prediction

In order to overcome the aforementioned limitations of
optimization based target localization approaches, we pro-
pose to replace the model optimizer by a novel target model

predictor based on Transformers (see Fig. 2b). Instead of
explicitly minimizing an objective as stated in (1), our ap-
proach learns to directly predict the target model purely
from data by end-to-end training. This allows the model
predictor to integrate target specific priors in the predicted
model so that it can focus on characteristic features of the
target, in addition to the features that allow to differenti-
ate the target from the seen background. Furthermore, our
model predictor also utilizes the current test frame features,
in addition to the previous training features, to predict the
target model in a transductive manner. As a result, the
model predictor can utilize the current frame information
to predict a more suitable target model. Finally, instead of
applying the target model on a fixed feature space, defined
by the pre-trained feature extractor, our approach can uti-
lize the target information to dynamically construct a more
discriminative feature space for every frame.

An overview of the proposed tracker employing the
Transformer-based model prediction is shown in Fig. 2b.
Similar to the optimization based trackers, it consists of a
test and training branch. We first encode the target state in-
formation in the training frames and fuse it with the deep
image features [■]. Similarly, we also add an encoding
to the test frame in order to mark it as test frame [■].
The features from both the training and test branches are
then jointly processed in the Transformer Encoder [■] that
produces enhanced features by reasoning globally across
frames. Next, the Transformer Decoder [■] predicts the tar-
get model weights [] using the output of the Transformer
Encoder. Finally, the predicted target model is applied on
the enhanced test frame features to localize the target. Next,
we describe the main components in our tracking pipeline.

Target Location Encoding: We propose a target location
encoding that allows the model predictor to incorporate the
target state information from the training frames, when pre-
dicting the target model. In particular, we use the embed-
ding efg ∈ R1×C that represents foreground. Together with
a Gaussian yi ∈ RH×W×1 centered at the target location,

8733

Ba
ck

bo
ne

Ba
ck

bo
ne

+ +

�(di)

d1

y1

xi

xtest

ztestz1

v1 vtest

z2

v2

d2

y2

+

wcls

wbbreg

h(wcls; ztest)

CNN

Feature Extraction and Target Encoding Transformer-based Model Prediction Bounding Box Regression

Target Classification

⇤

+

w

ztest

Linear

wcls

d̂test

ŷtest

etest

efg

efg Tdec([z1, z2, ztest], efg)

 (yi, efg)

µ(etest)

Training Frames

Test 
Frame

Tenc([v1, v2, vtest])

Figure 3. Overview of the entire ToMP tracking pipeline for joint model prediction. First, the training [■] and test [■] features are
extracted using a backbone. Then the target location [■] and bounding box [■] encodings are added to the training features. For the test
frame the test embedding is encoded [■] and added to the test features. The features are then concatenated and jointly processed by the
Transformer-based model predictor that produces the weights used for target classification [■] and bounding box regression [■].

we define the target encoding function

ψ(yi, efg) = yi · efg, (2)

where ”·” denotes point-wise multiplication with broadcast-
ing. Note, thatHim = s ·H andWim = s ·W correspond to
the spatial dimension of the image patch and s to the stride
of the backbone network used to extract the deep features
x ∈ RH×W×C . Next, we combine the target encoding and
the deep image features x as follows

vi = xi + ψ(yi, efg). (3)

This provides us the training frame features vi ∈ RH×W×C

which contain encoded target state information. Similarly,
we also add a test encoding to identify the features corre-
sponding to the test frame as,

vtest = xtest + µ(etest), (4)

where µ(·) repeats the token etest for each patch of xtest.
Transformer Encoder: We aim to predict our target
model using the foreground and background information
from both the training, as well as the test frames. To achieve
this, we use a Transformer Encoder [5, 37] module to first
jointly process the features from the training frames and the
test frame. The Transformer Encoder serves two purposes
in our approach. First, as described later, it computes the
features used by the Transformer Decoder module to pre-
dict the target model. Secondly, inspired by STARK [43],
our Transformer Encoder also outputs enhanced test frame

features, which serve as the input to the target model when
localizing the target.

Given multiple encoded training features vi ∈
RH×W×C and an encoded test feature vtest ∈ RH×W×C ,
we reshape the features to R(H·W)×C and concatenate allm
training features vi and the test feature vtest along the first
dimension. These concatenated features are then processed
jointly in a Transformer Encoder

[z1, . . . , zm, ztest] = Tenc([v1, . . . , vm, vtest]). (5)

The Transformer Encoder consists of multi-headed self-
attention modules [37] that enable it to reason globally
across a full frame and even across multiple training and
test frames. In addition, the encoded target state identifies
foreground and background regions and enables the Trans-
former to differentiate between both regions.
Transformer Decoder: The outputs of the Transformer
Encoder (zi and ztest) are used as inputs for the Transformer
Decoder [5, 37] to predict the target model weights

w = Tdec([z1, . . . , zm, ztest], efg). (6)

Note that the inputs zi and ztest are obtained by jointly rea-
soning over the whole training and test samples, allowing us
to predict a discriminative target model. We use the same
learned foreground embedding efg as used for target state
encoding as input query of the Transformer Decoder such
that the Decoder predicts the target model weights.
Target Model: We use the DCF target model to obtain the
target classification scores

h(w, ztest) = w ∗ ztest. (7)

8734

Here, the weights of the convolution filter w ∈ R1×C are
predicted by the Transformer Decoder. Note that the tar-
get model is applied on the output test features ztest of
the Transformer Encoder. These features are obtained after
joint processing of training and test frames, and thus sup-
port the target model to reliably localize the target.

3.3. Joint Localization and Box Regression

In the previous section, we presented our Transformer
based architecture for predicting the target model. Although
the target model can localize the object center in each frame,
a tracker needs to also estimate an accurate bounding box of
the target. DCF based trackers typically employ a dedicated
bounding box regression network [9] for this task. While it
is possible to follow a similar strategy, we decide to predict
both models jointly since target localization and bounding
box regression are related tasks that can benefit from one
another. In order to achieve this, we extend our model as
follows. First, instead of only using the target center loca-
tion when generating the target state encoding, we also en-
code target size information to provide a richer input to our
model predictor. Secondly, we extend our model predictor
to estimate weights for a bounding box regression network,
in addition to the target model weights. The resulting track-
ing architecture is visualized in Fig. 3. Next, we describe
each of these changes in detail.
Target Extent Encoding: In addition to the extracted
deep image features xi and the target location encoding
ψ(yi, efg), we add another encoding to incorporate infor-
mation about the bounding box of the target. In order to
encode the bounding box bi = {bxi , byi , bwi , bhi } encompass-
ing the target object in the training frame i, we adopt the ltrb
representation [16, 36, 42, 45]. First, we map each location
(jx, jy) on the feature map xi back to the image domain
using (kx, ky) = (⌊ s

2⌋+s ·jx, ⌊ s
2⌋+s ·jy). Then, we com-

pute the normalized distance of each remapped location to
the four sides of the bounding box bi as follows,

li = (kx − bxi)/Wim, ri = (kx − bxi − bwi)/Wim,

ti = (ky − byi)/Him, bi = (ky − byi − bhi)/Him,
(8)

where Wim = s ·W and Him = s ·H . These four sides are
used to produce the dense bounding box representation d =
(l, t, r, b), where d ∈ RH×W×4. In this representation, we
encode the bounding box using a Multi-Layer Perceptron
(MLP) ϕ and thereby increase the number of dimensions
from 4 to C before adding the obtained encoding to Eq. (3)
such that

vi = xi + ψ(yi, efg) + ϕ(di). (9)

Here, vi is the resulting feature map which is used as input
to the Transformer Encoder, see Fig. 3.
Model Prediction: We extend our architecture to predict
weights for the target model, as well as bounding box re-

gression. Concretely, we pass the output w of the Trans-
former Decoder through a linear layer to obtain the weights
for bounding box regression wbbreg and target classification
wcls. The weights wcls are then directly used within the tar-
get model h(wcls; ztest) as before. The weights wbbreg, on
the other hand, are used to condition the output test features
ztest of the Transformer Encoder with target information for
bounding box regression, as explained next.
Bounding Box Regression: To make the encoder output
features ztest target aware, we follow Yan et al. [43] and
first compute an attention map wbbreg ∗ ztest using the pre-
dicted weights wbbreg. The attention weights are then mul-
tiplied point-wise with the test features ztest before feeding
them into a Convolutional Neural Network (CNN). The last
layer of the CNN uses an exponential activation function
to produce the normalized bounding box prediction in the
same ltrb representation as described in Eq. (8). In order to
obtain the final bounding box estimation, we first extract the
center location by applying the argmax(·) function on the
target score map ŷtest predicted by the target model. Next,
we query the dense bounding box prediction d̂test at the cen-
ter location of the target object to obtain the bounding box.
We use two dedicated networks for target localization and
bounding box regression in contrast to Yan et al. [43] that
uses one network trying to predict both. This allows us as
explained in Sec. 3.5 to decouple target localization from
bounding box regression during tracking.

3.4. Offline Training

In this section, we describe the protocol to train the pro-
posed tracker ToMP. Similar to recent end-to-end trained
discriminative trackers [1, 12], we sample multiple training
and test frames from a video sequence to form training sub-
sequences. In particular, we use two training frames and one
test frame. In contrast to recent Transformer based track-
ers [6,43,45] but similar to DCF based trackers [1,9,12], we
keep the same spatial resolution for training and test frames.
We pair each image Ii with the corresponding bounding box
bi. We use the target state of the training frames to en-
code target information and use the bounding box of the test
frame only to supervise training by computing two losses
based on the predicted bounding boxes and the derived cen-
ter location of the target in the test frame.

We employ the target classification loss from DiMP [1]
that consists of different losses for background and fore-
ground regions. Further, we employ the generalized Inter-
section over Union loss [33] using the ltrb bounding box
representation [36] to supervise bounding box regression

Ltot = λclsLcls(ŷ, y) + λgiouLgiou(d̂, d), (10)

where λcls and λgiou are scalars weighting the contribution
of each loss. Note that in contrast to FCOS [36] and related
trackers [16] we omit an additional centerness loss since

8735

it would be redundant in addition to our classification loss
that serves the same purpose. A detailed study examining
the impact of centerness is available in the supplementary.
Training Details: We train our tracker on the training splits
of the LaSOT [14], GOT10k [21], Trackingnet [32] and
MS-COCO [27] datasets. We sample 40k sub-sequences
and train for 300 epochs on two Nvidia Titan RTX GPUs.
We use ADAMW [28] with a learning rate of 0.0001 that we
decay by a factor of 0.2 after 150 and 250 epochs and weight
decay of 0.0001. We set λcls = 100 and λgiou = 1. We con-
struct a training sub-sequence by randomly sampling two
training frames and a test frame from a 200 frame window
within a video sequence. We then extract the image patches
after randomly translating and scaling the image relative to
the target bounding box. Moreover, we use random image
flipping and color jittering for data augmentation. We set
the spatial resolution of the target scores to 18 × 18 and
set the search area scale factor to 5.0. Further training and
architecture details are provided in the supplementary.

3.5. Online Tracking

During tracking, we use the annotated first frame, as
well as previously tracked frames as our training set Strain.
While we always keep the initial frame and its annotation,
we include one previously tracked frame and replace it with
the most recent frame that achieves a target classifier confi-
dence higher than a threshold. Hence, the training set Strain

contains at most two frames.
We observed that incorporating previous tracking re-

sults in Strain improves the target localization considerably.
However, including predicted bounding box estimations de-
grades the bounding box regression performance due to in-
accurate predictions, see Sec. 4.1. Hence, we run the model
predictor twice. First, we include intermediate predictions
in Strain to obtain the classifier weights. In the second pass,
we only use the annotated initial frame to predict the bound-
ing box. Note that for efficiency both steps can be per-
formed in parallel in a single forward pass. In particular,
we reshape the feature map corresponding to two training
and one test frame to a sequence and duplicate it. Then, we
stack both in the batch dimension to process them jointly
with the model predictor. To only allow attention between
the initial frame with ground truth annotation and the test
frame when predicting the model for bounding box regres-
sion, we make use of the so-called key padding mask that
allows us to ignore certain keys when computing attention.

4. Experiments
We evaluate our proposed tracking architecture ToMP on

seven benchmarks. Our approach is based on PyTorch 1.7
and is developed within the PyTracking [8] framework. Py-
Tracking is available under the GNU GPL 3.0 license. On a
single Nvidia RTX 2080Ti GPU, ToMP-101 and ToMP-50

achieve 19.6 and 24.8 FPS and use a ResNet-101 [19] and
ResNet-50 [19] as backbone respectively.

4.1. Ablation Study

We perform a comprehensive analysis of the proposed
tracker. First, we analyze the contribution of the different
proposed target state encodings and then examine the effect
of different inference settings. Finally, we report the perfor-
mance achieved when replacing the target classifier or the
bounding box regressor of SuperDiMP with ours. All abla-
tion experiments in this part use a ResNet-50 as backbone.
Target State Encoding: In order to analyze the effect of
the different target state encodings we train different vari-
ants of our network and evaluate them on multiple datasets.
The first five rows of Tab. 1 correspond to versions with dif-
ferent target location encodings. All other settings are kept
the same. In addition to the foreground and test embedding,
we include a learned background embedding (instead of set-
ting ebg = 0) to our analysis as follows: ψ(yi, efg, ebg) =
yi · efg + (1− yi) · ebg. However, Tab. 1 shows (4th vs. 5th

row) that adding such a learned background embedding de-
creases the tracking performance. We further observe that
setting the foreground embedding efg = 0 (1st row) and
only relying on the target extent encoding ϕ(·) still achieves
high tracking performance but clearly lacks behind all other
versions that include the foreground embedding. We con-
clude that using only the foreground encoding efg and the
test encoding etest leads to the best performance (4th row).

In the second part of Tab. 1 we choose the best settings
for the target location encoding and remove either the target
extent encoding ϕ(·) or decouple the Transformer Decoder
query from the foreground embedding efg. We observe that
using a separate query (6th row) decreases the overall per-
formance. Similarly, we notice that incorporating target ex-
tent information via the proposed encoding is crucial. Oth-
erwise, the performance drops significantly (7th row).
Model Predictor: Since our model predictor estimates two
different model weights, it seems natural to use two differ-
ent Transformer queries: one to produce the target model

efg ebg etest ϕ(·) qdec = efg LaSOT NFS OTB

1 ✗ ✗ ✗ ✓ n.a. 66.0 64.8 68.2
2 ✓ ✗ ✗ ✓ ✓ 67.1 66.6 70.0
3 ✓ ✓ ✗ ✓ ✓ 67.1 66.3 69.4
4 ✓ ✗ ✓ ✓ ✓ 67.6 66.9 70.1
5 ✓ ✓ ✓ ✓ ✓ 67.4 66.0 69.5

6 ✓ ✗ ✓ ✓ ✗ 66.0 66.2 69.9
7 ✓ ✗ ✓ ✗ ✓ 63.1 64.2 64.0

Table 1. For efg, ebg and etest learning the embedding is denoted
by ✓ whereas ✗ means setting it to zero. Using the encoding ϕ(·)
is denoted by ✓ whereas ✗ refers to omitting it. For qdec = efg the
symbol ✓ means sharing the learned embedding efg for encoding
and querying the Decoder wheres ✗ means learning two separate
embeddings for both tasks. (Our final model is in the 4th row).

8736

Number of Decoder
Decoder queries Linear Layer query qdec LaSOT NFS OTB

1 ✓ qdec = efg 67.6 66.9 70.1
2 ✗ qdec ̸= efg 63.7 62.8 67.9

Table 2. Analysis of different model predictor architectures and its
impact on the tracking performance in terms of success AUC.

Two Stage Previous
Model Prediction Tracking Results LaSOT NFS OTB

n.a. ✗ 65.7 65.3 67.8
✓ ✓ 67.6 66.9 70.1
✗ ✓ 62.0 64.8 62.8

Table 3. Analysis of different inference settings an of their impact
on the tracking performance in terms of success AUC.

Model Bounding Box LaSOT
Predictor Regressor LaSOT NFS UAV ExtSub

DiMP [1] Prob. IoUNet [12] 63.1 64.8 67.7 43.7
ToMP Prob. IoUNet [12] 64.7 65.2 65.0 45.2
ToMP ToMP 67.6 66.9 69.0 45.4

Table 4. Impact of replacing DiMP [1] and the probabilistic
IoUNet [12] with ToMP for localization and box regression.

weights and the other to obtain the bounding box regressor
weights. However, this involves decoupling the query from
the foreground embedding efg and the experiments in Tab. 2
show a significant performance drop for this case.
Inference Settings: During online tracking, we use the
initial frame and its annotation as training frames. In addi-
tion, we include the most recent frame and its target predic-
tion if the classifier confidence is above a certain threshold.
Tab. 3 shows that including previous tracking results leads
to higher tracking performance than using only the initial
frame. Disabling the described two stage model prediction
approach and predicting the weights of the target model and
bounding box regressor at once decreases the tracking per-
formance drastically (-5.6 AUC on LaSOT). The reason is
the sensitivity of the bounding box predictor to inaccurate
predicted boxes that are encoded and used for training.
Transforming Model Prediction Step-by-Step: Our
model predictor can estimate model weights for the target
model and bounding box regressor. In this part, we will
transform an optimization based tracker step-by-step to as-
sess the impact of each transformation step. Tab. 4 shows
that replacing the model optimizer in SuperDiMP (1st row)
with our proposed model predictor to only predict the tar-
get model (2nd row) outperforms SuperDiMP on three out
of four datasets. Our tracker ToMP that jointly predicts
model weights for target localization and bounding box re-
gression (3rd row) achieves the best performance on all four
datasets. We conclude that predicting the weights of the tar-
get model improves the performance and likewise predict-
ing the weights of the bounding box regressor. Note that we
report the average over five runs for all trackers based on
the probabilistic IoUNet due to its stochasticity.

4.2. Comparison to the State of the Art

We compare our tracker ToMP on seven tracking bench-
marks. The same settings and parameters are used for all
datasets. We recompute the metrics of all trackers using the
raw predictions if available or otherwise report the results
given in the respective paper.
LaSOT [14]: First, we compare ToMP on the large-scale
LaSOT dataset (280 test sequences with 2500 frames on
average). The success plot in Fig. 5a shows the overlap
precision OPT as a function of the threshold T . Trackers
are ranked w.r.t. their area-under-the-curve (AUC) score,
shown in the legend. Tab. 5 shows more results including
precision and normalized precision for each tracker. Both
versions of ToMP with different backbones outperform the
recent trackers STARK [43], TransT [6], TrDiMP [40] and
DTT [45] in AUC and sets a new state-of-the-art result.
Note that even ToMP with ResNet-50 outperforms STARK-
ST101 with ResNet-101 (67.6 vs 67.1). Fig. 4 shows the
success AUC gain of ToMP compared to recent Trans-
former based trackers for different attributes annotated in
LaSOT [14]. We want to highlight that ToMP outper-
forms TransT [6] and TrDiMP [40] on each attribute by
more than one percent point. Similarly, ToMP achieves
higher performance than STARK-ST101 for every attribute.
It achieves the highest gain over STARK for Background
Clutter, showing the disadvantage of using small templates
instead of training frames with a large field of view that
allow not only to leverage target, but also background in-
formation.
LaSOTExtSub [13]: This dataset is an extension of La-
SOT. It only contains test sequences assigned to 15 new
classes with 10 videos each. The sequences contain 2500
frames on average showing challenging tracking scenar-
ios of small, fast moving objects with distractors present.

ToMP ToMP STARK Keep STARK Alpha Siam Tr Super STM Pr
101 50 ST101 Track ST50 Refine TransT R-CNN DiMP DiMP SAOT Track DTT DiMP

[43] [30] [43] [44] [6] [38] [40] [8] [48] [16] [45] [12]

Precision 73.5 72.2 72.2 70.2 71.2 68.0 69.0 68.4 66.3 65.3 - 63.3 - 60.8
Norm. Prec 79.2 78.0 76.9 77.2 76.3 73.2 73.8 72.2 73.0 72.2 70.8 69.3 - 68.8
Success (AUC) 68.5 67.6 67.1 67.1 66.4 65.3 64.9 64.8 63.9 63.1 61.6 60.6 60.1 59.8

Table 5. Comparison on the LaSOT [14] test set ordered by AUC.

Moti
on

 Blur

Illu
mina

tio
n V

ari
ati

on

Ful
l O

ccl
usi

on

Back
gro

un
d C

lut
ter

Par
tia

l O
ccl

usi
on

Cam
era

 Moti
on

Aspe
ct

Ra
tio

n C
ha

ng
e

Sca
le

Va
ria

tio
n

Defo
rm

ati
on

Ro
tat

ion

Out-
of-

Vie
w

Low
 Re

sol
uti

on

Fas
t M

oti
on

Vie
wpo

int
 Cha

ng
e

0
1
2
3
4
5
6
7

Su
cc

es
s A

UC
 G

ai
n

ToMP-101 vs TransT [4.38]
ToMP-101 vs TrDiMP [4.04]
ToMP-101 vs STARK-ST101 [1.58]

Figure 4. Per attribute analysis on LaSOT [14] between ToMP and
recent Transformer based trackers. The bar heights correspond to
the gain of our tracker and the legend shows the average gain.

8737

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

10

20

30

40

50

60

70

80

90

Ov
er

la
p

Pr
ec

isi
on

 [%
]

Success plot

ToMP 101 [68.5]
ToMP 50 [67.6]
KeepTrack [67.1]
STARK-ST101 [67.1]
STARK-ST50 [66.4]
AlphaRefine [65.9]
TransT [64.9]
Siam R-CNN [64.8]
TrDiMP [63.9]
Super DiMP [63.1]
STMTrack [60.6]
PrDiMP50 [59.8]

(a) LaSOT [14]

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

10

20

30

40

50

60

70

Ov
er

la
p

Pr
ec

isi
on

 [%
]

Success plot

KeepTrack [48.2]
ToMP 101 [45.9]
ToMP 50 [45.4]
Super DiMP [43.7]
LTMU [41.4]
DiMP [39.2]
ATOM [37.6]
DaSiamRPN [35.6]
SiamRPN++ [34.0]

(b) LaSOTExtSub [13]

Figure 5. Success plots, showing OPT , on LaSOT [14] and LaSO-
TExtSub [13] and AUC is reported in the legend.

ToMP ToMP STARK STARK Siam Alpha STM Tr Keep Super Pr Siam
101 50 ST101 TransT ST50 R-CNN Refine Track DTT DiMP Track DiMP DiMP FC++

[43] [6] [43] [38] [44] [16] [45] [40] [30] [8] [12] [42]

Precision 78.9 78.6 - 80.3 - 80.0 78.3 76.7 78.9 73.1 73.8 73.3 70.4 70.5
Norm. Prec 86.4 86.2 86.9 86.7 86.1 85.4 85.6 85.1 85.0 83.3 83.5 83.5 81.6 80.0
Success (AUC) 81.5 81.2 82.0 81.4 81.3 81.2 80.5 80.3 79.6 78.4 78.1 78.1 75.8 75.4

Table 6. Comparison on the TrackingNet [32] test set.

ToMP ToMP Keep STARK STARK Super Pr STM Siam Siam
101 50 Track CRACT ST101 TrDiMP TransT ST50 DiMP DiMP Track AttN R-CNN KYS DiMP

[30] [15] [43] [40] [6] [43] [8] [12] [16] [46] [38] [2] [1]

UAV123 66.9 69.0 69.7 66.4 68.2 67.5 69.1 69.1 67.7 68.0 64.7 65.0 64.9 – 65.3
OTB-100 70.1 70.1 70.9 72.6 68.1 71.1 69.4 68.5 70.1 69.6 71.9 71.2 70.1 69.5 68.4
NFS 66.7 66.9 66.4 62.5 66.2 66.2 65.7 65.2 64.8 63.5 – – 63.9 63.5 62.0

Table 7. Comparison with the state of the art on the OTB-100 [41],
NFS [17] and UAV123 [31] datasets in terms of AUC score.

Fig. 5b shows the success plot where the results of most
trackers are obtained from [13], e.g., DaSiamRPN [49],
SiamRPN++ [26], ATOM [9], DiMP [1] and LTMU [7].
ToMP exceeds the performance of all trackers except Keep-
Track [30] that employs explicit distractor matching be-
tween frames. In particular, we outperform SuperDiMP [8]
that uses a model optimizer (+2.2%).
TrackingNet [32]: We evaluate ToMP on the large-scale
TrackingNet dataset that contains 511 test sequences with-
out publicly available ground-truth. An online evaluation
server is used to obtain the tracking metrics shown in Tab. 6
by submitting the raw tracking results. Both versions of
ToMP achieve competitive results close to the current state
of the art. In particular, ToMP-101 achieves the second
best performance in terms of AUC behind STARK [43],
outperforming other Transformer based trackers such as
TransT [6] and TrDiMP [40].
UAV123 [31]: The UAV dataset consists of 123 test videos
that contain small objects, target occlusion, and distractors.
Tab. 7 shows the achieved results in terms of success AUC.
Again, ToMP achieves competitive results compared to the
current state of the art achieved by KeepTrack [30].
OTB-100 [41]: We also report results on the OTB-100
dataset that contains 100 short sequences. Multiple track-
ers achieve results above 70% AUC. Among them are both
versions of ToMP, see Tab. 7. ToMP achieve the same per-
formance as SuperDiMP [8] but slightly higher results than
TransT [6] and slightly lower than TrDiMP [40].
NFS [17]: We compete on the NFS dataset (30FPS ver-
sion) containing 100 test videos. It contains fast motions

ToMP ToMP STARK Super STARK
101 50 ST50 DiMP ST101 DPMT TRAT UPDT DiMP ATOM

[43] [8, 25] [43] [25] [25] [3, 25] [1, 25] [9, 25]

Accuracy 0.453 0.453 0.478. 0.477 0.481 0.492 0.464 0.465 0.457 0.462
Robustness 0.814 0.789 0.799 0.728 0.775 0.745 0.744 0.755 0.734 0.734
EAO 0.309 0.297 0.308 0.305 0.303 0.303 0.280 0.278 0.274 0.271

Table 8. Comparison to the state of the art of bounding box only
methods on VOT2020ST [25] in terms of EAO score.

and challenging sequences with distractors. Both versions
of ToMP exceed the performance of the current best method
KeepTrack [30] by +0.5% and +0.3%, see Tab. 7.
VOT2020 [25]: Finally, we evaluate on the 2020 edition of
the Visual Object Tracking short-term challenge. We com-
pare with the top methods in the challenge [25], as well
as more recent methods. The dataset contains 60 videos
annotated with segmentation masks. Since ToMP produces
bounding boxes we only compare with trackers that produce
the bounding boxes as well. The trackers are evaluated fol-
lowing the multi-start protocol and are ranked according to
the EAO metric that is based on tracking accuracy and ro-
bustness, defined using IoU overlap and failure rate respec-
tively. The results in Tab. 8 show that ToMP-101 achieves
the best overall performance, with the highest robustness
and competitive accuracy compared to previous methods.

4.3. Limitations

Transformer Encoders consist of self-attention layers
that compute similarity matrices between multiple training
and test frame features and thus lead to a large memory foot-
print that impacts training and inference run-time. Thus, in
future work this limitation should be addressed by evalu-
ating alternatives such as [22, 24, 34] aiming at decreasing
the memory burden. Another limiting factor of ToMP arises
from challenging tracking sequences. In particular, distrac-
tors present while the target is occluded is a typical failure
scenario of ToMP, since it is lacking explicit distractor han-
dling as in KeepTrack [30].

5. Conclusion
We propose a novel tracking architecture employing a

Transformer-based model predictor. The model predictor
estimates the weights of the compact DCF target model to
localize the target in the test frame. In addition, the pre-
dictor produces a second set of weights used for precise
bounding box regression. To achieve this, we develop two
new modules that encode target location and its bounding
box in the training features. We conduct comprehensive ex-
perimental validation and analysis of ToMP on several chal-
lenging datasets, and set a new state of the art on three.
Acknowledgments: This work was partly supported by the
ETH Zürich Fund (OK), Siemens Smart Infrastructure, the
ETH Future Computing Laboratory (EFCL) financed by a
gift from Huawei Technologies, an Amazon AWS grant,
and an Nvidia hardware grant.

8738

References
[1] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), October 2019. 1, 2, 5, 7,
8

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Know your surroundings: Exploiting scene infor-
mation for object tracking. In Proceedings of the European
Conference on Computer Vision (ECCV), August 2020. 8

[3] Goutam Bhat, Joakim Johnander, Martin Danelljan, Fa-
had Shahbaz Khan, and Michael Felsberg. Unveiling the
power of deep tracking. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.
8

[4] David S. Bolme, J. Ross Beveridge, Bruce A. Draper, and
Yui Man Lui. Visual object tracking using adaptive correla-
tion filters. In CVPR, 2010. 1, 2

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 213–229, August 2020. 2, 4

[6] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
and Huchuan Lu. Transformer tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021. 1, 2, 5, 7, 8

[7] Kenan Dai, Yunhua Zhang, Dong Wang, Jianhua Li,
Huchuan Lu, and Xiaoyun Yang. High-performance long-
term tracking with meta-updater. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 8

[8] Martin Danelljan and Goutam Bhat. PyTracking: Vi-
sual tracking library based on PyTorch. https://
github.com/visionml/pytracking, 2019. Ac-
cessed: 1/05/2021. 1, 6, 7, 8

[9] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. ATOM: Accurate tracking by overlap
maximization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 1, 2, 5, 8

[10] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. ECO: efficient convolution operators for
tracking. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2017. 1

[11] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan,
and Michael Felsberg. Beyond correlation filters: Learning
continuous convolution operators for visual tracking. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), October 2016. 2

[12] Martin Danelljan, Luc Van Gool, and Radu Timofte. Prob-
abilistic regression for visual tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 2, 5, 7, 8

[13] Heng Fan, Hexin Bai, Liting Lin, Fan Yang, Peng Chu, Ge
Deng, Sijia Yu, Mingzhen Huang, Juehuan Liu, Yong Xu,

et al. Lasot: A high-quality large-scale single object track-
ing benchmark. International Journal of Computer Vision
(IJCV), 129(2):439–461, 2021. 7, 8

[14] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia
Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.
Lasot: A high-quality benchmark for large-scale single ob-
ject tracking. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 1, 2, 6, 7, 8

[15] Heng Fan and Haibin Ling. Cract: Cascaded regression-
align-classification for robust visual tracking. arXiv preprint
arXiv:2011.12483, 2020. 8

[16] Zhihong Fu, Qingjie Liu, Zehua Fu, and Yunhong Wang.
Stmtrack: Template-free visual tracking with space-time
memory networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2021. 5, 7, 8

[17] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva
Ramanan, and Simon Lucey. Need for speed: A benchmark
for higher frame rate object tracking. In ICCV, 2017. 1, 8

[18] Hamed Kiani Galoogahi, Ashton Fagg, and Simon Lucey.
Learning background-aware correlation filters for visual
tracking. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2017. 1

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016. 1, 6

[20] João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge
Batista. High-speed tracking with kernelized correlation fil-
ters. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 37(3):583–596, 2015. 1, 2

[21] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A
large high-diversity benchmark for generic object tracking
in the wild. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 43(5):1562–1577, 2021. 6

[22] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and
François Fleuret. Transformers are RNNs: Fast autoregres-
sive transformers with linear attention. In Proceedings of
the International Conference on Machine Learning (ICML),
pages 5156–5165, July 2020. 8

[23] Dai Kenan, Wang Dong, Lu Huchuan, Sun Chong, and Li
Jianhua. Visual tracking via adaptive spatially-regularized
correlation filters. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2019. 2

[24] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In Proceedings of the In-
ternational Conference on Learning Representations (ICLR),
2020. 8

[25] Matej Kristan, Aleš Leonardis, Jiřı́ Matas, Michael Fels-
berg, Roman Pflugfelder, Joni-Kristian Kämäräinen, Martin
Danelljan, Luka Čehovin Zajc, Alan Lukežič, Ondrej Dr-
bohlav, Linbo He, Yushan Zhang, Song Yan, Jinyu Yang,
Gustavo Fernández, and et al. The eighth visual object track-
ing vot2020 challenge results. In Proceedings of the Euro-
pean Conference on Computer Vision Workshops (ECCVW),
August 2020. 8

8739

[26] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,
and Junjie Yan. Siamrpn++: Evolution of siamese vi-
sual tracking with very deep networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 8

[27] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.
Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO: common objects in context. In Proceedings of the
European Conference on Computer Vision (ECCV), 2014. 6

[28] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2019. 6

[29] Alan Lukezic, Tomás Vojı́r, Luka Cehovin Zajc, Jiri Matas,
and Matej Kristan. Discriminative correlation filter tracker
with channel and spatial reliability. International Journal of
Computer Vision (IJCV), 126(7):671–688, 2018. 1, 2

[30] Christoph Mayer, Martin Danelljan, Danda Pani Paudel, and
Luc Van Gool. Learning target candidate association to keep
track of what not to track. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
13444–13454, October 2021. 7, 8

[31] Matthias Mueller, Neil Smith, and Bernard Ghanem. A
benchmark and simulator for uav tracking. In Proceedings
of the European Conference on Computer Vision (ECCV),
October 2016. 8

[32] Matthias Müller, Adel Bibi, Silvio Giancola, Salman Al-
Subaihi, and Bernard Ghanem. Trackingnet: A large-scale
dataset and benchmark for object tracking in the wild. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2018. 6, 8

[33] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 5

[34] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and
Hongsheng Li. Efficient attention: Attention with linear
complexities. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV), pages
3531–3539, January 2021. 8

[35] Chong Sun, Dong Wang, Huchuan Lu, and Ming-Hsuan
Yang. Correlation tracking via joint discrimination and relia-
bility learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.
1, 2

[36] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), October 2019. 5

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS), 2017. 4

[38] Paul Voigtlaender, Jonathon Luiten, Philip H.S. Torr, and
Bastian Leibe. Siam R-CNN: Visual tracking by re-

detection. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020. 7, 8

[39] Guangting Wang, Chong Luo, Xiaoyan Sun, Zhiwei Xiong,
and Wenjun Zeng. Tracking by instance detection: A meta-
learning approach. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020. 2

[40] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li.
Transformer meets tracker: Exploiting temporal context for
robust visual tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021. 1, 2, 7, 8

[41] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-
ing benchmark. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 37(9):1834–1848, 2015. 8

[42] Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu.
Siamfc++: Towards robust and accurate visual tracking with
target estimation guidelines. In Proceedings of the Confer-
ence on Artificial Intelligence (AAAI), February 2020. 5, 8

[43] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and
Huchuan Lu. Learning spatio-temporal transformer for
visual tracking. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pages
10448–10457, October 2021. 1, 2, 4, 5, 7, 8

[44] Bin Yan, Xinyu Zhang, Dong Wang, Huchuan Lu, and Xi-
aoyun Yang. Alpha-refine: Boosting tracking performance
by precise bounding box estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021. 7, 8

[45] Bin Yu, Ming Tang, Linyu Zheng, Guibo Zhu, Jinqiao Wang,
Hao Feng, Xuetao Feng, and Hanqing Lu. High-performance
discriminative tracking with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9856–9865, October 2021. 1, 2, 5, 7, 8

[46] Yuechen Yu, Yilei Xiong, Weilin Huang, and Matthew R.
Scott. Deformable siamese attention networks for visual ob-
ject tracking. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020. 8

[47] Linyu Zheng, Ming Tang, Yingying Chen, Jinqiao Wang, and
Hanqing Lu. Learning feature embeddings for discriminant
model based tracking. In Proceedings of the European Con-
ference on Computer Vision (ECCV), August 2020. 2

[48] Zikun Zhou, Wenjie Pei, Xin Li, Hongpeng Wang, Feng
Zheng, and Zhenyu He. Saliency-associated object track-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 9866–9875, October
2021. 7

[49] Zheng Zhu, Qiang Wang, Li Bo, Wei Wu, Junjie Yan, and
Weiming Hu. Distractor-aware siamese networks for visual
object tracking. In Proceedings of the European Conference
on Computer Vision (ECCV), September 2018. 8

8740

